Journal Pre-proof

Synthesis of the cyclopentane core of pepluanin A

Erin D. Shephed, Michal S. Hallside, Jack L. Sutro, Amber Thompson, Martin Hutchings, Jonathan W. Burton

PII: S0040-4020(20)30076-4

DOI: https://doi.org/10.1016/j.tet.2020.130981

Reference: TET 130981

To appear in: *Tetrahedron*

Received Date: 7 November 2019

Revised Date: 16 January 2020

Accepted Date: 22 January 2020

Please cite this article as: Shephed ED, Hallside MS, Sutro JL, Thompson A, Hutchings M, Burton JW, Synthesis of the cyclopentane core of pepluanin A, *Tetrahedron* (2020), doi: https://doi.org/10.1016/j.tet.2020.130981.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Synthesis of the cyclopentane core of Leave this area blank for abstract info.

Erin D. Shepherd, Michal S. Hallside, Jack L. Sutro, Amber Thompson, Martin Hutchings and Jonathan W. Burton

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK

Journal Prever

Tetrahedron journal homepage: www.elsevier.com

Synthesis of the cyclopentane core of pepluanin A

Erin D. Shephed,^a Michal S. Hallside,^a Jack L. Sutro,^a Amber Thompson,^a Martin Hutchings^b and Jonathan W. Burton^{a,*}

^aDepartment of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK. ^bUCB Pharama, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK.

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: pepluanin A jatrophane synthesis cyclization cyclopentane

1. Introduction

Plants of the genus Euphorbia produce a large number of structurally diverse terpenoid natural products that exhibit a vast array of biological activities.¹ Particularly interesting among these natural products are the jatrophane diterpenes that are characterised by a highly oxygenated trans-bicyclo-[10.3.0]pentadecane scaffold.² These jatrophanes display a wide range of important biological activities including cytotoxicity against human cancer cell lines. However, what is most striking about certain jatrophanes is their ability to inhibit the P-glycoprotein (P-gp) and other efflux pumps that has implications for acquired multidrug resistance (MDR).³ The selective inhibition of P-gp resulting in reduced MDR, is currently an active area of research for cancer chemotherapy given that the P-gp is overexpressed in cancer cells. As noted above the jatrophanes display wide structural variation and consequently wide variation in P-gp inhibition. Pepluanin A 1^{3a} and euphodendroidin D 2^{4} , both show inhibition of daunomycin efflux, with pepluanin A being twice as active at inhibiting the P-gp efflux of daunomycin compared with the current "gold-standard", cyclosporin A.⁵ Similarly, epieuphoscopin B 3^{3c} is twice as potent as cyclosporin A at inhibiting P-gp-mediated efflux of mitoxantrone. Pepluanin A 1, euphodendroidin D 2 and epieuphoscopin B 3 are but three of an ever-increasing number of biologically active jatrophane diterpenes being isolated from Euphorbia spp.² The structures of jatrophane diterpenes differ in the extent of oxygenation, the position of unsaturation, the type and extent of esterification and in their relative configurations as exemplified by pepluanin A 1, euphodendroidin D 2 and epieuphoscopin 3. The large number of jatrophane diterpenes that have been isolated has, to a certain extent, allowed a structure/activity relationship to be mapped out

The jatrophane class of natural products exhibit a wide range of biological activities with certain members of this family of complex sesquiterpenes being P-glycoprotein inhibitors. Considerable attention has been paid to the synthesis of biologically active jatrophanes although very few have succumbed to total synthesis. Herein we report a synthesis of the cyclopentane core of pepluanin A, a potent P-glycoprotein inhibitor, that features an iodocarbocyclization and an invertive acetal formation as key steps.

2009 Elsevier Ltd. All rights reserved.

and leads to the potential for design of more active analogues.⁶ For example, a large number of the jatrophanes that exhibit P-gp inhibition lack oxygenation at C-2. It may therefore be the case that an analogue of pepluanin A lacking a C-2 acetoxy group would show increased potency with respect to the natural product itself.

15-O-acetyl-3-O-propionylcharaciol; 4

Figure 1. Jatrophane diterpene skeleton and the structure of selected jatrophane natural products.

Tetrahedror

Tetrahedron

As a result of the biological profile of these natural products and their intriguing structures, there has been significant interest from the synthetic organic chemistry community; however, there have been very few total syntheses of jatrophane natural products although many groups have reported partial syntheses.⁷ The first total synthesis of a jatrophane diterpene came from the group of A. B. Smith, who prepared (\pm)-jatrophane and the non-natural product (\pm)-*epi*-jatrophane⁸ as well as (+)-hydroxyjatrophanes A and B (not shown).⁹ Racemic (\pm)-jatrophane was also prepared by Stille and Hegedus¹⁰ with the synthesis of natural (+)jatrophane being reported by Wiemer.¹¹ In 2006, Hiersemann reported the synthesis of the non-natural (–)-15-*O*-acetyl-4-*O*- propionyl-17-norcharaciol¹² (not shown) that was followed shortly after by a report from the same group on the synthesis of the natural product (-)-15-*O*-acetyl-4-*O*-propionyl-characiol **4** and a number of analogues using a carbonyl ene reaction as a key step.^{6, 13} The Hiersemann syntheses represent a landmark in the total synthesis of jatrophane diterpenes. Given the everincreasing number of biologically active jatrophanes being isolated, particularly with efflux pump inhibition properties, it is surprising that there have been so few total syntheses of these natural products and indicates the challenge these targets present to synthetic chemists.

Figure 2. Retrosynthesis of the cyclopentane core of pepluanin A. P = generic protecting group, R = alkyl group.

2. Results and Discussion

For a number of years, we have been interested in the oxidative radical cyclization of pentenyl malonates for the formation of [3.3.0]-bicyclic γ -lactones and have used this transformation for the synthesis of a number of natural products.¹⁴ This oxidative radical cyclization was to be a key step in the synthesis of the cyclopentane core of pepluanin A. Our retrosynthesis of the cyclopentane core of pepluanin A is shown in Figure 2. The poly-substituted cyclopentane 5 would be derived from the bicyclic bromo-lactone 6 via reduction followed by bromide substitution with inversion of configuration. The bromo-lactone 6 should be readily prepared from the carboxylic acid 7, which, in turn will be available from the tricyclic bis-lactone 8, which itself might be synthetically available via an oxidative C-H insertion reaction of the carboxylic acid 9 (R = H).¹⁵ The corresponding ester 9 (R = alkyl) was to be synthesized via oxidative radical cyclization from the linear malonate 10. The malonate would be readily prepared from the known ester 11 which is itself available from the aldol product of t-butyl acetate and acrolein, the allylic alcohol 12, which has been prepared in enantiopure form.¹

The synthesis began with the aldol reaction between *t*-butyl acetate 13 and freshly distilled acrolein to give 12 (Scheme 1),¹⁷ followed by a Frater-Seebach alkylation¹⁸ to give the anti-aldol 11 (71%, > 20:1 dr); the relative configuration of 11 was assigned by conversion into the known diol 14.¹⁹ Protection of the allylic alcohol in 11 followed by ester reduction to give 15, mesylation and reaction with sodio dimethyl malonate gave the cyclization precursor 16. Exposure of the malonate 16 to our standard oxidative radical cyclization conditions^{14b} gave a 1:1 mixture of two diastereomers **17-cc** and **17-cv**²⁰ in 41% yield (Scheme 2). Lowering the reaction temperature to 40 °C gave the products in 52% yield as a 1.5:1 mixture of diastereomers favoring 17-cc where the methyl and silvloxy substituents are on the concave face of the bicyclo[3.3.0]octane. The structures of the bicyclic lactones were assigned through ¹H NMR nOe analysis (Scheme 2). We have previously rationalized the outcome of related oxidative radical cyclizations using the Beckwith-Houk transition state model for 5-hexenyl radical cyclizations. $^{14b,\,21}$

Scheme 1. Synthesis of cyclization substrate. (i) LDA, THF, -78 °C, then acrolein, quant. (ii) LDA, THF, HMPA, -78 °C, then MeI, 0 °C, 72%; (iii) TBDMSCl, imidazole, CH₂Cl₂, 98%; (iv) DIBAL, THF, -20 °C, 88%; (v) MsCl, Et₃N, CH₂Cl₂; (vi) NaH, CH₂(CO₂Me)₂, KI, THF, DMF, 80 °C, 89% (2 steps).

Scheme 2. Oxidative radical cyclization of malonate 16, along with selected ¹H-¹H NMR nOe's (dotted arrows) for **17-cc** and **17-cv** and proposed cyclization transition structure **18**. (i) Mn(OAc)₃, Cu(OTf)₂, MeCN, 40 °C, 52%, **17-cc:17-cv** 1.5:1.

In this model it is more favorable for alkyl groups to occupy pseudo-equatorial over pseudo-axial positions in the chair-like transition state. The proposed transition state for the cyclization of **16** would position the methyl group in a pseudo-equatorial position with the alkoxy group occupying a pseudo-axial position (**18**). Taguchi has shown,²² with iodine atom transfer reactions of

alkenyl-iodomalonates (Scheme 3), that allylic silyloxy groups $T \in \mathcal{T}$	-p7oof	BnO, 21f	Me	20f	1:1.8	59% ^b
impart no stereocontrol giving the product γ -lactones 20a as a 1:1	8	Me, 21g	Me	20g	1:5	47% ^c
mixtures of diastereomers.						

20a-cc; R' = OTBDMS 20a-cv; R' = OTBDMS 19: B' = OTBDMS

Scheme 3. Taguchi's atom transfer cyclization of iodomalonates. (i)

benzene, 80 °C then heat, 50%, 1:1 mixture of 20a-cc and 20a-cv. Surprisingly, formation of the same products 20a from malonate 21a under our standard oxidative radical cyclization conditions using manganese(III) acetate and copper(II) triflate gives the corresponding lactones as a mixture of diastereomers with 20a-cc as the major product that carries the silvloxy substituent on the concave face of the bicyclic lactone (Table 1 entries 1 and 2). Indeed all of the oxidative radical cyclizations with substrates bearing allylic alkoxy groups are mildly diastereoselective with the major products formed having the alkoxy group on the inside of the [3.3.0]-bicyclic γ -lactone (20cc), in keeping with axial orientation in a Beckwith-Houk transition state (Table 1). The best results were with an allylic *t*-butyldimethylsilyloxy (21a) substituent with 0.2 M substrate concentration in acetonitrile at 40 °C to give the products 20a as a 4:1 mixture of diastereomers in 78% yield favoring 20a-cc. The only exception is with the benzyloxy substituted substrate 21f where the corresponding product lactones 20f were formed as a 1.8:1 mixture of diastereomers favoring the γ -lactone with the benzyloxy group on the convex face of the [3.3.0]-bicyclic lactone 20f-cv.²³ Although the lactones 20f were formed as a 1.8:1 mixture of diastereomers, dimethyl 3-hydroxy-2-methylcyclopentane-1,1dicarboxylate (not shown) was also formed along with a number of unidentified by products making accurate determination of the diastereomeric ratio of the cyclization impossible. A control experiment with an allylic methyl group (substrate 21g) gave the product lactones 20g in 47% yield (22% recovered starting material) as a 1:5 mixture of stereoisomers favoring 20g-cv in keeping with the Beckwith-Houk model. The relative configurations of the bicyclic lactones 20 were assigned using ¹H NMR nOe experiments. A number of the bicyclic lactone products were crystalline and single crystal X-ray structures of 20a-cv, 20b-cc and 20c-cc are shown in Figure 3 confirming the ¹H NMR nOe assignments. Our results with allylic silyloxy substrates 21a-c contrast with those of Taguchi. These contrasting results may potentially arise from the different solvents used and the presence of Lewis acidic metal ions under the manganese(III), copper(II) cyclization conditions.

Table 1. Oxidative radica	l cyclizations of	f substrates 21
---------------------------	-------------------	-----------------

	Mn(O Cu(C CO ₂ R <u>M</u> CO ₂ R <u>21</u>	Ac) ₃ (2 ec)Tf) ₂ (1 ec eCN, 40 °	$\begin{array}{c} \text{quiv.}),\\ \text{quiv}), & \text{RO}_2C\\ \hline C\\ \hline C\\ R' & H \end{array}$	0 +	RO ₂ C
			20-c	c	20-cv
Entry	R', substrate ^a	R	Products	d.r. cc:cv	Yield
1	tBuMe ₂ SiO, 21a	Me	20a	2:1	78%
2	tBuMe ₂ SiO, 21a	Me	20a	4:1	78%
3	tBuMe ₂ SiO, 21b	Et	20b	2:1	75%
4	tBuPh ₂ SiO, 21c	Me	20c	2:1	63%
5	BzO, 21d	Me	20d	2:1	63%
6	AcO, 21e	Me	20e	2:1	67%

^a**21a,d,f** and **g**, and **20a,d,f** and **g** are known compounds;^{22 b}dimethyl 3hydroxy-2-methylcyclopentane-1,1-dicarboxylate was also isolated (7%); c 22% starting material was also isolated.

Figure 3. Structures of 20a-cv, 20b-cc and 20c-cc from single crystal Xrav diffraction.

The moderate selectivity of the cyclizations of the allylic alkoxy-substituted malonates reported in Table 1 along with the known preference for alkyl groups to adopt pseudo-equatorial positions in the chair-like Beckwith-Houk transition state was one of the guiding design principles for the synthesis of the core of pepluanin A as we predicted that these two substituents would exert their effects synergistically (transition state 18) and would lead to the formation of 17-cc with high diastereocontrol (Scheme 2). This however turned out not to be the case. Taguchi has also shown that iodine-mediated ionic cyclizations of substituted 5-hexenyl malonates can be highly diastereoselective giving rise to the product [3.3.0]-bicyclic γ lactones in good yields and with high levels of diastereocontrol. In these iodine-mediated cyclizations substrates that bear an allylic alkoxy substituent gave the corresponding [3.3.0]-bicyclic γ -lactones with high levels of diastereocontrol favoring the diastereomer with the alkoxy substituent on the concave face of the bicyclic lactone. Use of a variety of Taguchi's conditions with substrate 16 resulted in only modest improvement in the diastereoselectivity in the formation of the lactones 17 (Table 2, entries 1-3). Use of a Grignard reagent as the base followed by addition of iodine gave the product bicyclic lactones 17 as a 1:1 mixture of diastereomers in 45% yield (Table 2, entry 4).

.. c 1

Table 2. Iodine mediated cyclizations of substrate 16.				
TBDMSC) CO ₂ Me Me CO ₂ Me	I ₂ , CH ₂ ČI ₂ , additive then heat TBDMSO	O O + Me TBDM	
		17-cc	;	17-cv
Entry	additive	base	Crude d.r. (cc:cv)	Yield
1	Ti(OiPr) ₄	CuO	1.5:1	41%
2	Ti(OtBu) ₄	CuO	2.5:1	50%
3	Ti(OtBu) ₄	2,6-dimethoxypyrdine	2:1	38%
4	none	iPrMgCl	1:1	45%

We reasoned that cyclization of the malonate 22 bearing a methylene unit in place of the methyl group might provide better stereocontrol in the key oxidative cyclization due to reduced strain in the transition state (Figure 3). Furthermore, the product methylene cyclopentane 23 would offer numerous options for introduction of the C-3 tertiary alcohol in pepluanin A 1 as well as allowing access to the C-2 methyl group present in other members of the jatrophane family (e.g, 2 and 3).

Figure 3. Proposed oxidative cyclization; P = protecting group

The cyclization substrate **28** was readily prepared using the masked acrylate chemistry developed by Drewes²⁴ that commenced with an aldol reaction between the enolate derived from amino-ester **24** and acrolein to give aldol **25** (Scheme 4). Transformation of the amine in **25** into an amine oxide followed by elimination on exposure to alumina gave the product alcohol **26** that was transformed into the corresponding silyl ether **27** and thence to the malonate **28**. Subjecting the malonate **28** to our standard oxidative radical conditions gave multiple products from which the deprotected lactones were isolated in 46% yield as a 2.5:1 mixture of diastereomers favoring **29cc** (Scheme 5).

Scheme 4. Synthesis of the cyclization precursor. (i) LDA, THF, -78 °C, then acrolein, 97%; (ii) *m*-CPBA, CHCl₃, 5 °C then alumina, 51%; (iii) TBDMSCl, imidazole, CH₂Cl₂, 88%; (iv) DIBAL, THF, -20 °C, 86%; (v) MsCl, Et₃N, CH₂Cl₂; (v) CH₂(CO₂Me), NaH, KI, THF, DMF, 80 °C, 83% (2 steps).

Using Taguchi's conditions (Ti(Ot-Bu)₄, CuO, I₂, CH₂Cl₂) gave the protected lactones 30 in 42% yield along with the desilylated products 29 in 42% yield with 20:1 diastereomeric ratio favoring 30cc. Modification of Taguchi's conditions using EtMgBr as base and Cu(I)I at -78 °C followed by the addition of I_2 and then heating the crude reaction mixture to 140 °C, conditions we had developed for a conjugate addition, carbocyclization, lactonization sequence that will be reported in due course, gave the γ -lactones **30** in 92% yield as a 16:1 mixture of diastereomers favoring 30cc. The relative configurations of the lactones 30 were assigned by ¹H NMR nOe analysis and confirmed by single crystal X-ray analysis of the epoxide 31a formed from 30cc on treatment with m-CPBA. Epoxidation of the lactone with m-CPBA gave a 3:1 mixture of epoxides 31 favoring epoxide 31a the structures of which were assigned by ¹H NMR nOe analysis and single crystal X-ray analysis of the major diastereomer. Interestingly, use of DMDO resulted in reversal of the selectivity of the epoxidation.

D Scheme 5. Cyclization of dienyl malonate. (i) Mn(OAc)₃, Cu(OTf)₂, MeCN, 40 °C, 29 46%, cc:cv 2.5:1 d.r.; (ii) Ti(Ot-Bu)₄, CuO, I₂, CH₂Cl₂, RT, 29 29%, 30 42%, cc:cv 20:1 dr.; (iii) EtMgBr, CuI, CH₂Cl₂, -78 °C, then I₂, RT, then 140 °C, 30 92%, cc:cv 16:1 d.r.

Scheme 6. Epoxidation of **30cc** along with the structure of **31a** from single crystal X-ray diffraction data. (i) *m*-CPBA, NaHCO₃, CH₂Cl₂, RT, **31a** 54%, **31b** 17%. (ii) dimethyldioxirane, acetone, RT, **31a** 14%, **31b** 75%

The iodocyclization using ethylmagnesium bromide and iodine is most likely ionic in nature. According to Chamberlain and Hehre,²⁵ the stereoselectivity of intramolecular electrophilic addition to chiral allylic alcohols can be rationalized by placing the hydroxy group on the 'inside' position resulting in a more reactive ground-state. From here cyclization takes place via the corresponding electrophile π -complex.²⁶ In our system (Figure 4), this equates to the placing the silvloxy group in a pseudo-axial orientation (as also proposed by Taguchi),²² with a corresponding equatorial C-H bond (the inside alkoxy effect) followed by cyclization via the corresponding olefin iodine π -complex ultimately to give the major lactone diastereomer 30cc. If the silyloxy group sits in a pseudo-equatorial orientation overlap between the bonding π -orbital and the σ^*_{C-O} results in a less nucleophilic π -bond and hence a disfavoured iodine π -complex, as well as increased allylic strain with the exo-cyclic methylene group. This results in a lower rate of formation for the minor diastereomeric lactone 30cv.

Figure 4. Proposed models for cyclization

Unfortunately, the TBDMS protecting group proved incompatible with the basic reaction conditions required for hydrolysis the methyl ester in **30cc** so that the necessary angular bromine atom could be introduced. We therefore changed the allylic protecting group to a more base-stable triisopropylsilyl group that also gave us the opportunity to synthesize the core in enantioenriched form.

2.1. Synthesis of the core in enantiopure form.

The route towards the synthesis core of pepluanin A in enantioenriched form began with the enzymatic resolution of the butyl ester **34** with *Candida Antarctica* lipase B²⁷ immobilized on ImmobeadTM in the presence of vinyl acetate that allowed isolation of the acetate **35** in 47% yield and 99% ee (Scheme 7); the absolute configuration of the acetate was tentatively assigned

as R on the basis precedent for the esterification of other racemic secondary alcohols with CAL-B²⁷ and was confirmed by Mosher ester analysis of a later intermediate (see below). The acetate in **35** could be hydrolyzed without loss of enantiomeric excess to give (+)-**34** on exposure to Amberlite IR-120 acidic resin in methanol for 4 days at room temperature. The alcohol so formed was readily converted into the silylether **36** which, in turn, was converted into the cyclization substrate **37** using standard procedures.

Scheme 7. Cyclization of dienyl malonate. (i) LDA, THF, -78 °C, then acrolein, 94%; (ii) *m*-CPBA, CHCl₃, RT, 63%; (iii) vinyl acetate, CAL-B on ImmobeadTM, hexane, 30 °C, 47%, 99% ee; (iv) MeOH, AmberliteTM IR-120, RT, 89%, 99% ee; (v) TIPSOTf, 2,6-lutidine, CH₂Cl₂, 93%; (vi) DIBAL, THF, -20 °C, 90%; (vi) MsCl, Et₃N, CH₂Cl₂, (vii) CH₂(CO₂Me), NaH, KI, THF, DMF, 80 °C, 84% (2 steps).

Exposure of the malonate **37** to our previously optimized cyclization conditions gave the lactones **38** as a separable 5:1 mixture of diastereomers in 78% (**38cc**) and 15% (**38cv**) yields respectively (Scheme 8); the relative configurations of **38cc** and **38cv** were assigned by analogy with the configurations of **30cc** and **30cv** with the configuration of **38cc** being further supported by ¹H NMR nOe analysis. The absolute configuration of **38cc** was assigned using Kakisawa's extension of Mosher's method²⁸ with the secondary alcohol (**29-cc**) derived from treatment of the major diastereomer **38cc** with TBAF. Application of Kakisawa's method configuration (Scheme 8). Having assigned the absolute configuration of the TIPS-protected lactone **38cc** we moved to convert it into the cyclopentane core of pepulanin A. Conversion

of the methyl ester in 38cc into the corresponding acid 41 was readily achieved on exposure to lithium hydroxide and water followed by acidification to pH 2 to give the corresponding carboxylic acid in 41 in quantitative yield a transformation that only proceeded in 20% yield with the TBDMS analogue 30cc and in 42% yield with the TBDPS analogue (not shown). Decarboxylative bromination of 41 was then readily achieved using Barton chemistry.²⁹ Here conversion of the carboxylic acid 41 into the corresponding acid chloride followed by addition of a solution of the acid chloride in bromotrichloromethane to a 2-mercaptopyridine suspension of N-oxide in bromotrichloromethane heated to 130 °C (bath temperature) gave the desired bromide 42 in 79% yield as a low melting white solid. Treatment of the α -bromolactone 42 with DIBAL at -78 °C followed by the addition of MeOH and sodium methoxide gave the α -hydroxy acetal 43 in 84%. This transformation most likely proceeds via lactone reduction with DIBAL to give the lactol anion 47 that is in equilibrium with the corresponding alkoxy Addition of methanol gives the deprotonated acetal 48. hemiacetal 49 that undergoes intramolecular epoxide formation with inversion of configuration. Opening of the epoxide 50 with methoxide at the electronically favored acetal position provides the acetal 43 with the tertiary hydroxyl group of pepluanin A installed. This invertive acetal formation has precedent from the groups of Shibatomi³⁰ and Achmatowicz³¹ who showed that α flouroaldehydes and an α -tosyloxyaldehyde respectively form α hydroxy acetals with inversion of configuration on exposure to basic methanol; a number of other groups have also shown that α -halo acetals form α -hydroxy acetals on treatment with basic methanol but the stereochemical course of these transformations was not demonstrated.³² The diol acetal **43** was readily protected as the bis-TBDMS ether giving 44 that on exposure to DMDO gave the epoxide 45. The configuration of 45 was assigned on the basis of ¹H NMR nOe experiments. Selected nOes are shown in Scheme 9 (box), additionally, both epoxide protons show nOe's to either or both of TBDMS groups that further supports the structural assignment of the epoxide as 45. Reductive opening of the epoxide 45 with SuperHydride™ gave the differentially protected cyclopentane core of pepluanin A 46.

Scheme 8. Cyclization of diene 37 along determination of the relative and absolute configuration of 38. i) EtMgBr, CuI, CH₂Cl₂, -78 °C, then I₂, RT, then 140 °C, 38cc 78%, 38cv 15%; (ii) TBAF, THF, 0 °C, 91%; (iii) (*R*) or (*S*)- α -methoxy- α -trifluoromethylphenylacetic, DCC, DMAP, CH₂Cl₂, (*R*)-MTPA ester (*R*)-40 46%, (*S*)-MTPA ester (*S*)-40 53%.

Tetrahedron OTBDMS MeO₂C HO₂C Br (ii) (i) TIPSC OMe Н н H TIPSO TIPSO TIPSO оMe 38cc 41 42 `ŧ = nOe 45 (iii) TBDMSO OMe TBDMSO TBDMSC ОН OMe OMe OMe Me (vi) (v) (iv) OMe ÒMe ОМе ОМе HO TIPSO TIPSO TIPSO TIPSO ÓTBDMS ÓTBDMS НÓ ÓTBDMS 46 45 44 43 MeOH/MeO 0 OMe QMe Br Br Br Br MeOH/MeO DIBAL \cap Ĥ Ĥ TIPSO TIPSO TIPSO TIPSO óΘ TIPSO HÓ нÓ

Scheme 9. Synthesis of the core of prepluanin A along with proposed mechanism for the formation of 43 from 42. (i) LiOH, THF, water, RT, then HCl(aq) to pH 2; (ii) (COCl)₂, DMF, benzene, then concentrate, then CBrCl₃, add solution to mercaptopyridine *N*-oxide sodium salt in CBrCl₃ at 130 °C (bath temperature), 79% (2 steps); (iii) DIBAL, THF –78 °C then MeOH, NaOMe, RT, 84%; (iv) TBDMSOTf, 2,6-lutidine, CH₂Cl₂, –78 to 0 °C, quant.; (v) DMDO, acetone, RT, 88%; (vi) LiEt₃BH, THF, 95%.

48

3. Conclusions

In conclusion, we have developed an enantioselective synthesis of the differentially protected cyclopentane core of pepluanin A 46 that features a diastereoseletive iodocarbocyclization and an invertive acetal formation as key steps. Future work will aim to incorporate the cyclopentane 46 in the total synthesis of pepluanin A.

47

42

4. Experimental section

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on Bruker AVC 500 (500/125 MHz), Bruker AV 400 (400/100 MHz), AVN 400 (400/100 MHz) or AVIII 400 (400/100 MHz) spectrometers. Proton and carbon chemical shifts ($\delta_{\rm H}$, $\delta_{\rm C}$) are quoted in ppm and referenced to tetramethylsilane ($\delta = 0$ ppm) with residual protonated solvent as internal standard. Assignments were made on the basis of chemical shifts, coupling constants, COSY, HSQC data and comparison with previously synthesized intermediates. Resonances are described as s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet), br (broad), dd (double doublet). Coupling constants (J) are given in Hz, and are rounded to the nearest 0.1 Hz and averaged between corresponding coupling constants. H and H' refer to diastereotopic protons attached to the same carbon and imply no particular stereochemistry. Low resolution mass spectra were recorded on a Fisons Platform spectrometer (ES). High resolution mass spectra were recorded by the mass spectrometry service at the Chemistry Research Laboratory, University of Oxford, using a Bruker Daltronics microTOF spectrometer (ES). m/z values are reported in Daltons with their percentage abundances and, where known, the relevant fragment ions in parentheses. High resolution values were calculated to four decimal places from the molecular formula, all found values within being а tolerance of 5 ppm. Infrared spectra were recorded on a Bruker Tensor 27 Fourier Transform spectrometer, using diamond ATR. Absorption maxima (v_{max}) are described as s (strong), m (medium), w (weak) and br (broad) and quoted in wavenumbers (cm-1).

Melting points: Melting points were determined using a Griffin block apparatus and are uncorrected. heated metal Optical rotations: Optical rotations were measured using a Perkin-Elmer 241 polarimeter in a cell of 1 dm path length (l). Single Crystal X-ray Diffraction: Low temperature³³ data were collected using a Nonius Kappa-CCD diffractomter and reduced using DENZO/SCALEPACK.³⁴ The structures were solved using SuperFlip³⁵ and refined using CRYSTALS.³⁶ Selected refinement details for each structure are given below and full details can be found in the ESI (CIF). Crystallographic data have also been deposited with the Cambridge Crystallographic Data Centre (CCDC 1963303-1963306) and copies of these data can obtained free charge be of via http://www.ccdc.cam.ac.uk/data_request/cif

50

49

Specific rotations denoted as $[\alpha]_T^D$ (T = temperature in °C, D refers to the experimental D line of a sodium lamp, where the wavelength of light = 589 nm. Compounds **21a,d,f** and **g**, and **20a,d,f** and **g** are known.²² Compound **21b** was prepared by the same method as Taguchi used for the preparation of compound **21a**.²²

4.1.1. tert-Butyl 3-hydroxypent-4-enoate 12

To a stirred solution of diisopropylamine (10.8 mL, 77.0 mmol), in THF (250 mL), at -78 °C was added BuLi (48.4 mL, 1.6 M in hexanes, 77.5 mmol) dropwise. The reaction mixture was stirred for 15 min before tert-butyl acetate 13 (8.90 mL, 66.4 mmol) was added and then stirred for 50 min at -78 °C. Freshly distilled acrolein (4.44 g, 66.4 mmol), in THF (10 mL + 2 mL rinse) was added rapidly and the reaction stirred for 5 min before being quenched with sat. NH₄Cl (aq) (20 mL) and extracted with Et₂O (130 mL). The separated organic layer was washed with brine $(2 \times 60 \text{ mL})$, dried (MgSO₄), filtered and concentrated in vacuo to give the title compound 12 as a colorless oil (12.8 g, >quant); R_f 0.42 (7:1 petrol:EtOAc); δ_H (400 MHz, CDCl₃) 5.87 (1H, ddd, J = 5.9, 10.0, 17.0 Hz, CH=CH₂), 5.30 (1H, dt, J =17.0, 2.0 Hz, CH=CHH'), 5.14 (1H, dt, J = 10.0, 2.0 Hz, CH=CHH'), 4.44-4.50 (1H, m, CHOH), 3.10 (1H, br s, OH), 2.50 (1H, dd, J = 16.0, 4.3 Hz, CHH'), 2.42 (1H, dd, J = 16.0, 8.1 Hz, CHH'), 1.47 (9H, s, CMe₃); δ_C (100 MHz, CDCl₃) 171.7

4.1.2. (2R*, 3R*)-tert-Butyl 3-hydroxy-2methylpent-4-enoate 11

To a stirred solution of diisopropylamine (16.2 mL, 108 mmol), in THF (60 mL), at -78 °C was added BuLi (49.2 mL, 2.2 M in hexanes, 108 mmol) dropwise. The reaction mixture was stirred for 15 min before tert-butyl 3-hydroxypent-4-enoate 12 (8.10 g, 47.0 mmol), was added dropwise as a solution in HMPA (14 mL) and THF (30 mL). The reaction warmed to -40 °C and stirred for 20 min before cooling back to -78 °C and adding MeI (6.00 mL, 133 mmol) dropwise. The reaction was then warmed to 0 °C over 2 h quenched with sat. NH_4Cl (aq) (100 mL), followed by 1 M HCl until the aqueous layer reached neutral pH. The aqueous layer was separated and extracted with Et_2O (3 × 100 mL). The combined organic layers were washed with brine (100 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash column chromatography (7:1 petrol:EtOAc) gave the title compound 11 as a colorless oil (6.30 g, 33.8 mmol, 72%); $R_f 0.45$ (7:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 3451br m, 2950m, 1730s; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.86 (1H, ddd, J = 170, 10.0, 6.5 Hz, CH=CH₂), 5.33 (1H, dt, J = 17.0, 2.0 Hz, CH=CHH'), 5.22 (1H, dt, J = 10.0, 2.0 Hz, CH=CHH'), 4.16 (1H, tt, J = 6.5, 2.0 Hz, CHOH), 2.48 (1H, qn, J = 6.5 Hz, CHMe), 1.48 (9H, s, CMe₃), 1.19 (3H, d, J = 6.5 Hz CHMe); δ_{C} (100 MHz CDCl₃) 175.0 (C=O), 139.3 (CH=CH₂), 116.5 (CH=CH₂), 81.2 (CMe₃), 74.8 (CHOH), 45.8 (CHMe), 28.1 (CMe₃), 14.1 (CHMe); m/z LRMS (ESI⁺) 209 (M+Na⁺, 100%); HRMS (ESI⁺) found 209.1144, $C_{10}H_{18}O_3Na^+$ (M+Na⁺), requires 209.1148. In accordance with the lit. data reported for a 1:1 mixture of stereoisomers.37 Stereochemistry assigned by conversion to known alcohol 14.

4.1.3. $(2R^*, 3R^*)$ -tert-Butyl 3-((tertbutyldimethylsilyl)oxy)-2-methylpent-4-enoate TBDMSO O Me Ot-Bu

To a stirred solution of alcohol 11 (500 mg, 2.7 mmol) in CH₂Cl₂ (5 mL) was added imidazole (460 mg, 6.8 mmol), DMAP (50 mg) and then TBDMSCl (471 mg, 3.1 mmol). The reaction was stirred at RT for 20 h, then quenched with sat. NH₄Cl (aq) (10 mL). The aqueous layer was separated and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. Purification via flash column chromatography (98:2 petrol:EtOAc) gave the title compound as a colorless oil (800 mg, 2.67 mmol, 98%). Rf 0.45 (98:2 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2971w, 1739s; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.69 (1H, ddd, J = 6.7, 10.3, 17.3 Hz, CH=CH₂), 5.12 (1H, dt, J = 17.3, 1.5 Hz, CH=CHH'), 5.08 (1H, dt, J = 10.3, 1.5 Hz, CH=CHH'), 4.24 (1H, tt, J = 6.7, 1.5 Hz, CHOSi), 2.39 (1H, qn, J = 6.7 Hz, CHMe), 1.39 (9H, s, CMe₃), 0.94 (3H, d, J = 6.7 Hz, CHMe), 0.82 (9H, s, SiCMe₃), 0.00 (3H, SiMe), -0.03 (3H, SiMe); δ_C (100 MHz, CDCl₃) 173.9 (C=O), 138.6 (CH=CH₂), 116.3 (CH=CH₂), 80.1 (CMe₃), 75.7 (CHOSi), 47.4 CHMe), 28.2 (CMe₃), 25.8 (CMe₃), 18.1 (SiCMe₃), 12.6 (CHMe), -4.2 (SiMe), -5.0 (SiMe); m/z LRMS (ESI⁺) 323 (M+Na⁺, 100%); HRMS (ESI⁺): found 323.2018, C₁₆H₃₂O₃SiNa⁺ (M+Na⁺), requires 323.2013.

To a stirred suspension of LiAlH₄ (1.06 g, 27.9 mmol) in Et₂O (50 mL) at 0 °C was added a solution of (2R*,3R*)-tert-butyl 3-((*tert*-butyldimethylsilyl)oxy)-2-methylpent-4-enoate (8.36 g, 27.9 mmol) in Et₂O (50 mL) and the reaction stirred at RT for 1 h. The reaction was quenched with water (1.06 mL) and aq. 2 M NaOH (1.06 mL). The mixture was stirred for 15 min then water (2.1 mL) was added and the mixture stirred for 5 min. The mixture was dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash column chromatography $(5:1\rightarrow 1:1)$ Petrol:EtOAc) gave the title compound 14 as a colorless oil $(2.25g, 19.4 \text{ mmol}, 69\%); \delta_{\text{H}}$ (400 MHz, CDCl₃) 5.85 (1H, ddd, J = 17.0, 10.0, 7.0 Hz, $CH_2=CH$), 5.24 (1H, d, J = 17.0 Hz, CHH'=CH), 5.16 (1H, d, J = 10.0 Hz, CHH'=CH), 4.00 (1H, t, J = 7.0 Hz, CHOH), 3.70–3.80 (1H, m, CHH'OH), 3.63 (1H, t, J = 8.0 Hz, CHH'OH), 3.35 (2H, br s, OH), 1.71-1.82 (1H, m, CHMe), 0.84 (3H, d, J = 7.0 Hz, CHMe); $\delta_{\rm C}$ (100 MHz CDCl₃) 139.7 (CH₂=CH), 116.3 (CH₂=CH), 78.9 (CHOH), 67.3 (CH₂OH), 39.9 (CHMe), 13.5 (CHMe). Data in accord with literature values for enantiopure material.¹⁹

4.1.5. (2S*, 3R*)-3-((tert-Butyldimethylsilyl)oxy)-2-methylpent-4-en-1-ol 15 TBDMSO

To a stirred solution of ester (2R*,3R*)-tert-butyl 3-((tertbutyldimethylsilyl)oxy)-2-methylpent-4-enoate (800 mg, 2.67 mmol) in THF (5 mL) at -35 °C was added DIBAL (6.7 mL, 1 M in hexane, 6.7 mmol) dropwise and the reaction was then stirred at -20 °C for 90 min. The reaction was quenched with sat. aq. Rochelle's salt (10 mL) and diluted with EtOAc (10 mL) then stirred vigorously at RT for 90 min. The aqueous layer was separated and extracted with EtOAc (3×10 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash column chromatography (4:1 petrol:EtOAc) gave the title compound 15 as a colorless oil (540 mg, 2.34 mmol, 88%); Rf 0.42 (4:1 petrol:EtOAc); v_{max}/cm⁻¹ (thin film) 3325br m, 2950s; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.83 (1H, ddd, J =17.1, 10.3, 7.3 Hz, CH=CH₂), 5.18 (1H, dt, J = 17.1, 1.5 Hz, CH=CHH'), 5.15 (1H, dt, J = 10.3, 1.5 Hz, CH=CHH'), 4.07 (1H, ddt, J = 7.0, 6.3, 1.5 Hz, CHOTBDMS), 3.72 (1H, dd, J = 10.9, 3.6 Hz, CHH'OH), 3.57 (1H, dd, J = 10.9, 6.0 Hz, CHHOH), 2.59 (1H, br s, OH), 1.72 (1H, qddd, J = 7.1, 7.0, 6.0, 3.6 Hz, CHMe), 0.95 (3H, d, J = 7.1 Hz, CHMe), 0.91 (9H, s, CMe₃), 0.10 (3H, s, SiMe), 0.05 (3H, s, SiMe); δ_C (100 MHz CDCl₃) 140.2 (CH=CH₂), 115.5 (CH=CH₂), 79.4 (CMe₃), 65.9 (CHOTBDMS), 40.6 (CHMe), 25.8 (CMe₃), 18.0 (SiCMe₃), 14.1 (CHMe), -4.1 (SiMe), -5.0 (SiMe); m/z LRMS (ESI⁺) 253 $(M+Na^{+}, 16\%)$; HRMS (ESI⁺): found 253.1602, $C_{12}H_{26}O_2SiNa^{+}$ (M+Na⁺), requires 253.1594.

4.1.6. (2S*,3R*)-3-((tert-Butyldimethylsilyl)oxy)-2methylpent-4-en-1-yl methanesulfonate TBDMSO

To a solution of alcohol 15 (1.66 g, 7.20 mmol) in CH₂Cl₂ (29 mL) at 0 °C was added Et₃N (1.5 mL. 1.09 g, 10.8 mmol) followed by MsCl (0.72 mL, 1.07 g, 9.4 mmol) and the reaction mixture was stirred for 10 min and then quenched with sat. aq. NH₄Cl (30 mL). The organic layer was separated and the aqueous layer extracted with CH_2Cl_2 (2 × 30 mL). The combined organic layers were washed with brine (30 mL), dried (MgSO₄) to yield the title compound as a yellow oil; Rf 0.42 (4:1 petrol:EtOAc); ν_{max}/cm^{-1} (thin film) 2930m, 1472m, 1357s; $\delta_{\rm H}$ (400 MHz, $CDCl_3$) 5.76 (1H, ddd, J = 7.0, 10.3, 17.1 Hz, CH=CH₂), 5.19 (1H, dt, J = 17.1, 1.5 Hz, CH=CHH'), 5.15 (1H, dt, J = 10.3, 1.5 Hz, CH=CHH'), 4.28 (1H, dd, J = 10.9, 4.8 Hz, CHH'OMs), 4.14 (1H, J = dd, 10.9, 6.0 Hz, CHH'OMs), 4.04 (1H, ddt, J = 7.0, 6.3, 1.5 Hz, CHOTBDMS), 2.99 (3H, s, OMs), 1.90-2.04 (1H, m, CHMe), 0.98 (3H, d, J = 6.9 Hz, CHMe), 0.90 (9H, s, CMe₃), 0.06 (3H, s, SiMe), 0.02 (3H, s, SiMe); $\delta_{\rm C}$ (100 MHz, CDCl₃) 139.0 (CH=CH₂), 116.3 (CH=CH₂), 75.0 (CHOTBDMS), 71.7 (CH₂OMs), 39.5 (CHMe), 37.1 (SO₂Me), 25.8 (CMe₃), 18.1 (CMe₃), 13.2 (CHMe), -4.1 (SiMe), -5.0 (SiMe); m/z LRMS (ESI⁺) 331 (M+Na⁺, 100%); HRMS (ESI⁺):found 331.1374, C₁₃H₂₈O₄SiSNa⁺ (M+Na⁺), requires 331.1370.

4.1.7. Dimethyl 2-((2S*,3R*)-3-((tertbutyldimethylsilyl)oxy)-2-methylpent-4-en-1yl)malonate **16**

To a stirred suspension of NaH (60% dispersion in mineral oil, 864 mg, 21.6 mmol) in DMF (30 mL) and THF (15 mL) at 0 °C was added dimethyl malonate dropwise (2.5 mL, 2.85g, 21.6 mmol). The reaction mixture was warmed to RT and the crude (2S*,3R*)-3-((tert-butyldimethylsilyl)oxy)-2mesylate methylpent-4-en-1-yl methanesulfonate prepared above was added as a solution in THF (14 mL) followed by the addition of KI (358 mg, 2.16 mmol). The reaction mixture was warmed to 80 °C and stirred for 16 h, then allowed to cool to RT, quenched with sat. aq. NH₄Cl (30 mL) and petrol (30 mL) was added. The aqueous layer was extracted with petrol (2 \times 30 mL), the combined organic layers were dried (MgSO₄), filtered and the solvent removed in vacuo. Purification by flash column chromatography (9:1 petrol:EtOAc) gave the title compound 16 as a colorless oil (2.20 g, 6.40 mmol, 89%); Rf 0.62 (4:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2956m, 1758s, 1739s, 1253s; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.73 (1H, ddd, J = 6.3, 10.2, 17.0 Hz, CH=CH₂), 5.15 (1H, dd, J = 17.0, 1.5 Hz, CH=CHH'), 5.10 (1H, dd, J = 10.2, 1.5 Hz, CH=CHH'), 3.95 (1H, dd, J = 6.3, 4.9 Hz, CHOTBDMS), 3.72 (6H, s, CO₂Me), 3.48 (1H, dd, J = 9.3, 5.3 Hz, $CH(CO_2Me)_2$), 2.11 (1H, ddd, J = 13.7, 9.5, 5.3 Hz, CHH'CHMe), 1.62 (1H, ddd, J = 13.7, 9.3, 6.1 Hz, CHH'CHMe), 1.47-1.57 (1H, m, CHMe), 0.88 (9H, s, CMe₃), 0.87 (3H, d, J = 6.6 Hz, CHMe), 0.03 (3H, s, SiMe), 0.00 (3H, s, SiMe); δ_C (100 MHz, CDCl₃) 170.2 (C=O), 169.9 (C=O), 138.9 (CH=CH₂), 115.6 (CH=CH₂), 77.4 (COTBDMS) 52.5 (OMe), 52.4 (OMe), 50.0 (CH(CO₂Me)₂), 37.4 (CHMe), 31.3 (CH₂), 25.9 (CMe₃), 18.2c (SiCMe₃), 15.0 (CHMe), -4.3 (SiMe), -5.0 (SiMe); m/z LRMS (ESI⁺) 367 (M+Na⁺, 100%); HRMS (ESI⁺): found 367.1907, C₁₇H₃₂O₅SiNa⁺ (M+Na⁺), requires 367.1911.

4.1.8. (3aR*,5S*,6S*,6aS*)-Methyl 6-((tertbutyldimethylsilyl)oxy)-5-methyl-3-oxohexahydro-1H- cyclopenta[c]furan-3a-carboxylate **17-cc** and (3aS*,5SR*,6S*,6aR*)-methyl 6-((tertbutyldimethylsilyl)oxy)-5-methyl-3-oxohexahydro-1H- cyclopenta[c]furan-3a-carboxylate **17-cv**

To copper(II) triflate (90 mg, 0.25 mmol) and mangaese(III) acetate (201 mg, 0.75 mmol) was added malonate 16 (86 mg, 0.25 mmol) as a solution in degassed acetonitrile (1.25 mL) and the reaction mixture was stirred at 80 °C for 4 h, then allowed to coole to RT and diluted with water (2.5 mL) and EtOAc (5 mL). The aqueous layer was separated, extracted with EtOAc (2×5 mL), dried (MgSO₄) and the solvent removed in vacuo. Purification by flash column chromatography (4:1)petrol:EtOAc)gave the 2.177 as a colorless oil (35 mg, 0.11 mmol, 43%) followed by the 2.155 as a colorless oil (36 mg, 0.11 mmol, 44%); (Major 17-cc) R_f 0.22 (4:1 petrol:EtOAc); v_{max}/cm⁻¹ (thin film) 2955m, 1772s, 1739s, 1255s; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.39 (1H, dd, J = 9.3, 1.9 Hz, CHHOR), 4.34 (1H, dd, J = 9.3, 7.1 Hz, CHHOR), 4.08 (1H, t, J = 3.9 Hz, CHOTBDMS), 3.77 (3H, s, OMe), 3.02 (1H, ddd, J = 6.9, 3.9, 1.9 Hz, CHCH₂OR), 2.55 (1H, dd, J = 13.2, 7.3 Hz, CHH'CHMe), 2.08–2.16 (1H, m, CHMe), 1.93 (1H, dd, J = 13.2, 11.5 Hz, CHH'CHMe), 0.97 (3H, d, J = 6.9 Hz CHMe), 0.90 (9H, s, SiCMe₃), 0.09 (3H, s, SiMe), 0.07 (3H, s, SiMe); δ_{C} (100 MHz CDCl₃) 176.1 (C=O), 171.1 (C=O), 77.2 (CH₂OR), 66.5 (CHOTBDMS), 59.3 (CCO₂Me), 53.2 (CHCH₂OR), 52.7 (OMe), 41.8 (CH₂CHMe), 37.4 (CH₂Me), 25.8 (CMe₃), 18.0 (SiCMe₃), 13.8 (CHMe), -4.1 (SiMe), -4.2 (SiMe); *m*/*z* LRMS (ESI⁺) 351 (M+Na⁺, 100%); HRMS (ESI⁺): found 351.1604, C₁₆H₂₈O₅SiNa⁺ (M+Na⁺), requires 351.1598.

(Minor **17-cv**) $R_f 0.41$ (4:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2956 m, 1778s, 1747s, 1254m; δ_H (400 MHz, CDCl₃) 4.55 (1H, t, J = 9.5 Hz, CHH'OR), 3.99 (1H, dd, J = 9.5, 3.7 Hz, CHH'OR), 3.84 (1H, dd, J = 3.7, 1.5 Hz, CHOTBDMS), 3.76 (3H, s, CO₂Me), 3.06 (1H, ddd, J = 9.5, 3.7, 1.5 Hz, CHCH₂OR), 2.41 (1H, dd, J = 12.9, 12.3 Hz, CHH'CHMe), 2.20 (1H, dd, J = 12.9, 6.4 Hz, CHH'CHMe), 1.95–1.90 (1H, m, CHMe), 1.01 (3H, d, J = 6.4 Hz, CHMe), 0.86 (9H, s, CMe₃), 0.00 (3H, s, SiMe), 0.00 (3H, s, SiMe); δ_C (100 MHz CDCl₃) 176.4 (C=O), 169.9 (C=O), 81.0 (CHOTBDMS), 69.6 (CH₂OR), 59.8 (CHCH₂OR), 54.1 (CCO₂Me), 53.1 (OMe), 38.8 (CH₂CHMe), 38.6 (CHMe), 25.6 (CMe₃), 18.0 (SiCMe₃), 12.9 (CHMe), -4.8 (SiMe), -4.9 (SiMe).

4.1.9. Dimethyl 2-(3-hydroxypent-4-en-1yl)malonate

A mixture of hydrochloric acid (2 M, 0.1 mL, 0.3 mmol) in methanol (10 mL) was added to dimethyl 2-(3-(tert butyldimethylsilyloxy)pent-4-enyl)malonate 21a (2.00 g, 6.05 mmol). After 7 h of stirring at room temperature the reaction mixture was concentrated under reduced pressure. The residual oil was purified by flash column chromatography (petroleum ether:ethyl acetate, 1:1) to give the title compound as a colorless oil (1.15 g, 5.32 mmol, 88%); $R_f = 0.13$ (petroleum ether:ethyl acetate, 3:1); v_{max}(neat)/cm⁻¹ 3419 (O-H), 3081, 3006, 2956, 2850, 1750 (C=O), 1733 (C=O), 1645 (C=C); δ_H(400 MHz; CDCl₃) 5.83 (ddd, J = 17.2, 10.4, 6.1 Hz, 1H, CH=CH₂), 5.23 (d, J = 17.2 Hz, 1H, CH=CHH), 5.11 (d, J = 10.4 Hz, 1H, CH=CHH), 4.14-1.07 (m, 1H, CHOH), 3.72 (s, 6H, OMe), 3.40 $(t, J = 7.5 \text{ Hz}, 1\text{H}, CH(CO_2Me)_2), 2.07-1.88 (m, 3\text{H}, 3\text{H})$ $CH_2CH(CO_2Me)_2$, 1.58-1.50 2H, OH), (m, CH₂CH₂CH(CO₂Me)); δ_C(100 MHz, CDCl₃) 169.8 (CO), 169.7 (CO), 140.5 (CH=CH₂) 115.1 (CH=CH₂), 72.4 (CHOH), 52.5

 $(2 \times OMe)$, 51.3 (CH(CO₂Me)₂), 34.2 (CH₂CH(CO₂Me)₂), 24.7 re (CH₂CH₂CH(CO₂Me)₂); *m/z* LRMS (ESI⁺) 455.1 (2M+Na⁺, 100%), 239.0 (M+Na⁺, 92); HRMS (ESI+) found 239.0888, C₁₀H₁₆NaO₅⁺ (M+Na⁺), requires 239.0890.

4.1.10. Dimethyl 2-(3-acetoxypent-4-en-1yl)malonate **21e**

Dimethyl 2-(3-hydroxypent-4-en-1-yl)malonate (0.500 g, 2.31 mmol) was dissolved in CH₂Cl₂ (7 mL). Triethylamine (1.00 mL, 7.17 mmol) was added followed by acetic anhydride (0.650 mL, 6.87 mmol) and 4-dimethylaminopyridine (0.030 g, 0.245 mmol). After stirring at room temperature for 3 h, the reaction mixture was diluted with CH2Cl2 (20 mL). 50% sat. aq. NH4Cl (30 mL) was added and the organic layer washed with 50% sat. aq. sodium bicarbonate (30 mL). The two aqueous layers were sequentially extracted with CH₂Cl₂ (3×30 mL) and the organic layers combined, dried (Na₂SO₄) and concentrated under reduced pressure. Purification by flash column chromatography (petrol 40-60:EtOAc, 9:1) gave the title compound 21e as a clear oil (0.530 g, 2.05 mmol, 89%); found: C, 55.91%; H, 6.93%; $C_{12}H_{18}O_6$ requires: C, 55.81%; H, 7.02%; $R_f = 0.45$ (petrol:EtOAc, 3:1); v_{max} (CDCl₃)/cm⁻¹ 3088, 2991, 2956, 2848, 1736 (C=O), 1647 (C=C), 1436, 1372, 1344, 1282, 1239, 1197, 1157, 1107, 1047, 1020, 962, 931, 855; $\delta_{\rm H}(400 \text{ MHz}; \text{CDCl}_3)$ 5.74 (1H, dddd, J = 17.3, 10.4, 6.0, 0.7 Hz, CH=CH₂), 5.23 (1H, d, J = 17.3 Hz, CH=CHH'), 5.25-5.19 (1H, m, CHOAc), 5.18 (1H, d, J = 10.4 Hz, CH=CHH'), 3.72 (6H, s, 2×OMe), 3.36 (1H, t, J = 7.5 Hz, $CH(CO_2Me)_2$), 2.05 (3H, d, J = 0.5 Hz, C(O)Me), 1.96-1.88 (2H, m, CH₂CH(CO₂Me)₂), 1.68-1.60 (2H, m, CH₂CH₂CH(CO₂Me)₂); δ_C(100 MHz; CDCl₃) 170.2 (CO), 169.5 (2×CO), 135.7 (CH=CH₂), 117.2 (CH=CH₂), 73.8 (CHOAc), 52.5 $(2 \times OMe)$, 51.1 $(CH(CO_2Me)_2)$, 31.5 $(CH_2CH(CO_2Me)_2)$, 24.3 (CH₂CH₂CH(CO₂Me)₂), 21.1 (C(O)Me); m/z LRMS (ESI⁺) 281.1 (M+Na⁺, 100%); HRMS (ESI⁺) found 281.1002, $C_{12}H_{18}NaO_6^+$ (M+Na⁺) requires 281.0996.

4.1.11. Hydroxypent-4-en-1-yl 4methylbenzenesulfonate

HO

Pent-4-ene-1,3-diol³⁸ (0.100 g, 0.979 mmol) was dissolved in CH₂Cl₂ (10 mL), triethylamine (0.15 mL, 1.07 mmol) was added and the solution cooled to 0 °C. 4-Toluenesulfonyl chloride (0.205 g, 1.07 mmol) was added and the reaction mixture allowed to slowly warm to room temperature. After 25 h the solution was concentrated under reduced pressure and the residue purified by flash column chromatography (petroleum ether 40-60:ethyl acetate, gradient, $1:1 \rightarrow 1:8$) to give the title compound as a colorless oil (0.164 g, 0.640 mmol, 65%); $R_f = 0.38$ (petroleum ether:ethyl acetate, 1:1); $v_{max}(CDCl_3)/cm^{-1}$ 3534 (O-H), 3423 (O-H); $\delta_{\rm H}(400 \text{ MHz}; \text{ CDCl}_3)$ 7.79 (2H, d, J = 8.0 Hz, ArH), 7.35 (2H, d, J = 8.0 Hz, ArH), 5.80 (1H, ddd, J = 17.1, 10.4, 6.0 Hz, 10.4, 6.0 Hz)CH=CH₂), 5.20 (1H, dd, J = 17.1, 1.1 Hz, 1H, CH=CHH'), 5.10 (1H, dd, J = 10.4, 1.1 Hz, 1H, CH=CHH'), 4.27-4.18 (2H, m, CH₂OTs), 4.10 (1H, dt, J = 10.5, 6.0 Hz, 1H, CHOH), 2.44 (3H, s, Me), 2.21 (1H, br s, OH), 1.94-1.84 (1H, m, CHHCH2OTs), 1.79 (1H, ddt, J = 14.4, 8.5, 6.0 Hz, CHHCH₂OTs); $\delta_{C}(100 \text{ MHz},$ CDCl₃) 144.8 (Ar), 139.8 (CH=CH₂), 132.9 (Ar), 129.8 (Ar), 127.9 (Ar), 115.5 (CH=CH₂), 69.0 (CH₂OTs), 67.3 (CHOH), 35.8 (CH₂CH₂OTs), 21.6 (Me); m/z LRMS (ESI⁺) 279.1 (M+Na⁺, 100%); HRMS (ESI⁺) found 279.0662, $C_{12}H_{16}NaO_4S^+$ (M+Na⁺)

requires 279.0662. Further elution of the column gave the recovered starting material as a colorless oil (0.034 g, 34%)

4.1.12. 3-((tert-Butyldiphenylsilyl)oxy)pent-4-en-1yl 4-methylbenzenesulfonate

TBDPSO

3-hydroxypent-4-en-1-yl То solution of 4а (1.19 g, 4.64 mmol) in N,Nmethylbenzenesulfonate dimethylformamide (10 mL), imidazole (0.948 g, 13.9 mmol) was added followed by tert-butyl(chloro)diphenylsilane (1.53, 5.57 mmol). The clear reaction mixture was stirred at room temperature for 5 h. sat. aq. NH₄Cl (40 mL) was added followed by Et₂O (40 mL). The organic layer was washed with water (3 \times 40 mL), dried (MgSO₄) and concentrated under reduced pressure. Purification by flash column chromatography (petrol 30-40:EtOAc, $9:1\rightarrow 6:1$) gave a mixture of the title compound and 4methylbenzenesulfonic acid as a colorless oil (1.3:1, respectively, 1.91 g, approx. 65% yield of 324); $R_f = 0.26$ (petrol:Et₂O, 8:1); $v_{max}(CDCl_3)/cm^{-1}$ 3564 (O-H, acid impurity), 1644 (C=C); δ_H(400 MHz; CDCl₃) 7.75-7.69 (3H, m, ArH), 7.64-7.56 (4H, m, ArH), 7.47-7.26 (11H, m, ArH), 5.68 (1H, ddd, J = 17.0, 10.4, 6.5 Hz, CH=CH₂), 4.92 (1H, d, J = 10.4 Hz, CH=CHH'), 4.88 (1H, d, J = 17.0 Hz, CH=CHH'), 4.26-4.21 (1H, m, CHOTBDPS), 4.11-4.01 (2H, m, CH₂OTs), 2.44 (3H s, Me), 1.86 (1H, dtd, J = 14.0, 7.1, 5.9 Hz, CHH'CH₂OTs), 1.79-1.70 (1H, m, CHH'CH₂OTs), 1.01 (9H, s, SiCMe₃); δ_C(125 MHz; CDCl₃) 144.6 (Ar), 139.2 (CH=CH₂), 135.8 (Ar), 135.8 (Ar), 135.2 (Ar), 134.8 (Ar), 133.6 (Ar), 133.6 (Ar), 133.0 (Ar), 129.8 (Ar), 129.7 (Ar), 129.6 (Ar), 129.6 (Ar), 127.9 (Ar), 127.7 (Ar), 127.6 (Ar), 127.4 (Ar), 115.6 (CH=CH₂), 71.3 (CHOTBDPS), 67.1 (CH₂OTs), 36.3 (CH₂CH₂OTs), 26.9 (SiCMe₃), 19.2 (SiCMe₃); m/z LRMS (ESI⁺) 517.2 (M+Na⁺, 100%); HRMS found 517.1845, C₂₈H₃₄NaO₄SSi⁺ (M+Na⁺) requires 517.1839.

4.1.13. Dimethyl 2-(3-((tertbutyldiphenylsilyl)oxy)pent-4-en-1-yl)malonate **21c** TBDPSO

To a suspension of sodium hydride (60% suspension in mineral oil, 0.072 g, 1.80 mmol) in tetrahydrofuran (2 mL), dimethyl malonate (0.200 mL, 1.75 mmol) was slowly added via syringe. 3- ((tert-butyldiphenylsilyl)oxy)pent-4-en-1-yl 4methylbenzenesulfonate (0.300 g, 0.600 mmol) was added via syringe (2×0.5 mL, tetrahydrofuran rinse) followed by a small amount of potassium iodide and N,N-dimethylformamide (2 mL). The suspension was heated at 80 °C for 4 h and then cooled to room temperature and poured into 50% sat. aq. NH₄Cl (20 mL). Et₂O (40 mL) was added and the organic layer was washed with water (3 \times 30 mL), dried (MgSO₄) and concentrated under reduced pressure. Purification by flash column chromatography (petrol 40-60:EtOAc, 6:1) gave the title compound 21c as a colorless oil (0.227 g, 0.499 mmol, 83%); $R_f = 0.24$ (petrol:EtOAc, 6:1); v_{max}(neat)/cm⁻¹ 1754 (C=O), 1737 (C=O), 1644 (C=C); δ_H(400 MHz; CDCl₃) 7.70-7.63 (4H, m, ArH), 7.43-7.33 (6H, m, ArH), 5.77 (1H, ddd, J = 17.0, 10.5, 6.3 Hz, CH=CH₂), 5.01 (1H, d, J = 17.0 Hz, CH=CHH'), 5.00 (1H, d, J = 10.5 Hz, CH=CHH'), 4.19 (1H, q, J = 6.3 Hz, CHOTBDPS), 3.71 (3H, s, OMe), 3.69 (3H, s, OMe), 3.24 (1H, t, J = 7.5 Hz, CH(CO₂Me)₂), 1.96-1.81 (2H, m, CH₂CH(CO₂Me)₂), 1.56-1.41 (2H, m, CH₂CH(CO₂Me)₂), 1.07 (9H, s, SiCMe₃); δ_C(100 MHz; CDCl₃) 169.7 (2×CO), 139.9 (CH=CH₂), 135.9 (Ar), 135.8 (Ar), 134.7 (Ar), 134.1 (Ar), 134.0 (Ar), 129.6 (Ar), 129.5 (Ar), 127.7 (Ar), 127.5 (Ar), 127.3 (Ar), 115.0 (CH=CH₂), 73.8

(CHOTBDPS), 52.4 (2×OMe), 51.5 (CH(CO₂Me)₂), 34.8⁹ (CH₂CH₂CH(CO₂Me)₂), 27.0 (SiCMe₃), 23.7 (CH₂CH₂CH(CO₂Me)₂), 19.3 (SiCMe₃); m/z LRMS (ESI⁺) 477.2 (M+Na⁺, 72%); HRMS (ESI⁺) found 477.2068, C₂₆H₃₄NaO₅Si⁺ (M+Na⁺) requires 477.2068.

4.1.14. (3aR*,6R*,6aS*)-Methyl 6-(tertbutyldimethylsilyloxy)-3-oxohexahydro-1Hcyclopenta-[c]furan-3a-carboxylate **20a-cv** and (3aR*,6S*,6aS*)-methyl 6-(tertbutyldimethylsilyloxy)-3-oxohexahydro-1Hcyclopenta-[c]furan-3a-carboxylate **20a-cc**

20a-cv 20a-cc

Dimethyl 2-(3-(tert-butyldimethylsilyloxy)pent-4enyl)malonate 21a (7.0 g, 21.2 mmol) was dissolved in nitrogen sparged acetonitrile (40 mL) and added via syringe (25 mL rinse) to a mixture of manganese(III) acetate (12.0 g, 44.7 mmol) and copper(II) triflate (7.7 g, 21.3 mmol). The reaction mixture was diluted with nitrogen sparged acetonitrile (40 mL) and heated at 80 °C for 3 h 20 min under an atmosphere of nitrogen and then cooled to room temperature. Water (600 mL), EtOAc (300 mL) and brine (100 mL) were added and the aqueous layer extracted with EtOAc (3 \times 300 mL). The combined organic extracts were dried (MgSO₄) and con- centrated under reduced pressure to yield the crude product (crude d.r. 2:1, 20a-cc: 20a-cv). Purification by flash column chromatography (petrol 40-60:EtOAc, gradient, $20:1 \rightarrow 12:1 \rightarrow 6:1 \rightarrow 3:1$ with 1% propane-2ol) gave the title compound 20a-cv as a white solid (1.34 g, 4.26 mmol, 20%); m.p. 38-40 °C; R_f = 0.51 (petrol 40-60:EtOAc, 3:1); found: C, 57.29%; H, 8.33%; C15H26O5Si requires: C, 57.35%; H, 8.24%; v_{max}(KBr)/cm⁻¹ 2955, 2929, 2893, 2858, 1772 (C=O), 1740 (C=O), 1464, 1438, 1386, 1235, 1155, 1060, 1021, 835 (Si-C), 777 (Si-C); $\delta_{\rm H}$ (500 MHz; C₆D₆) 4.01 (dd, J = 9.6, 8.5Hz, 1H, CHHO), 3.59 (dd, J = 7.5, 4.0 Hz, 1H, CHOTBDMS), 3.46 (dd, J = 9.6, 3.2 Hz, 1H, CHHO), 3.21 (s, 3H, OCH₃), 2.82 (dddd, J = 13.4, 9.8, 7.4, 0.5 Hz, 1H, CCHH), 2.81-2.77 (m, 1H, OCH₂CH), 2.18 (ddd, J = 13.4, 7.3, 4.5 Hz, 1H, CCHH), 1.45 (ddddd, J = 13.2, 7.4, 4.5, 4.0, 1.3 Hz, 1H, CCH₂CHH), 1.26 $(dddd, J = 13.2, 9.8, 7.2, 4.6, Hz, 1H, CCH_2CHH), 0.86$ (s, 9H, SiCMe₃), -0.11 (s, 6H, SiMe₂); δ_C(125 MHz; C₆D₆) 175.7 (CO), 170.0 (CO), 79.1 (CHOTBDMS), 69.2 (CH₂O), 59.9 (CCO₂Me), 55.2 (OCH₂C), 52.5 (OMe), 34.5 (CH₂CHOTBDMS), 31.3 (CCH₂), 25.8 (SiCMe₃), 18.0 (SiCMe₃), -4.6 (SiMe), -4.9 (SiMe); $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3) 4.52 \text{ (dd, } J = 9.6, 8.2 \text{ Hz}, 1\text{H}, \text{CHHO}), 4.05$ (dd, J = 9.6, 3.0 Hz, 1H, CHHO), 4.05-4.03 (m, 1H, CHOTBDMS), 3.75 (s, 3H, OMe), 2.97 (dtdt, J = 8.2, 3.0, 1.7, 0.5 Hz, 1H, OCH₂CH), 2.69 (ddd, J = 13.5, 9.7, 7.4 Hz, 1H, CCHH), 2.14 (ddd, J = 13.5, 7.0, 4.6 Hz, 1H, CCHH), 1.81-1.74 (m, 1H, CCH₂CHH), 1.69 (dddd, J = 13.2, 9.7, 7.0, 4.6 Hz, 1H, CCH₂CHH), 0.83 (s, 9H, SiCMe₃), 0.03 (s, 6H, SiMe₂); δ_C(125 MHz; CDCl₃) 176.4 (CO), 170.0 (CO), 79.0 (CHOTBDMS), 70.0 (CH₂O), 59.8 (CCO₂Me), 54.8 (OCH₂C), 53.3 (OMe), 34.6 (CH₂CHOTBDMS), 31.2 (CCH₂), 25.7 (SiCMe₃), 18.0 (SiCMe₃), -4.5 (SiMe). -4.7 (SiMe); m/z LRMS (ESI⁺) 373.3 (M+NH₄+MeCN⁺, 100%); HRMS (ESI⁺) found 337.1447, $C_{15}H_{26}NaO_5Si^{\scriptscriptstyle +}\,(M{+}Na^{\scriptscriptstyle +})$ requires 337.1442. Single Crystal Data: $C_{15}H_{26}O_5Si$, triclinic, P1, a=6.6840(2),b=7.2294(2),α=99.3709(17)°, $\beta = 90.3470(18)^{\circ}$, *c*=18.8432(6) Å, V=890.87(5) Å³, Data/restraints/parameters $\gamma = 97.2494(14)^{\circ}$,

-4008/0/194, R_{int} =0.022, Final R_1 =0.0408, wR_2 =0.0986 (I>2s(I)). Data in accord with literature.²²

Further elution of the column gave the title compound 20a-cc as a colorless oil (3.9 g, 12.4 mmol, 58%); $R_f = 0.40$ (petrol 40-60:EtOAc, 3:1); found: C, 57.28%; H, 8.29%; C₁₅H₂₆O₅Si requires: C, 57.29%; H, 8.33%; v_{max}(neat)/cm⁻¹ 2955, 2930, 2897, 2857, 1776 (C=O), 1741 (C=O), 1471, 1464, 1436, 1407, 1381, 1362, 1313, 1251, 1215, 1158, 1135, 1102, 1076, 1056, 1028, 1008, 992, 979, 939, 925, 890, 872, 837 (Si-C), 800, 777 (Si-C); $\delta_{\rm H}$ (500 MHz; C₆D₆) 4.37 (ddd, J = 9.0, 2.0, 0.4 Hz, 1H, CHHO), 4.08 (dd, J = 9.1, 7.7 Hz, 1H, CHHO), 3.90-3.85 (m, 1H, CHOTBDMS), 3.35 (s, 3H, OMe), 2.58 (ddd, J = 7.7, 6.2, 2.0 Hz, 1H, OCH₂CH), 2.56-2.46 (m, 2H, CCH₂), 1.59-1.44 (m, 2H, CCH₂CH₂), 0.98 (s, 9H, SiCMe₃), -0.02 (s, 6H, SiMe₂); $\delta_{\rm C}(125 \text{ MHz}; C_6D_6) = 175.5 (CO), 170.7 (CO), 74.7$ (CHOTBDMS), 65.8 (CH₂O), 59.9 (CCO₂Me), 52.9 (OMe), 50.7 (OCH₂C), 35.0 (CH₂CHOTBDMS), 30.4 (CCH₂), 25.7 (SiCMe₃), 18.0 (SiCMe₃), -4.6 (SiMe), -5.2 (SiMe); $\delta_{\rm H}$ (500 MHz; CDCl₃) 4.49 (dd, J = 9.1, 2.0 Hz, 1H, CHHO), 4.31 (dd, J = 9.1, 7.7 Hz, 1H, CHHO), 4.28 (ddd, J = 6.0, 5.3, 4.4 Hz, 1H, CHOTBDMS), 3.75 (s, 3H, OMe), 3.00 (ddd, J = 7.7, 6.0, 2.0 Hz, 1H, OCH₂CH), 2.39 (dt, J = 13.3, 7.3 Hz, 1H, CCHH), 2.25 (dt, J = 13.3, 7.3 Hz, 1H, CCHH), 1.84 (dtd, J = 12.8, 7.3, 4.4 Hz, 1H, CCH₂CHH), 1.66 (dtd, J = 12.8, 7.3, 5.3 Hz, 1H, CCH₂CHH), 0.84 (s, 9H, SiCMe₃), 0.03 (s, 6H, SiMe₂); $\delta_{C}(125 \text{ MHz}; \text{CDCl}_{3})$ 176.1 (CO), 170.6 (CO), 74.4 (CHOTBDMS), 66.2 (CH₂O), 59.7 (CCO₂Me), 53.1 (OMe), 50.5 (OCH₂C), 35.0 (CCH₂), 30.3 (CH₂CHOTBDMS), 25.5 (SiCMe₃), 17.8 (SiCMe₃), -4.6 (Si SiMe), -5.2 (Si SiMe); m/z LRMS (ESI⁺) 373.3 (M+NH₄+MeCN⁺, 100%); HRMS (ESI⁺) found 332.1881, $C_{15}H_{30}NO_5Si^+$ (M+NH₄⁺) requires 332.1888. Data in accord with literature.²²

4.1.15. (3aR*,6R*,6aS*)-Methyl 6-(benzoyloxy)-3oxohexahydro-1H-cyclopenta[c]furan-3acarboxylate **20d-cv** and (3aR *,6S*,6aS*)-methyl 6-(benzoyloxy)-3-oxohexahydro-1H cyclopenta[c]furan-3a-carboxylate **20d-cc**

20d-cv

Dimethyl 2-(3-(benzoyloxy)pent-4-en-1-yl)malonate 21d (0.161 g, 0.500 mmol), manganese(III) acetate (0.269 g, 1.00 mmol) and copper(II) triflate (0.181 g, 0.50 mmol) were dissolved in nitrogen sparged acetonitrile (2.5 mL). The reaction mixture was heated at 40 °C for 5 h under an atmosphere of nitrogen and then cooled to room temperature. sat. aq. sodium bicarbonate (30 mL) was added followed by CH₂Cl₂ (30 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 30 mL) and the organic layers combined, dried (Na2SO4) and concentrated under reduced pressure (crude product, d.r. 2:1, 20d-cc:20d-cv). Purification by flash column chromatography (petrol 40-60:EtOAc, 6:1) gave the title compound 20d-cv as a colorless oil $(0.033 \text{ g}, 0.108 \text{ mmol}, 21\%); R_f = 0.51 \text{ (petrol:EtOAc, 1:1)};$ $v_{max}(CDCl_3)/cm^{-1}$ 2978, 2957, 2919, 1778 (C=O), 1744 (C=O), 1718 (C=O), 1316, 1272, 1202, 1178, 1150, 1113, 1071, 1049, 1025, 977, 714; δ_H(500 MHz; CDCl₃) 8.02-7.97 (m, 2H, ArH), 7.61-7.57 (m, 1H, ArH), 7.48-7.42 (m, 2H, ArH), 5.27 (ddd, J = 5.2, 2.4, 1.6 Hz, 1H, CHOBz), 4.67 (dd, J = 10.0, 8.6 Hz, 1H, H CHHO), 4.38 (dd, J = 10.0, 2.9 Hz, 1H, CHHO), 3.79 (s, 3H, OMe), 3.27 (ddt, J = 8.6, 2.9, 1.6 Hz, 1H, OCH₂CH), 2.76 (ddd, J = 13.5, 12.2, 7.0 Hz, 1H, CCHH), 2.43 (ddd, J = 13.5, 7.0, 2.4 Hz, 1H, CCHH), 2.20 (ddtd, J = 14.3, 7.0, 2.4, 1.6 Hz, 1H,

CCH₂C*H*H), 1.95 (dddd, J = 14.3, 12.2, 7.0, 5.2 Hz, 1H, CCH₂CH*H*); $\delta_{C}(125 \text{ MHz}; \text{CDCl}_{3})$ 175.3 (CO), 169.3 (CO), 166.0 (CO), 133.4 (Ar), 129.6 (Ar), 129.5 (Ar), 128.5 (Ar), 81.6 (CHOBz), 70.1 (CH₂O), 60.5 (CCO₂Me), 53.3 (OMe), 52.2 (OCH₂C), 32.2 (CCH₂), 31.5 (CH₂CHOBz); m/z LRMS (ESI⁺) 327.1 ((M+Na⁺, 100%); HRMS (ESI⁺) found 327.0842, C₁₆H₁₆NaO₆⁺ (M+Na⁺), requires 327.0839.

Further elution of the column gave the title compound 20d-cc as a colorless oil (0.079 g, 0.259 mmol, 52%); $R_f = 0.37$ (petrol:EtOAc, 1:1); v_{max} (CDCl₃)/cm⁻¹ 2982, 2957, 1775 (C=O). 1735 (C=O), 1720 (C=O), 1270, 1251, 1160, 1112, 1070, 988, 713; δ_H(500 MHz; CDCl₃) 8.02-7.98 (m, 2H, ArH), 7.62-7.57 (m, 1H, ArH), 7.49-7.43 (m, 2H, ArH), 5.55 (dt, J = 6.3, 4.7 Hz, 1H, CHOBz), 4.48 (dd, J = 9.8, 7.2 Hz, 1H, CHHO), 4.43 (dd, J = 9.8, 2.0 Hz, 1H, CHHO), 3.83 (s, 3H, OMe), 3.43 (ddd, J = 7.2, 6.3, 2.0 Hz, 1H, OCH₂CH), 2.61 (ddd, J = 14.0, 8.0, 6.0 Hz, 1H, CCHH), 2.42 (ddd, J = 14.0, 7.4, 8.0 Hz, 1H, CCHH), 2.19 (dtd, J = 13.5, 8.0, 4.7 Hz, 1H, CCH₂CHH), 2.05 (dddd, J = 13.5, 7.4, 6.0, 4.7 Hz, 1H, CCH₂CHH); δ_C(125 MHz; CDCl₃) 175.6 (CO), 169.8 (CO), 165.7 (CO), 133.5 (Ar), 129.6 (Ar), 129.1 (Ar), 128.6 (Ar), 76.6 (CHOBz), 66.3 (CH₂O), 60.2 (CCH₂), 53.4 (OMe), 49.1 (OCH₂C), 32.4 CH₂CHOBz), 30.4 (CCH₂); m/z LRMS (ESI⁺) 327.1 (M+Na⁺, 100%); HRMS (ESI⁺) found 327.0839, C₁₆H₁₆NaO₆⁺ (M+Na⁺), requires 327.0839.

4.1.16. (3aR*,6R*,6aS*)-Methyl 6-(acetoxyloxy)-3oxohexahydro-1H-cyclopenta[c]furan-3acarboxylate **20e-cv** and (3aR *,6S*,6aS*)-methyl 6-(acetoxyoxy)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate **20e-cc**

A mixture of dimethyl 2-(3-acetoxypent-4-en-1-yl)malonate 21e (0.130 g, 0.500 mmol), manganese(III) acetate dihydrate (0.269 g, 1.00 mmol) and copper(II) triflate (0.181 g, 0.500 mmol) was dissolved in nitrogen sparged acetonitrile (2.5 mL). The suspension was heated at 40 °C for 3 h 30 min under an atmosphere of nitrogen and then cooled to room temperature. Satu- rated aqueous sodium bicarbonate (30 mL) was added followed by CH₂Cl₂ (30 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 30 mL) and the organic layers combined, dried (Na₂SO₄), and concentrated under reduced pressure (crude product, d.r. 2:1, 20e-cc:20e-cv). Purification by flash column chromatography (petrol 40-60:EtOAc, 6:1) gave a mixture of the title compounds as a colorless oil (d.r. 2:1, 20e-cc:20e-cv, 0.081 g, 0.334 mmol, 67%); v_{max}(CDCl₃)/cm⁻¹ 2979, 2959, 2919, 1777 (C=O), 1741 (C=O), 1436, 1377, 1268, 1240, 1156, 1131, 1090, 1048, 1020, 991, 732; $\delta_{\rm H}$ (400 MHz; CDCl₃) 5.24 (dt, J = 7.3, 5.5Hz, 1H, CHOAc cc), 4.97 (dt, J = 5.3, 2.0 Hz, 1H, CHOAc cv), 4.58 (ddd, J = 9.9, 8.4, 0.8 Hz, 1H, CHHO cv), 4.38 (ddd, J =9.7, 7.6, 0.7 Hz, 1H, CHHO cc), 4.30 (dd, J = 9.7, 2.0 Hz, 1H, CHHO cc), 4.27 (dd, J = 9.9, 2.5 Hz, 1H, CHHO cv), 3.78 (s, 6H, 2×OMe), 3.33-3.28 (m, 1H, OCH₂CH cc), 3.11-3.06 (m, 1H, OCH₂CH cv), 2.59 (dddd, J = 13.4, 12.1, 7.0, 0.6 Hz, 1H, CCHH cv), 2.46 (dtd, J = 13.7, 7.6, 0.6 Hz, 1H, CCHH cc), 2.35-2.27 (m, 2H, CCH*H* cc, CCH*H* cv), 2.12-2.04 (m, 1H, CCH₂C*H*H cc), 2.07 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.05-1.96 (m, 1H, CCH₂C*H*H **cv**), 1.87-1.70 (m, 2H, CCH₂CH*H* **cv**, CCH₂CH, **cc**); δ_C(100 MHz; CDCl₃) 175.5 (CO), 175.2 (CO), 170.5 (CO), 170.3 (CO), 169.7 (CO), 169.3 (CO), 81.2 (CHOAc cv), 75.8 (CHOAc cc), 70.2 (CH₂O b), 66.1 (CH₂O cc), 60.4 (CCH₂), 60.0 (CCH₂), 53.3 (2×OMe), 52.0 (OCH₂C cv), 48.2 (OCH₂C cc), 32.0 (CH₂), 31.8 (*C*H₂), 31.4 (*C*H₂), 30.3 (*C*H₂), 21.0 (C(O)*Me*), 20.8 (C(O)*Me*); m/z LRMS (ESI⁺) 265.1 (M+Na⁺, 100%); HRMS (ESI⁺) found 265.0689, C₁₁H₁₄NaO₆⁺ (M+Na⁺) requires 265.0683. The reaction was carried out with the same reagents and quantities at room temperature for 24 h (crude product d.r. 2:1, **20e-cc:20e-cc**).

4.1.17. (3aR*,6R*,6aS*)-Methyl 6-(benzyloxy)-3oxohexahydro-1H-cyclopenta[c]furan-3acarboxylate **20f-cv** and (3aR*,6S*,6aS*)-methyl 6-(benzyloxy)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate **20f-cc** and dimethyl 3-hydroxy-2-methylcyclopentane-1,1dicarboxylate

A mixture of dimethyl 2-(3-(benzyloxy)pent-4-en-1yl)malonate 21f (0.306 g, 1.00 mmol), manganese(III) acetate dihydrate (0.537 g, 2.00 mmol) and copper(II) triflate (0.362 g, 1.00 mmol) was dissolved in nitrogen sparged acetonitrile (5 mL). The suspension was heated at 80 °C for 13 h 30 min under an atmosphere of nitrogen and then cooled to room temperature. Water (50 mL), EtOAc (50 mL) and brine (10 mL) were added and the aqueous layer was ex- tracted with EtOAc (3×30 mL). The combined organic extracts were dried (MgSO₄), and concentrated under reduced pressure (crude product relative 20f-cv:20f-cc:cyclopentane, 2:1.5:1,ratios respectively). Purification by flash column chromatography (petrol 30-40:EtOAc, gradient, $12:1 \rightarrow 6:1 \rightarrow 3:1 \rightarrow 1:1$) gave the title compound **20f-cv** as a colorless oil (0.084 g, 0.289 mmol, 29%); v_{max} (CDCl₃)/cm⁻¹ 1775 (C=O), 1734 (C=O); δ_{H} (500 MHz; CDCl₃) 7.39-7.27 (m, 5H, ArH), 4.57 (dd, J = 9.6, 8.3 Hz, 1H, CHHO), 4.55 (d, J = 11.9 Hz, 1H, CHHPh), 4.46 (d, J = 11.9 Hz, 1H, CH*H*Ph), 4.11 (dd, *J* = 9.6, 2.7 Hz, 1H, CH*H*O), 3.87 (dt, *J* = 4.9, 2.7 Hz, 1H, CHOBn), 3.79 (m, 3H, OMe), 3.19 (dtd, J = 8.3, 2.7, 1.0 Hz, 1H, OCH₂CH), 2.68 (ddd, J = 13.5, 10.6, 7.2 Hz, 1H, CCHH), 2.28-2.22 (m, 1H, CCHH), 2.07-1.96 (m, 1H, CCH_2CHH), 1.73 (dddd, J = 13.6, 10.6, 7.0, 4.9 Hz, 1H, CCH₂CHH); δ_C(125 MHz; CDCl₃) 175.9 (CO), 169.6 (CO), 137.6 (Ar), 128.5 (Ar), 127.8 (Ar), 127.5 (Ar), 85.5 CHOBn), 71.0 (CH₂Ph), 70.3 (CH₂O), 59.9 (CCO₂Me), 53.2 (OMe), 51.6 (OCH₂C), 31.4 (CCH₂), 30.9 (CH₂CHOBn); *m*/*z* LRMS (ESI⁺) 313.1 (M+Na⁺, 100%), 603.2 (2M+Na⁺, 80); HRMS (ESI⁺) found 313.1060, $C_{16}H_{18}NaO_5^+$ (M+Na)⁺, requires 313.1046. Data in accord with literature.2

Further elution of the column gave **20f-cc** as a colorless oil (0.063 g, 0.217 mmol, 22%); v_{max} (CDCl₃/cm⁻¹,1773 (C=O), 1732 (C=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.40-7.24 (m, 5H, Ar*H*), 4.64 (dd, J = 9.2, 2.5 Hz, 1H, *CH*HO), 4.59 (d, J = 12.0 Hz, 1H, *CH*HPh), 4.24 (d, J = 12.0 Hz, 1H, *CHHP*h), 4.34 (dd, J = 9.2, 8.1 Hz, 1H, *CHHO*), 4.07 (td, J = 7.1, 5.0 Hz, 1H, *CHOB*n), 3.78 (s, 3H, *OMe*), 3.21-3.15 (m, 1H, *OCH*₂*CH*), 2.37 (ddd, J = 13.7, 9.0, 7.3 Hz, 1H), 2.34-2.28 (m, 1H), 2.03-1.94 (m, 1H), 1.83-1.73 (m, 1H); m/z LRMS (ESI⁺) 313.1 (M+Na⁺, 100%), 603.2 (2M+Na⁺, 80); HRMS (ESI⁺) found 313.1046, C₁₆H₁₈NaO₅⁺ (M+Na⁺), requires 313.1046. Data in accord with literature.²²

Further elution of the column gave dimethyl 3-hydroxy-2methylcyclopentane-1,1-dicarboxylate as a colorless oil (0.029 g, 0.134 mmol, 13%); $v_{max}(CDCl_3)/cm^{-1}$ 3528 (O-H), 2954, 2915, 2884, 2849, 1731 (C=O); $\delta_{H}(500 \text{ MHz}; CDCl_3)$ 4.16-4.06 (m, 1H, CHOH), 2×3.75 (s, 3H, OMe), 2.64-2.54 (m, 2H, CHMe, CCHH), 2.20 (ddd, J = 14.4, 9.8, 4.7 Hz, 1H, CCHH), 1.99

Tetrahedron

(ddd, J = 13.8, 9.8, 8.4, 5.4 Hz, 1H, HOCHC*H*H), 1.88 (ddd, J = 13.8, 8.9, 4.7, 2.2 Hz, 1H, HOCHCH*H*), 1.63 (br s, 1H, O*H*), 1.13 (d, J = 7.2 Hz, 3H, CH*Me*); $\delta_{\rm C}$ (125 MHz; CDCl₃) 174.5 (CO), 172.6 (CO), 76.6 (CHOH), 62.6 (C(CO₂Me)₂), 52.9 (O*Me*), 52.8 (O*Me*), 46.5 (CHMe), 34.1 (HOCHC₂), 33.0 (CCH₂), 10.6 (CH*Me*); m/z LRMS (ESI⁺) 239.1 (M+Na⁺, 100%); HMRS (ESI⁺) found 239.0889, C₁₀H₁₆NaO₅⁺ (M+Na⁺), requires 239.0890.

The reaction was also carried out on the same scale, at 40 °C for 12 h (crude product relative ratios 2:1.5:1, **20f-cv:20f-cc**:cyclopentane, respectively). Purification by flash column chromatography (petrol 40-60:EtOAc, gradient, $6:1\rightarrow3:1\rightarrow1:1$) gave the title compound **20f-cv** (0.110 g, 0.379 mmol, 38%), title compound **20f-cc** (0.062 g, 0.213 mmol, 21%) and dimethyl 3-hydroxy-2-methylcyclopentane-1,1-dicarboxylate (0.015 g, 0.069 mmol, 7%).

4.1.18. (3aR*,6R*,6aS*)-Methyl 6-((tertbutyldiphenylsilyl)oxy)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate **20c-cv** and (3aR*,6S*,6aS*)-Methyl 6-((tertbutyldiphenylsilyl)oxy)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate **20c-cc**

20c-cv 20c-cc

Dimethyl 2-(3-((tert-butyldiphenylsilyl)oxy)pent-4-en-1yl)malonate 21c (0.197 g, 0.433 mmol), manganese(III) acetate dihydrate (0.233 g, 0.869 mmol) and copper(II) triflate (0.157 g, 0.434 mmol) were dissolved in nitrogen sparged acetonitrile (2.1 mL). The reaction mixture was heated at 40 °C for 13 h under an atmosphere of nitrogen and then cooled to room temperature. Water (20 mL), EtOAc (30 mL) and sat. aq. NH₄Cl (10 mL) were added and the aqueous layer extracted with EtOAc (3×30 mL). The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure to yield the crude product (d.r. 2:1, 20c-cc:20c-cv). Purification by flash column chromatography (dry loading, petrol 40-60:EtOAc, gradient, 6:1) gave the title compound 20c-cv as a colorless oil (0.047 g, 0.107 mmol, 25%); $R_f = 0.5$ (petrol:EtOAc, 3:1); $v_{max}(CDCl_3)/cm^{-1}$ 2956, 2931, 2894, 2858, 1779 (C=O), 1746 (C=O), 1472, 1461, 1428, 1266, 1243, 1150, 1111, 1040, 822, 741, 704; $\delta_{\rm H}(500$ MHz; CDCl₃) 7.64-7.59 (m, 4H, ArH), 7.49-7.43 (m, 2H, ArH), 7.43-7.37 (m, 4H, ArH), 4.24 (dd, J = 9.8, 8.9 Hz, 1H, CHHO), 4.09-4.07 (m, 1H, CHOTBDPS), 3.80 (s, 3H, OMe), 3.63 (dd, J = 9.8, 3.3 Hz, 1H, CHHO), 3.03-2.98 (m, 1H, OCH₂CH), 2.81 (ddd, J = 13.3, 11.0, 7.0 Hz, 1H, CCHH), 2.19 (ddd, J = 13.3, 11.0, 10.0 Hz, 1H, CCHH)7.0, 3.5 Hz, 1H, CCHH), 1.91 (ddtd, J = 13.4, 7.0, 3.5, 1.4 Hz, 1H, CCH₂CHH), 1.59 (dddd, J = 13.4, 11.0, 7.0, 4.6 Hz, 1H, CCH₂CHH), 1.06 (s, 9H, SiCMe₃); δ_C(125 MHz; CDCl₃) 176.1 (CO), 169.8 (CO), 135.6 (Ar), 133.5 (Ar), 133.1 (Ar), 130.0 (Ar), 127.8 (Ar), 80.1 (CHOTBDPS), 69.6 (CH2O), 60.1 (CCO2Me), 54.6 (OCH₂C), 53.1 (OMe), 34.3 (CH₂CHOTBDPS), 31.7 (CCH₂), 26.7 (SiCMe₃), 19.0 (SiCMe₃); *m*/*z* LRMS (ESI⁺) 461.2 (M+Na⁺, 100%), 899.3 (2M+Na⁺, 78); HRMS (ESI⁺) found 461.1748, C₂₅H₃₀NaO₅Si⁺ (M+Na⁺), requires 461.1755.

Further elution of the column gave **20c-cc** as a white solid (0.095 g, 0.216 mmol, 50%); m.p. 116-118 °C; $R_f = 0.38$ (petrol:EtOAc, 3:1); v_{max} (CDCl₃)/cm⁻¹ 3463, 2961, 2935, 2860, 1775 (C=O), 1742 (C=O), 1720, 1429, 1247, 1155, 1102, 1049, 1022, 976, 746, 704; δ_H (500 MHz; C_6D_6) 7.74- 7.69 (m, 4H, ArH), 7.34-7.26 (m, 6H, ArH), 4.69 (dd, J = 9.2, 2.3 Hz, 1H, CHHO), 4.19-4.14 (m, 1H, CHOTBDPS), 4.09 (dd, J = 9.2, 8.0

Hz, 1H, CHHO), 3.26 (s, 3H, OMe), 2.59-2.55 (m, 1H, OCH₂CH), 2.47 (ddd, J = 13.5, 7.0, 5.2 Hz, 1H, CCHH), 2.23 (ddd, J = 13.5, 9.0, 7.4 Hz, 1H, CCHH), 1.58-1.52 (m, 1H, 1.58-1.52) CCH_2CHH), 1.48 (ddt, J = 13.0, 7.4, 5.2 Hz, 1H, CCH_2CHH), 1.20 (s, 9H, SiCMe₃); δ_C(125 MHz; C₆D₆) 175.6 (CO), 170.2 (CO), 136.0 (Ar), 136.0 (Ar), 133.8 (Ar), 133.6 (Ar), 130.3 (Ar), 75.5 (CHOTBDPS), 65.8 (CH₂O), 60.0 (CCO₂Me), 52.4 (OMe), 49.5 (OCH₂C), 34.3 (CH₂CHOTBDPS), 30.3 (CCH₂), 27.0 $(SiCMe_3)$, 19.3 $(SiCMe_3)$; m/z LRMS (ESI^+) 461.1 $(M+Na^+)$, 100%), 899.3 (2M+Na⁺, 100); HRMS (ESI⁺) found 461.1757, C₂₅H₃₀NaO₅Si⁺ (M+Na⁺), requires 461.1755. Single Crystal Data: $C_{25}H_{30}O_5Si$, orthorhombic, $P_{21}2_{1}2_{1}$, a=13.6562(5), b=9.7220(4),c=16.9985(8) Å, V=2256.82(16) Å³, Data/restraints/parameters 3119/0/281, $R_{int} = 0.170$, Flack x=0.2(3), Final R₁=0.0857, wR₂=0.1700 (I>2s(I)).

4.1.19. (3aR*,6R*,6aS*)-Ethyl 6-(tertbutyldimethylsilyloxy)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate **20b-cv** and (3aR*,6S*,6aS*)-ethyl 6-(tertbutyldimethylsilyloxy)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate **20b-cc**

20b-cv

20b-cc

Diethyl 2-(3-((*tert*-butyldimethylsilyl)oxy)pent-4-en-1yl)malonate **21b** (0.196 g, 0.546 mmol), manganese(III) acetate (0.294 g, 1.09 mmol) and copper(II) triflate (0.198 g, 0.546 mmol) were dissolved in nitrogen sparged acetonitrile (2.7 mL). The reaction mixture was heated at 40 °C for 3 h under an atmosphere of nitrogen. Water (30 mL) was added followed by EtOAc (30 mL). The organic layer was washed with brine (30 mL) and the combined aqueous layers extracted with EtOAc (3×30 mL). The combined organic layers were dried (MgSO₄) and concetrated under reduced pressure to yield the crude product (d.r. 2:1, 204A:204B). Purification by flash column chromatography (petrol 30-40:EtOAc, gradient, 9:1 \rightarrow 3:1 \rightarrow 3:1) gave recovered starting material **21c** as a colorless oil (0.015 g, 0.042 mmol, 7%); R_f = 0.8 (petrol:EtOAc, 3:1).

Further elution of the column gave title compound 20b-cv as a colorless oil (0.025 g, 0.076 mmol, 14%) $R_{\rm f}$ = 0.62 (petrol:EtOAc, 3:1); $v_{max}(KBr)/cm^{-1}$ 2956, 2932, 2904, 2857, 2709, 1775 (C=O), 1736 (C=O), 1248, 1159, 1058, 1029, 838 (Si-C), 776 (Si-C); $\delta_{\text{H}}(500 \text{ MHz}; \text{CDCl}_3) 4.55 \text{ (ddd, } J = 9.4, 8.3,$ 1.0 Hz, 1H, CHHO), 4.26-4.21 (m, 2H, OCH₂Me), 4.08 (ddd, J =9.4, 3.1, 0.8 Hz, 1H, CHHO), 4.08-4.05 (m, 1H, CHOTBDMS), 2.99 (dt, J = 8.3, 3.1 Hz, 1H, OCH₂CH), 2.72 (ddd, J = 13.5, 9.5, 7.5 Hz, 1H, CCHH), 2.16 (ddd, J = 13.5, 7.0, 4.5 Hz, 1H, CCHH), 1.81 (ddt, J = 13.9, 7.5, 4.5 Hz, 1H, CCH₂CHH), 1.73 (dddd, J = 13.9, 9.5, 7.0, 4.8 Hz, 1H, CCH₂CHH), 1.30-1.27 (m, 3H, OCH₂*Me*), 0.87 (s, 9H, SiC*Me*₃), 0.06 (s, 6H, Si*Me*₂); δ_C(125 MHz; CDCl₃) 176.4 (CO), 169.3 (CO), 78.8 (CHOTBDMS), 69.8 (CH₂O), 62.1 (OCH₂Me), 59.7 (CCO₂Me), 54.8 (OCH₂C), 34.5 (CH₂CHOTBDMS), 30.8 (CCH₂), 25.6 (SiCMe₃), 17.8 (SiCMe₃), 14.0 (CH₂Me), -4.6 (SiMe), -4.9 (SiMe); m/z LRMS (ESI⁺) 351.1 (M+Na⁺, 100%); HRMS (ESI⁺) found 351.1600, $C_{16}H_{28}NaO_5Si^+(M+Na^+)$, requires 351.1598.

Further elution of the column gave the title compound **20b-cc** as a white solid (0.088 g, 0.268 mmol, 49%) m.p. 44-46 °C; $R_f = 0.48$ (petrol:EtOAc, 3:1); $v_{max}(CH_2Cl_2)/cm^{-1}$ 2956, 2928, 2885, 2857, 1780 (C=O), 1774 (C=O), 1248, 1055, 835 (Si-C), 776 (Si-C); $\delta_H(500 \text{ MHz}; \text{CDCl}_3)$ 4.51 (dd, J = 9.1, 2.1 Hz, 1H, CHHO), 4.33 (dd, J = 9.1, 7.7 Hz, 1H, CHHO), 4.30 (ddd, J = 6.2, 5.4, 4.4

Hz, 1H, CHOTBDMS), 4.24-4.19 (m, 2H, OCH₂Me), 3.00 (ddd, J = 7.7, 6.2, 2.1 Hz, 1H, OCH₂CH), 2.41 (ddd, J = 13.5, 7.6, 6.8 Hz, 1H, CCHH), 2.26 (ddd, J = 13.5, 7.6, 6.8 Hz, 1H, CCHH), 1.86 (dtd, J = 12.7, 7.6, 4.4 Hz, 1H, CCH₂CHH), 1.68 (dtd, J =12.7, 6.8, 5.4 Hz, 1H, CCH₂CHH), 1.29-1.25 (m, 3H, OCH₂Me), 0.87 (s, 9H, SiCMe₃), 0.06 (s, 6H, SiMe₂); δ_C (125 MHz; CDCl₃) 176.2 (CO), 170.1 (CO), 74.4 (CHOTBDMS), 66.3 (CH₂O), 62.2 59.9 (*C*CO₂Me), $(CH_2Me),$ 50.6 $(OCH_2C),$ 35.0 (CH₂CHOTBDMS), 30.1 (CCH₂), 25.5 (SiCMe₃), 17.8 (SiCMe₃), 14.0 (CH₂Me), -4.6 (SiMe), -5.1 (SiMe); m/z LRMS (ESI⁺) 679.3 (2M+Na⁺, 100%), 351.1 (M+Na⁺, 98); HRMS (ESI⁺) found 351.1600, C₁₆H₂₈O₅SiNa⁺ (M+Na⁺), requires 351.1598. Single Crystal Data: $C_{16}H_{28}O_5Si$, monoclinic, $P2_1$, a=11.1296(2), b=7.13140(10),*c*=23.8950(5) Å, $\beta = 101.9519(7)^{\circ},$ V=1855.42(6) Å³ Data/restraints/parameters 8106/1/398, $R_{int}=0.055$, Flack x=-0.15(9), Final $R_1=0.0406$, w $R_2=0.0833$ (I > 2s(I)).

4.1.20. (3aR*,6R*,6aS*)-Methyl 6-methyl-3oxohexahydro-1H-cyclopenta[c]furan-3acarboxylate **20g-cv** and (3aR*,6S*,6aS*)-methyl 6methyl-3-oxohexahydro-1H-cyclopenta[c]furan-3acarboxylate **20g-cc**

20g-cv 20g-cc

Dimethyl 2-(3-methylpent-4-en-1-yl)malonate 176 (0.215 g, 1.00 mmol), manganese(III) acetate (0.537 g, 2.00 mmol) and copper(II) triflate (0.362 g, 1.00 mmol) were dissolved in nitrogen sparged acetonitrile (5 mL). The reaction mixture was heated at 40 °C for 3 h under an atmosphere of nitrogen and then cooled to room temperature. Water (30 mL) was added followed by EtOAc (30 mL) and sat. aq. sodium bicarbonate (10 mL). The aqueous layer was extracted with EtOAc (3×30 mL) and the organic layers combined, dried (MgSO₄) and concentrated under reduced pressure (crude d.r. 5:1 **20g-cv:20g-cc**). Purification by flash column chromatography (petrol 40-60:EtOAc, 20:1) gave recovered starting material **21g** as a colorless oil (0.048 g, 0.224 mmol, 22%).

Further elution of the column gave the title compound **20g-cv** as a colorless oil (0.070 g, 0.353 mmol, 35%); v_{max} (CDCl₃)/cm⁻¹ 2958, 2873, 1774 (C=O), 1742 (C=O), 1458, 1435, 1376, 1251, 1213, 1196, 1167, 1143, 1107, 1062, 1044, 1005, 984, 967; $\delta_{\rm H}$ (400 MHz; CDCl₃) 4.50 (dd, J = 9.3, 6.7 Hz, 1H, CHHO), 4.14 (dd, J = 9.3, 1.6 Hz, 1H, CHHO), 3.76 (s, 3H, OMe), 2.61 (ddd, J = 13.9, 8.2, 4.3 Hz, 1H, CCHH), 2.55 (ddd, J = 7.4, 6.7, 1.6 Hz, 1H, OCH₂CH), 2.12 (ddd, J = 13.9, 8.7, 7.1 Hz, 1H, CCHH), 1.94-1.83 (m, 2H, CHMe, CCH₂CHH), 1.51-1.39 (m, 1H, CCH₂CHH), 1.07 (d, J = 6.5 Hz, 3H, CHMe); $\delta_{\rm C}$ (100 MHz; CDCl₃) 176.7 (CO), 170.5 (CO), 71.0 (CH₂O), 61.4 (CCO₂Me), 54.3 (OCH₂C), 53.1 (OMe), 41.7 (CHMe), 34.5 (CH₂CHMe), 32.7 (CCH₂), 18.2 (CHMe); m/z LRMS (ESI⁺) 221.1 (M+Na⁺, 100%); HRMS (ESI⁺) found 221.0792, C₁₀H₁₄NaO₄⁺ (M+Na⁺), requires 221.0784. Data in accord with literature.²²

Further elution gave a mixture of compound **20g-cv** and compound **20g-cc** as a colorless oil (0.023 g, 1.5:1, **20g-cv:20g-cc**, 0.116 mmol, 12%); v_{max} (CDCl₃)/cm⁻¹ 2958, 2874, 1774 (C=O), 1742 (C=O), 1458, 1435, 1376, 1304, 1251, 1213, 1166, 1142, 1110, 1062, 1044, 1022, 1006, 984; $\delta_{\rm H}$ (400 MHz; CDCl₃) 4.50 (dd, J = 9.3, 6.7 Hz, 1H, CHHO b), 4.37 (dd, J = 9.7, 8.1 Hz, 1H, CHHO a), 4.29 (dd, J = 9.7, 3.4 Hz, 1H, CHHO a), 4.14 (dd, J = 9.3, 1.6 Hz, 1H, CHHO b), 3.77 (s, 3H, OMe a), 3.76 (s, 3H, OMe b), 3.09 (td, J = 8.1, 3.4 Hz, 1H, OCH₂CH a), 2.61

(ddd, J = 13.9, 8.2, 4.3 Hz, 1H, CCHH b), 2.55 (ddd, J = 7.4)6.7, 1.6 Hz, 1H, OCH₂CH b), 2.36 (ddd, J = 13.3, 11.8, 6.5 Hz, 1H, CCHH a), 2.36-2.25 (m, 1H, CHMe a), 2.29 (ddd, J = 13.3, 7.0, 2.1 Hz, 1H, CCHH a), 2.12 (ddd, J = 13.8, 8.7, 7.1 Hz, 1H, CCHH b), 1.94-1.83 (m, 3H, 2HB & 1HA, CHMe b, CCH₂CHH a, CCH₂CHH b), 1.51-1.39 (m, 1H, CCH₂CHH b), 1.24 (qd, J = 11.8, 7.1 Hz, 1H, CCH₂CHH a), 1.07 (d, J = 6.5 Hz, 3H, CHMe b), 1.04 (d, J = 7.0 Hz, 3H, CHMe a); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3})$ 176.7 (CO b), 176.6 (CO a), 170.5 (CO a, b), 71.0 (CH₂O b), 67.0 (CH₂O a), 61.5 (CCO₂Me a), 61.4 (CCO₂Me b), 54.3 (OCH₂C b), 53.1 (OMe a, b), 48.4 (OCH₂C a), 41.7 (CHMe b), 37.4 (CHMe a), 34.5 (CH₂CHMe b), 33.8 (CCH₂ a), 33.3 (CH₂CHMe a), 32.7 $(CCH_2 b)$, 18.2 (CHMe b), 14.5 (CHMe a); m/z LRMS (ESI^+) 419.2 (2M+Na⁺, 100%), 221.1 (M+Na⁺, 78); HRMS (ESI⁺) found 221.0786, $C_{10}H_{14}NaO_4^+$ (M+Na⁺), requires 221.0784. The reaction was repeated with the same reagents on the same scale at 80 °C overnight to give a mixture of the title compounds 20g-cv and 20g-cc (d.r. 5:1, 20g-cv:20g-cc) as a colorless oil (0.151 g, 0.762 mmol, 76%).

4.1.21. Methyl 3-hydroxy-2-methylenepent-4-enoate 26

To a solution of amine 25^{24} (9.95 g, 54.7 mmol) in chloroform (500 mL) at 0 °C was added dropwise a solution of purified mCPBA (10 g, 60 mmol) in chloroform (150 mL). The reaction was allowed to warm to RT over 16 h and then partially concentrated in vacuo. The solution was then passed through a column of basic alumina (deactivated with 6% w/w water) eluting with chloroform. Concentration in vacuo then gave a mixture of the title compound and starting amine that were separated by flash column chromatography (4:1 petrol:Et₂O) to give the title compound 26 as a colorless oil (4.00 g, 28.2 mmol, 51%); $R_f 0.62$ (4:1 petrol:EtOAc); δ_H (400 MHz CDCl₃) 6.28 (1H, br s, CHH'=C) 5.98 (1H, dddt, J = 17.1, 10.3, 5.4, 1.0 Hz, CH₂=CH), 5.88 (1H, br s, CHH'=C), 5.36 (1H, dt, J = 17.1, 1.0 Hz, CHH'=CH), 5.22 (1H, dt, J = 10.3, 1.0 Hz, CHH'=CH), 4.98 (1H, t, J = 5.4 Hz, CHOH), 3.80 (3H, s, OMe), 2.95 (1H, br m, CHOH); δ_C (100 MHz CDCl₃) 166.8 (CO), 141.1 (C=CH₂), 138.1 (CH₂=CH), 125.9 (C=CH₂), 116.1 (CH₂=CH), 72.2 (CHOH), 52.0 (OMe). In accordance with the literature values.²⁴ HPLC data; column: Chiralpak OD, flow rate: 0.8 mL/min, solvent: 5% IPA in hexane, retention time for (R) 13.20 min, (S) 15.20 min.

4.1.22. Methyl 3-((tert-butyldimethylsilyl)oxy)-2methylenepent-4-enoate 27

To a solution of alcohol **26** (3.88 g, 27.3 mmol) in CH₂Cl₂ (55 mL) was added sequentially imidazole (5.50 g, 72.6 mmol) and TBDMSCl (5.00 g, 36.3 mmol). The reaction was stirred for 16 h then quenched with sat. aq. NH₄Cl (25 mL). The aqueous layer was then separated and extracted with CH₂Cl₂ (2 × 50mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography (98:2 petrol:EtOAc) gave the title compound **27** as a colorless oil (6.17 g, 24.0 mmol, 88%); R_f 0.60 (petrol); $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.21 (1H, t, *J* = 1.5 Hz, CHH'=C), 5.96 (1H, t, *J* = 1.5 Hz, CHH'=C), 5.27 (1H, dt, *J* = 17.1, 1.5 Hz, CHH'=CH), 5.05 (1H, dt, *J* = 10.5, 1.5 Hz, CHH'=CH), 5.02–5.07 (1H, m,

CHOTBDMS), 3.75 (3H, s, OMe), 0.84 (9H, s, CMe₃), 0.06 re-proc (3H, s, 205 SiMe), 0.04 (3H, s, SiMe); $\delta_{\rm C}$ (100 MHz CDCl₃) 166.5 (CO), 142.7 (CH₂=C), 139.2 (CH₂=CH), 124.2 (CH₂=C), 114.5 (CH₂=CH), 71.4 (CHOTBDMS), 51.7 (OMe), 25.8 (SiCMe₃), 18.3 (SiCMe₃), -4.8 (SiMe), -5.1 (SiMe). Data in accordance with the literature values.³⁹ 2.5 g,

4.1.23. 3-((tert-Butyldimethylsilyl)oxy)-2methylenepent-4-en-1-ol

TBDMSO

≪ ↓ ___он

To a solution of ester 27 (6.17 g, 24.0 mmol) in THF (60 mL) at -35 °C was added DIBAL (60 mL, 1 M in hexane, 60 mmol) dropwise and the reaction stirred for 2 h at between -35 °C and -20 °C. The reaction was then quenched by the slow addition of MeOH (5 mL) followed by sat. aq. sat. aq. Rochelle's salt (60 mL), sat. aq. NH₄Cl (10 mL) and EtOAc (100 mL). The mixture was vigorously stirred for 2 h. The aqueous layer was then separated and extracted with EtOAc (2×150 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash column chromatography (6:1 petrol:EtOAc) gave the title compound as a colorless oil (4.76 g, 20.6 mmol, 86%); R_f 0.41 (6:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 3400br w, 2931m; $\delta_{\rm H}$ (400 MHz CDCl₃) 5.83 (1H, ddd, J =17.0, 10.3, 5.5 Hz, $CH_2=CH$), 5.29 (1H, dt, J = 17.0, 1.5 Hz, CHH'=CH), 5.13 (1H, dt, J = 10.3, 1.5 Hz, CHH'=CH), 5.09 (2H, br s, $CH_2=C$), 4.67 (1H, d J = 5.5 Hz, CHOTBDMS), 4.21 (1H, dd, J = 13.3, 5.5 Hz, CHH'OH), 4.08 (1H, dd, J = 13.3, 5.5 Hz, CHH'OH), 2.11 (1H, t, J = 5.5 Hz, OH), 0.90 (9H, s, SiCMe₃), 0.07 (3H, s, SiMe), 0.07 (3H, s, SiMe); δ_{C} (100 MHz CDCl₃) 149.1 (CH₂=C), 139.7 (CH₂=CH), 114.7 (CH₂=CH), 111.9 (CH2=C), 76.6 (CHOTBDMS), 63.8 (CH2OH), 25.7 (SiCMe₃), 18.3 (SiCMe₃), -4.8 (SiMe), -5.1 (SiMe); m/z LRMS (ESI⁺) 227 (M+Na⁺, 100); HRMS (ESI⁺): found 251.1441, $C_{12}H_{24}O_2SiNa^+$ (M+Na⁺), requires 251.1438.

4.1.24. 3-((tert-Butyldimethylsilyl)oxy)-2methylenepent-4-en-1-yl methanesulfonate

To a solution of alcohol 3-((tert-butyldimethylsilyl)oxy)-2methylenepent-4-en-1-ol (4.76 g, 20.8 mmol) in CH₂Cl₂ (80 mL) at 0 °C was added Et₃N (4.3 mL. $\overline{3.1}$ g, 31.2 mmol) followed by MsCl (2.08 mL, 13.08 g, 27 mmol) and the reaction mixture was stirred for 10 min and then quenched with sat. aq. NH₄Cl (80 mL). The organic layer was separated, and the aqueous layer extracted with CH_2Cl_2 (2 × 80 mL). The combined organic layers were washed with brine (80 mL), dried (MgSO₄) to yield the title compound as a yellow oil; $R_f 0.41$ (6:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2931m, 1359s, 1176s; δ_{H} (400 MHz CDCl₃) 5.76 (1H, ddd, J = 17.1, 10.3, 5.9 Hz, CH₂=CH), 5.36 (1H, s, CHH'=C), 5.30 (1H, dt, J = 17.1, 1.5 Hz, CHH'=CH), 5.28 (1H, s, CHH'=C), 5.15 (1H, dt, J = 10.3, 1.5 Hz, CHH'=CH), 4.68-4.73 (3H, m, CHOTBDMS, CH₂OMs), 3.00 (3H, s, SO₂Me), 0.89 (9H, s, SiCMe₃), 0.06 (6H, s, SiMe₂); δ_C (100 MHz CDCl₃) 143.4 (CH₂=C), 138.9 (CH₂=CH), 115.6 (CH₂=C), 115.2 (CH₂=CH), 74.8 (CHOTBDMS), 69.0 (CH₂OMs), 37.8 (SO₂Me), 25.7 (SiCMe₃), 18.3 (SiCMe₃), -4.8 (SiMe), -5.0 (SiMe); m/z LRMS (ESI⁺) 329 (M+Na⁺, 100); HRMS (ESI⁺): found 329.1211, $C_{13}H_{26}O_4SSiNa^+$ (M+Na⁺), requires 329.1213.

4.1.25. Dimethyl 2-(3-((tertbutyldimethylsilyl)oxy)-2-methylenepent-4-en-1yl)malonate **28**

To a stirred suspension of NaH (60% dispersion in mineral oil, 2.5 g, 62.4 mmol) in DMF (80 mL) and THF (40 mL) at 0 °C was added dimethyl malonate dropwise (7.4 mL, 8.2 g, 62.4 mmol). The reaction mixture was warmed to RT and the crude mesylate 3-((tert-butyldimethylsilyl)oxy)-2-methylenepent-4-en-1-yl methanesulfonate prepared above was added as a solution in THF (40 mL) followed by the addition of KI (1.04 g, 6.24 mmol). The reaction mixture was warmed to 80 °C and stirred 16 h, then allowed to cool to RT, quenched with sat. aq. NH₄Cl (80 mL) and petrol (80 mL) was added. The aqueous layer was extracted with petrol (2×80 mL), the combined organic layers were dried (MgSO₄), filtered and the solvent removed in vacuo. Purification by flash column chromatography gave the title compound **28** as a colorless oil (5.88 g, 17.2 mmol, 83%); $R_f 0.43$ (10:1 petrol:EtOAc); v_{max} /cm⁻¹ (thin film) 2955w, 1740s, 1230m; $\delta_{\rm H}$ (400 MHz CDCl₃) 5.76 (1H, ddd, J = 17.0, 10.3, 5.5 Hz, CH₂=CH), 5.29 (1H, dt, J = 17.0, 1.5 Hz, CHH'=CH), 5.13 (1H, dt, J = 10.3, 1.5 Hz, CHH'=CH), 5.12 (1H, br s, CHH'=C) 4.84 (1H, br s, CHH'=C), 4.57 (1H, d, J = 5.5 Hz, CHOTBDMS), 3.74 (1H, t, J = 7.8 Hz, $CH(CO_2Me)_2$), 3.73 (3H, s, OMe), 3.73 (3H, s, OMe), 2.69 (1H, dd, J = 15.5, 7.8 Hz), $CHH'CH(CO_2Me)_2$), 2.61 (1H, dd, J = 15.5, 7.8 Hz, CHH'CH(CO₂Me)₂), 0.91 (9H, s, SiCMe₃), 0.06 (6H, s, SiMe₂); $\delta_{\rm C}$ (100 MHz CDCl₃) 169.6 (CO), 146.8 (CH₂=C), 139.7 $(CH_2=CH),$ 114.9 $(CH_2=CH),$ 111.6 $(CH_2=C),$ 76.7 (CHOTBDMS), 52.5 (OMe), 52.5 (OMe), 50.6 (CH(CO₂Me)₂), 30.1 (CH₂CH(CO₂Me)₂) 25.8 (SiCMe₃), 18.3 (SiCMe₃), -4.8 (SiMe), -5.0 (SiMe); m/z LRMS (ESI^+) 365 $(M+Na^+, 100)$; HRMS (ESI⁺): found 365.1754, $C_{17}H_{30}O_5SiNa^+$ (M+Na⁺), requires 365.1755.

4.1.26. Methyl (3aR*,6R*,6aS*)-6-((tertbutyldimethylsilyl)oxy)-5-methylene-3oxotetrahydro-1H-cyclopenta[c]furan-3a(3H)carboxylate **30cc** and methyl (3aS*,6R*,6aR*)-6-((tert-butyldimethylsilyl)oxy)-5-methylene-3oxotetrahydro-1H- cyclopenta[c]furan-3a(3H)carboxylate **30cv**

30cc

30cv

To a solution of malonate 28 (500 mg, 1.46 mmol) and CuI (25 mg, 0.125 mmol) in CH_2Cl_2 (15 mL) cooled to -78 °C was added ethylmagnesium bromide (0.70 mL, 3 M in Et₂O, 2.1 mmol) and the mixture then stirred for 15 min. Iodine was added (1.8 g, 5.8 mmol) and the reaction warmed to RT and stirred for 16 h. The reaction was quenched with sat. aq. Na₂S₂O₃ (25 mL), then diluted with H₂O (100 mL) and CH₂Cl₂ (200 mL). The aqueous layer was separated and extracted with CH_2Cl_2 (2 × 150 mL). The combined organic layers were washed with brine (100 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The crude solid was then heated to 140 °C for 20 min before being cooled to RT and purified by flash column chromatography (7:1 petrol:EtOAc) to give 30cv as a colorless oil (26.5 mg, 0.08 mmol, 6%) followed by 30cc as a colorless oil (412 mg, 1.26 mmol, 87%); (Major **30cc**) R_f 0.52 (7:1 petrol:EtOAc); v_{max}/cm⁻¹ (thin film) 2963m, 1775s, 1734s, 1249s; $\delta_{\rm H}$ (400 MHz C₆D₆) 5.01 (1H, br m, CHH'=C), 4.80 (1H, br m, CHH'=C), 4.32 (1H, dd, J = 9.3, 3.4 Hz, CHH'O), 4.25 (1H, dt, J = 7.2, 1.8 Hz, CHOTBDMS), 4.04 (1H, dd, J = 9.3, 8.2 Hz, CHH'O), 3.33 (3H,

s, OMe), 3.23 (1H, dt, J = 16.2, 2.3 Hz, CHH'C=CH₂), 3.04 (1H, _spiro[cyclopenta[c]furan-5,2'-oxirane]-6a(6H)carboxylate 31b

dt, J = 16.2, 2.3 Hz, CHH'C=CH₂), 2.86 (1H, td, J = 7.2, 3.4 Hz, CHCHOTBDMS), 0.94 (9H, s SiCMe3), 0.00 (3H, s, SiMe), -0.06 (3H, s, SiMe); δ_C (100 MHz CDCl₃) 175.7 (C=O), 170.2 (C=O), 147.8 (CH₂=C), 109.2 (CH₂=C), 74.4 (CHOTBDMS), 66.0 (CH₂OR), 57.4 (CCO₂Me), 53.4 (OMe), 48.3 (CHCH₂OR), 35.8 (CH₂C=CH₂), 25.8 (CMe₃), 18.1 (SiCMe₃), -4.8 (SiMe), -5.1 (SiMe); m/z LRMS (ESI⁺) 344 (M+NH₄⁺, 100); HRMS (ESI⁺):found 349.1434, C₁₆H₂₆O₅SiNa⁺ (M+Na⁺), requires 349.1442.

(Minor **30cv**) $R_f 0.55$ (7:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2956m, 1777s, 1733s, 1249s; δ_H (400 MHz CDCl₃) 5.05 (1H, q, J = 1.5 Hz, CHH'=C), 5.02 (1H, q, J = 1.5 Hz, CHH'=C), 4.53 (1H, dd, J = 9.5, 7.7 Hz, CHH'O), 4.18 (1H, dd, J = 3.8, 1.5 Hz, CHOTBDMS), 4.06 (1H, dd, J = 9.5, 3.8 Hz, CHH'O), 3.76 (3H, s, OMe), 3.38 (1H, dt, J = 16.8, 1.5 Hz, CHH'C=CH₂), 3.02 (1H, td, J = 7.7, 3.6 Hz, CHCHOTBDMS), 2.71 (1H, dt, J = 16.8, 1.5 Hz, CHH'C=CH₂), 0.85 (9H, s, SiCMe₃), 0.06 (3H, s, SiMe), 0.05 (3H, s, SiMe); δ_C (100 MHz CDCl₃) 175.7 (CO), 169.4 (CO), 148.5 (CH₂=C), 110.1 (CH₂=C), 79.0 (CHOTBDMS), 69.5 (CH₂O), 57.4 (CCO₂Me), 53.76 (CHCH₂O), 53.3 (OMe), 35.9 (CH2C=CH2), 25.6 (SiCMe3), 17.9 (SiCMe3), -4.5 (SiMe), -4.7 (SiMe);

4.1.27. Methyl (3aS*, 4R*, 5R*, 6aR*)-4-((tertbutyldimethylsilyl)oxy)-1-oxodihydro-1H,3Hspiro[cyclopenta[c]furan-5,2'-oxirane]-6a(6H)carboxylate 31a

31a To a stirred solution of alkene **30cc** (50 mg, 0.15 mmol) in CH₂Cl₂ (1.5 mL) was added NaHCO₃ (38 mg, 0.45 mmol) and mCPBA (57 mg, 70% wt/wt, 0.23 mmol). The reaction was stirred for 48 h before being quenched with sat. aq. Na₂S₂O₃ (1 mL). The mixture was diluted with sat. aq. NaHCO₃ (10 mL) and CH₂Cl₂ (10 mL) and then the aqueous layer was separated and extracted with CH_2Cl_2 (2 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. Purification by flash column chromatography (4:1 petrol:EtOAc) gave recovered starting material (7 mg, 21 µmol, 14%), epoxide **31b** (see below) (9 mg, 26 µmol, 17%) and the title compound **31a** (28 mg, 81 µmol, 54%) as a white solid; m.p. 59–62 °C; R_f 0.35 (6:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2955w, 1777s, 1744s, 1253m; $\delta_{\rm H}$ (400 MHz CDCl₃) 4.55 (1H, dd, J = 9.2, 2.5Hz, CHH'O), 4.40 (1H, dd, J = 9.2, 7.8 Hz, CHH'O), 3.94 (1H, d, J = 5.5 Hz, CHOTBDMS), 3.80 (3H, s, OMe), 3.14 (1H, ddd, J = 8.0, 5.6, 2.5 Hz, CHCH₂O), 2.86 (1H, d, J = 4.9 Hz, CCHH'OC), 2.77 (1H, d, J = 4.9 Hz, CCHH'OC), 2.57 (1H, d, J = 14.3 Hz, CHH'CCO₂Me), 2.47 (1H, d, J = 14.3 Hz, CHH'CCO2Me), 0.88 (9H, s, SiCMe3), 0.10 (3H, s, SiMe), 0.04 (3H, s, SiMe); δ_C (100 MHz CDCl₃) 175.2 (CO), 170.2 (CO), 74.5 (CHOTBDMS), 66.1 (CH₂O), 64.8 (CH₂OC), 56.7 (CCO₂Me), 53.5 (OMe), 50.5 (CH₂OC), 48.3 (CHCH₂O), 33.7 (CH₂CCO₂Me), 25.7 (SiCMe₃), 18.1 (SiCMe₃), -4.5 (SiMe), -5.3 (SiMe); m/z LRMS (ESI⁺) 365 (M+Na⁺, 100); HRMS (ESI⁺): found 365.1386, C₁₆H₂₆O₆SiNa⁺ (M+Na⁺), requires 365.1391. Single Crystal Data: $C_{16}H_{26}O_6Si$, monoclinic, $P2_{1}/c$. a=20.7306(4), b=7.96400(10), c=11.4367(2) Å, $\beta=99.7675(6)^{\circ}$, V=1860.81(5) Å³, Data/restraints/parameters 4222/26/221, R_{int}=0.017, Final R₁=0. 0431, wR₂=0.1157 (I>2s(I)).

4.1.28. Methyl (3aS*, 4R*, 5S*, 6aR*)-4-((tertbutyldimethylsilyl)oxy)-1-oxodihydro-1H,3H-

MeO₂C TBDMSC

To a solution of alkene 30cc (40 mg, 0.125 mmol) in acetone (0.5 mL) was added a solution of DMDO (3.0 mL, 0.08 M, 0.24 mmol) and the reaction was left to stand for 5 h. The reaction was then concentrated in vacuo, followed by azeotropic drying with isopropanol in vacuo. Purification by flash column chromatography (6:1 petrol:EtOAc) gave the title compound 31b as a colorless oil (32 mg, 94 μ mol, 75%) and epoxide **31a** (6 mg, 18 µmol, 14%); $R_f 0.42$ (6:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2955w, 1777s, 1744s, 1253m; δ_H (400 MHz CDCl₃) 4.55 (1H, dd, J = 9.3, 2.3 Hz, CHH'O), 4.41 (1H, dd, J = 9.3, 8.0 Hz, CHH'O), 4.13 (1H, d, J = 8.0 Hz, CHOTBDMS), 3.81 (3H, s, OMe), 3.26 (1H, td, J = 8.0, 2.3 Hz, CHCH₂O), 2.97 (1H, d, J = 5.0 Hz, CCHH'OC), 2.73 (1H, d, J = 5.0 Hz, CCHH'OC), 2.63 $(1H, d, J = 14.4 \text{ Hz}, CHH'CCO_2Me), 2.38 (1H, d, J = 14.4 \text{ Hz},$ CHH'CCO₂Me), 0.87 (9H, s, SiCMe₃), 0.05 (6H, s, SiMe₂); δ_{C} (100 MHz CDCl₃) 175.2 (CO), 169.4 (CO), 73.2 (CHOTBDMS), 65.8 (CH₂O), 64.7 (CH₂OC), 56.5 (CCO₂Me), 53.6 (OMe), 49.2 (CH₂OC), 46.9 (CHCH₂O), 34.2 (CH₂CCO₂Me), 25.6 (SiCMe₃), 18.0 (SiCMe₃), -4.6 (SiMe), -5.1 (SiMe);

4.1.29. Butyl 3-(diethylamino)propanoate 32

To vigorously stirred water (500 mL) was added butyl acrylate (82.0 mL, 570 mmol) and diethylamine (65.0 mL, 630 mmol). The reaction was stirred for 1 h and then extracted with CH₂Cl₂ $(3 \times 500 \text{ mL})$. The combined organic layers were dried (Na₂SO₄), filtered and then concentrated in vacuo to give the title compound 32as a yellow oil (102 g, 505 mmol, 89%); Rf 0.45 (9:1 CH₂Cl₂:MeOH); v_{max} /cm⁻¹ (thin film) 2964m, 1735s, 1197m; δ_{H} (400 MHz CDCl₃) 4.08 (2H, t, J = 6.7 Hz, CH₂Pr), 2.79 (2H, t, J = 7.3 Hz, Et₂NCH₂), 2.51 (4H, q, J = 7.3 Hz, MeCH₂), 2.44 (2H, t, J = 7.3 Hz, CH_2CO_2Bu), 1.60 (2H, quin, J = 6.7 Hz, CH_2Et), 1.31 (2H, sept, J = 6.7 Hz, CH_2CH_2Me), 1.02 (6H, t, J = 7.3 Hz, NCH₂Me), 0.92 (3H, t, J = 6.7 Hz, Me); $\delta_{\rm C}$ (100 MHz CDCl₃) 173.0 (CO), 64.3 (CH₂Pr), 48.1 (Et₂NCH₂), 46.8 (NCH₂Me), 32.3 (CH₂CO₂Bu), 30.7 (CH₂Et), 19.2 (CH₂CH₂Me), 13.7 (CH₂CH₂Me), 11.9 (NCH₂Me); m/z LRMS(ESI⁺) 202 (M+H+, 100); HRMS (ESI⁺): found 202.1799, $C_{11}H_{24}O_2N^+$ (M+H⁺), requires 202.1802.

4.1.30. Butyl 2-((diethylamino)methyl)-3hydroxypent-4-enoate 33

To solution of diisopropylamine (21.9 mL, 156 mmol) in THF (200 mL) at -78 °C was added BuLi (61.4mL, 2.5 M in hexane, 154mmol) and the reaction stirred for 15min. Butyl 3-(dimethylamino)propionate 32 (26.5 g, 132 mmol) was then added dropwise and the reaction stirred for 30 min at -78 °C then warmed to RT for 30 min over which time a white precipitate formed. The reaction was then cooled back to -78 °C and freshly distilled acrolein (7.37 g, 132 mmol) was added dropwise as a solution in THF (60 mL) and the reaction stirred for 1 h. The reaction was quenched with NH₄Cl (150 mL) and diluted with

enoate 35

EtOAc (300 mL). The aqueous layer was separated was separated and extracted with EtOAc (3 \times 200 mL), and the combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo to give the crude title compound 33 as a yellow oil (31.8 g, 124 mmol, 94%, d.r. 2:1); $R_{\rm f}$ 0.42 (10:1 EtOAc:MeOH); v_{max} /cm⁻¹ (thin film) 3300br w, 2964m, 1730s, 1180s; data for major diastereomer: δ_H (400 MHz CDCl₃) 5.78 (1H, ddd, J = 17.0 Hz, 10.3, 6.8 Hz, CH₂=CH), 5.26 (1H, ddd, J = 17.0, 1.6, 1.2 Hz, CHH'=CH), 5.09 (1H, ddd, J = 10.3, 1.7, 0.9 Hz, CHH'=CH), 4.35-4.41 (1H, m, CHOH), 3.96-4.08 (2H, m, CH₂Pr), 2.98-3.05 (1H, m, CHH'NEt₂), 2.60-2.80 (4H, m, CHCHH'NCH₂Me), 2.35–2.45 (2H, m, NCH₂Me), 1.52–1.63 $(2H, m, CH_2Et), 1.30-1.41 (2H, m, CH_2CH_2Me), 1.06 (6H, t, J =$ 7.1 Hz, NCH₂Me), 0.91 (3H, t, J = 7.4 Hz, CH₂CH₂Me); $\delta_{\rm C}$ (100 MHz CDCl₃) 171.9 (CO), 138.3 (CH₂=CH), 116.2 (CH₂=CH), 76.6 (CHOH), 64.5 (CH₂Pr), 55.9 (CHCO), 48.6 (CHCH₂N), 46.7 (NCH₂), 30.5 (CH₂Et), 19.1 (CH₂CH₂Me), 13.7 (CH₂CH₂Me), 11.3 (NCH₂Me);

data for the minor diastereomer: $\delta_{\rm H}$ (400 MHz CDCl₃) 5.87 (1H, ddd, J = 17.0, 10.5, 4.4 Hz, CH₂=CH), 5.40 (1H, dd, J = 17.0, 1.8 Hz, CHH'=CH), 5.23 (1H, dt, J = 10.5, 1.9 Hz, CHH'=CH), 4.60–4.65 (1H, m, CHOH), 3.96–4.08 (2H, m, CH₂Pr), 3.11 (1H, dt, J = 11.3, 4.2 Hz, CHCH₂NEt₂), 2.93 (1H, dd, J = 13.0, 11.3 Hz, CHH'NEt₂), 2.60–2.80 (3H, m, CHCHH'NCH₂Me), 2.35–2.45 (2H, m, NCH₂Me), 1.52–1.63 (2H, m, CH₂Et), 1.30–1.41 (2H, m, CH₂CH₂Me), 1.01 (6H, t, J = 7.1 Hz, NCH₂Me), 0.91 (3H, t, J = 7.4 Hz, CH₂CH₂Me); $\delta_{\rm C}$ (100 MHz CDCl₃) 172.1 (CO), 137.8 (CH₂=CH), 116.2 (CH₂=CH), 73.5 (CHOH), 64.5 (CH₂Pr), 51.7 (CHCO), 47.0 (NCH₂), 45.8 (CHCH₂N), 30.5 (CH₂Et), 19.1 (CH₂CH₂Me), 13.7 (CH₂CH₂Me), 11.3 (NCH₂Me); m/z LRMS (ESI⁺) 258 (M+H⁺, 100); HRMS (ESI⁺): found 258.2058, C₁₄H₂₈O₃N⁺ (M+H⁺), requires 258.2064.

4.1.31. Butyl 3-hydroxy-2-methylenepent-4-enoate 34

To a stirred suspension of amine 33 (27.7 g, 108 mmol) and NaHCO₃ (24.1 g, 287 mmol) in CH₂Cl₂ (500 mL) cooled to 0 °C was added a solution of mCPBA (43.5 g, 50% wt/wt, 126 mmol) in CH₂Cl₂ (250 mL). The reaction was then warmed to RT and stirred vigorously for 4 h. The mixture was concentrated in vacuo to approximately 40 mL and diluted with pentane (300 mL), H₂O (150 mL) and sat. aq. NaHCO3 (150 mL). The aqueous layer was separated and extracted with pentane (2 \times 300 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash column chromatography (6:1 petrol:Et₂O) gave the title compound 34 as a colorless oil (12.5 g, 67.8 mmol, 63%); R_f 0.56 (6:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 3423br w, 2948w, 1712s; δ_H (400 MHz CDCl₃) 6.25 (1H, s, C=CHH'), 5.96 (1H, ddd, J = 17.3, 10.5, 5.6 Hz, CH₂=CH), 5.83 (1H, t, J = 1.0 Hz, C=CHH'), 5.33 (1H, dt, *J* = 17.3, 1.0 Hz, CHH'=CH), 5.20 (1H, dt, *J* = 10.5, 1.0 Hz, CHH'=CH), 4.94 (1H, t, J = 5.6 Hz, CHOH), 4.18 (2H, t, J = 6.8 Hz, CH₂Pr), 2.95 (1H, d, J = 5.6 Hz, CHOH), 1.66 (2H, quin, J = 6.8 Hz, CH_2Et), 1.40 (2H, sept, J = 6.8 Hz, CH_2Me), 0.94 (3H, t, J = 6.8 Hz, Me); $\delta_{\rm C}$ (100 MHz CDCl₃) 166.4 (CO), 141.3 (C=CH₂), 138.2 (CH₂=CH), 125.6 (C=CH₂), 116.0 (CH2=CH), 72.3 (CHOH), 64.9 (CH2Pr), 30.6 (CH2Et), 19.2 (CH₂Me), 13.7 (Me); m/z LRMS (ESI⁺) 207 (M+Na⁺, 100); HRMS (ESI⁺): found 207.0990, $C_{10}H_{16}O_3Na^+$ (M+Na⁺), requires 207.0992. HPLC data: column: Chiralpak AD, flow rate: 0.8 mL/min, solvent: 1.5% IPA in hexane, retention time for (S) 19.7 min, (R) 21.3 min.

To a stirred solution of alcohol 34 (13.9 g, 75.5 mmol) and vinyl acetate (43 mL, 460 mmol) in hexane (400 mL) was added Candida Antarctica lipase B immobilised on immobeadTM recombinant from yeast (8.52 g, 7244 U/kg). The reaction was warmed to 31 °C and stirred for 3 d. The reaction mixture was then filtered and concentrated in vacuo. Purification by flash column chromatography (12:1 \rightarrow 6:1 petrol:Et₂O) gave the acetate 35 as a colorless oil (8.03 g, 35.4 mmol, 47%, >99% e.e) followed by alcohol (-)-34 (7.02 g, 38.1 mmol, 50%); $R_f 0.42$ (20:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2947w, 1744s, 1721s; $\delta_{\rm H}$ (400 MHz CDCl₃) 6.34 (1H, s, C=CHH'), 6.10 (1H, br d, J = 6.4 Hz, CHOAc), 5.89 (1H, ddd, J = 17.0, 10.4, 6.4 Hz, CH₂=CH), 5.83 (1H, s, C=CHH'), 5.33 (1H, dt, J = 17.0, 1.0 Hz, CHH'=CH), 5.24 (1H, dt, J = 10.4, 1.0 Hz, CHH'=CH), 4.17 (2H, t, J = 6.7 Hz, CH₂Pr), 2.09 (3H, s, C(O)Me), 1.59 (2H, quin, J = 6.7 Hz, CH₂Et), 1.39 (2H, sept, J = 6.7 Hz, CH₂Me), 0.93 (3H, t, J = 6.7 Hz, CH₂Me); $\delta_{\rm C}$ (100 MHz CDCl₃) 169.5 (CO), 165.1 (CO), 139.0 (C=CH₂), 134.3 (CH₂=CH), 126.3 (C=CH₂), 117.9 (CH2=CH), 71.9 (CHOAc), 64.9 (CH2Pr), 30.6 (CH2Et), 21.1 (C(O)Me), 19.2 (CH₂Me), 13.7 (CH₂Me); m/z LRMS (ESI⁺) 249 (M+Na⁺, 100); HRMS (ESI⁺): found 249.1091, C₁₂H₁₈O₄Na⁺ (M+Na⁺), requires 249.1097; $[\alpha]_D^{25}$ -31.7 (c = 1.0 in CHCl₃). HPLC data of racemate formed from the acetylation of (\pm) -34 using Ac₂O and NEt₃: column: Chiralpak OD, flow rate: 0.8 mL/min, solvent: 1% IPA in hexane, retention time for (S) 13.8 min, (R) 15.9 min.

4.1.33. Butyl (R)-3-hydroxy-2-methylenepent-4enoate (+)-34

To a solution of acetate **35** (6.35 g, 23.1 mmol) in MeOH (100 mL) was added IR-120 AmberliteTM resin (50 g). The mixture was stirred for 4 d and then filtered and concentrated *in vacuo*. Purification by flash column chromatography (12:1 \rightarrow 6:1 petrol:Et₂O) gave recovered starting material **35** (440 mg, 1.9 mmol, 7%) and the title compound (+)-**34** as a colorless oil (4.61 g, 25.1 mmol, 89%, >99% e.e.); physical data as above for racemic alcohol **34**; [α]_D²⁵ +13.5 (c = 1.0 in CHCl₃).

4.1.34. Butyl (R)-2-methylene-3-((triisopropylsilyl)oxy)pent-4-enoate

TIPSO O OBu

To a solution of alcohol (+)-34 (4.61 g, 25.1 mmol) in CH₂Cl₂ (75 mL) at 0 °C was added sequentially 2,6-lutidine (4.40 mL, 37.6 mmol) and TIPSOTf (8.08 mL, 30.6 mmol). The reaction was stirred for 30 min and then quenched with sat. aq. NaHCO₃ (25 mL). The aqueous layer was then separated and extracted with CH_2Cl_2 (2 × 50 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. Purification by flash column chromatography (98:2 petrol:EtOAc) gave the title compound butyl (R)-2-methylene-3-((triisopropylsilyl)oxy)pent-4-enoate as a colorless oil (7.91 g, 23.2 mmol, 93%); R_f 0.65 (petrol); v_{max}/cm^{-1} (thin film) 2959m, 1716s, 1463m; $\delta_{\rm H}$ (400 MHz CDCl₃) 6.24 (1H, dd, J = 1.8, 1.0 Hz, CHH'=C), 6.02 (1H, t, J = 1.2 Hz, CHH'=C), 5.82 (1H, ddd, J = 17.1, 10.3, 5.9 Hz, CH₂=CH), 5.28 (1H, dt, J = 17.1, 1.0 Hz, CHH'=CH), 5.05 (1H, dt, J = 5.9, 1.0 Hz, CHOTIPS), 5.04 (1H, dt, J = 10.3, 1.4 Hz, CHH'=CH), 4.16 (2H, dt, J = 6.7, 1.9 Hz, OCH₂), 1.61–1.69 (2H, m, OCH₂CH₂), 1.35–1.45 (2H, m, CH₂Me), 1.03–1.15 (21H, m, TIPS), 0.94 (3H, t, J = 7.4 Hz, Me); $\delta_{\rm C}$ (100 MHz CDCl₃) 166.0 (CO), 143.5 (CH₂=C), 139.8 (CH₂=CH), 123.9 (CH₂=C), 114.3 (CH₂=CH), 71.6 (CHOTIPS), 64.5 (OCH₂), 30.6 (OCH₂CH₂), 19.2 (CH2Me), 18.0 (CMe₂), 12.2 (SiCHMe₂). m/z LRMS (ESI⁺) 363 (M+Na⁺, 100); HRMS (ESI⁺): found 363.2322, C₁₉H₃₆O₃SiNa⁺ (M+Na⁺), requires 363.2326; [α]_D²⁵ -7.8 (c = 1.0 in CHCl₃).

To solution of (R)-2-methylene-3а ((triisopropylsilyl)oxy)pent-4-enoate (9.42 g, 25.6 mmol) in THF (140 mL) at -78 °C was added DIBAL (71.6 mL, 1 M in hexane, 71.6 mmol) dropwise and the reaction was then warmed to between - 35 °C and -20 °C for 2 h. The reaction was quenched by the slow addition of MeOH (5 mL) followed by sat. aq. sat. aq. Rochelle's salt (60 mL), sat. aq. NH₄Cl (10 mL) and EtOAc (100 mL) and stirred vigorously until two clear phases formed on standing. The aqueous layer was then separated and extracted with EtOAc (2 \times 150 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash column chromatography (6:1 petrol:EtOAc) gave the title compound (R)-2-methylene-3-((triisopropylsilyl)oxy)pent-4en-1-ol as a colour oil (6.23 g, 23.1 mmol, 90%); Rf 0.45 (6:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 3430br m, 2867s, 1464m; δ_{H} (400 MHz CDCl_3) 5.86 (1H, ddd, J = 17.2, 10.3, 5.5 Hz, CH₂=CH), 5.30 (1H, dt, J = 17.2, 1.5 Hz, CHH'=CH), 5.13 (1H, dt, J = 10.3, 1.5 Hz, CHH'=CH), 5.09–5.13 (2H, br s, CH₂=C), 4.84 (1H, d J = 5.9 Hz, CHOTIPS), 4.25 (1H, dd, J = 13.6, 4.0 Hz, CHH'OH), 4.12 (1H, dd, J = 13.6, 6.4 Hz, CHH'OH), 2.06 (1H, dd, J = 6.4, 4.0 Hz, OH), 1.03–1.15 (21H, m, TIPS); δ_{C} (100 MHz CDCl₃) 149.3 (CH₂=C), 140.2 (CH₂=CH), 114.5 (CH₂=CH), 111.6 (CH₂=C), 77.0 (CHOTIPS), 63.3 (CH₂OH), 18.0 (SiCHMe₂), 12.2 (SiCHMe₂); m/z LRMS (ESI⁺) 293 (M+Na⁺, 100); HRMS (ESI⁺): found 293.1909, C₁₅H₃₀O₂SiNa⁺ (M+Na⁺), requires 293.1907; $[\alpha]_D^{25}$ +11.3 (*c* = 1.0 in CHCl3).

4.1.36. (R)-2-Methylene-3-((triisopropylsilyl)oxy)pent-4-en-1-yl methanesulfonate **36**

То solution (R)-2-methylene-3а of ((triisopropylsilyl)oxy)pent-4-en-1-ol alcohol 26 (5.36 g, 19.8 mmol) in CH₂Cl₂ (80 mL) at 0 °C was added Et₃N (4.3 mL. 3.1 g, 31.2 mmol) followed by MsCl (2.08 mL, 13.08 g, 27 mmol) and the reaction mixture was stirred for 10 min and then quenched with sat. aq. NH₄Cl (80 mL). The organic layer was separated and the aqueous layer extracted with CH_2Cl_2 (2 × 80 mL). The combined organic layers were washed with brine (80 mL), dried $(MgSO_4)$ to give the title compound 27 as a crude yellow oil; R_f 0.45 (6:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2931m, 1359s, 1176s; $\delta_{\rm H}$ (400 MHz CDCl₃) 5.77 (1H, ddd, J = 17.1, 10.3, 5.9Hz, CH₂=CH), 5.40 (1H, s, CHH'=C), 5.32 (1H, dt, J = 17.1, 1.4 Hz, CHH'=CH), 5.28 (1H, s, CHH'=C), 5.16 (1H, dt, J = 10.3, 1.4 Hz, CHH'=CH), 4.81 (1H, d, J = 5.9 Hz, CHOTIPS), 4.73 (2H, s, CH₂OMs), 3.00 (3H, s, SO₂Me), 1.02-1.06 (21H, m, TIPS); δ_C (100 MHz CDCl₃) 149.6 (CH₂=C), 139.4 (CH₂=CH),

-115.4 (CH₂=C), 114.9 (CH₂=CH), 75.2 (CHOTIPS), 68.7 (CH₂OMs), 37.7 (SO₂Me), 18.0 (SiCHMe₂), 12.2 (SiCHMe₂).

4.1.37. Dimethyl (R)-2-(2-methylene-3-((triisopropylsilyl)oxy)pent-4-en-1-yl)malonate **37**

To a stirred suspension of NaH (60% dispersion in mineral oil, 2.4 g, 60 mmol) in DMF (80 mL) and THF (40 mL) at 0 °C was added dimethyl malonate dropwise (6.85 mL, 7.9 g, 60 mmol). The reaction mixture was warmed to RT and the crude mesylate 36 prepared above was added as a solution in THF (40 mL) followed by the addition of KI (1 g, 6.6 mmol). The reaction mixture was warmed to 80 °C and stirred 16 h, then allowed to cool to RT, quenched with sat. aq. NH₄Cl (80 mL) and petrol (80 mL) was added. The aqueous layer was extracted with petrol (2 \times 80mL), the combined organic layers were dried (MgSO₄), filtered and the solvent removed in vacuo. Purification by flash column chromatography (15:1 petrol:EtOAc) gave the title compound **37** as a colorless oil (6.40 g, 16.6 mmol, 84%); R_f 0.49 (10:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2955w, 1740s, 1230m; $\delta_{\rm H}$ (400 MHz CDCl₃) 5.75 (1H, ddd, J = 17.1, 10.3, 5.7 Hz, CH₂=CH), 5.28 (1H, dt, J = 17.1, 1.5 Hz, CHH'=CH), 5.14 (1H, t, J = 0.9 Hz, CHH'=C), 5.11 (1H, dt, J = 10.3, 1.5 Hz, CHH'=CH), 4.84 (1H, t, J = 1.5 Hz, CHH'=C), 4.65 (1H, d, J = 5.8 Hz, CHOTIPS), 3.68-3.73 (1H, m, CH(CO₂Me)₂), 3.71 (3H, s, OMe), 3.71 (3H, s, OMe), 2.58–2.72 (2H, m, CH₂CH(CO₂Me)₂), 1.01–1.11 (21H, m, TIPS); δ_C (100 MHz CDCl₃) 169.6 (CO), 147.0 (CH₂=C), 140.2 (CH₂=CH), 114.7 (CH₂=CH), 111.2 (CH₂=C), 74.5 (CHOTIPS), 52.5 (OMe), 50.5 (CH(CO₂Me)₂), 29.8 (CH₂CH(CO₂Me)₂, 18.0 (SiCHMe₂), 12.3 (SiCHMe₂); *m*/*z* LRMS(ESI⁺) 407 (M+Na⁺, 100); HRMS (ESI⁺): found 407.2223, C₂₀H₃₆OSiNa⁺ (M+Na⁺), requires 407.2224; $[\alpha]_D^{25} + 11.6$ (c = 1.0 in CHCl₃).

4.1.38. Methyl (3aR,6R,6aS)-5-methylene-3-oxo-6-((triisopropylsilyl)oxy)tetrahydro-1Hcyclopenta[c]furan-3a(3H)-carboxylate **38cc** and methyl (3aS,6R,6aR)-5-methylene-3-oxo-6-((triisopropylsilyl)oxy)tetrahydro-1Hcyclopenta[c]furan-3a(3H)-carboxylate **38cv**

To a solution of malonate 37 (6.38 g, 16.6 mmol) and CuI (158 mg, 0.83 mmol) in CH₂Cl₂ (150 mL) at -78 °C was added ethylmagnesium bromide (8.30 mL, 3 M in Et₂O, 24.9 mmol). The reaction was stirred for 15 min, and then iodine (16.9 g, 66.4 mmol) was added. The reaction was warmed to RT and stirred for 16 h and then quenched by the addition of sat. aq. NH₄Cl (50 mL) and Na₂S₂O₃ (25 mL), and then diluted with H₂O (100 mL) and CH₂Cl₂ (200 mL). The aqueous layer was separated and extracted with CH_2Cl_2 (2 × 150 mL). The combined organic layers were washed with brine (100 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The crude mixture was then heated to 140 °C for 30 min before being cooled to RT and purified by flash column chromatography (6:1 petrol:Et₂O) to give **38cv** as a colorless oil (0.91 g, 2.5 mmol, 15%) followed by 38cc as a colorless oil (4.81 g, 13.1 mmol, 78%); (Major **38cc**) R_f 0.52 (7:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2945m, 1776s, 1743s, 1150s; $\delta_{\rm H}$ (400 MHz CDCl₃) 5.18 (1H, s, CHH'=C), 5.05 (1H, s, CHH'=C), 4.70 (1H, d, J = 7.7 Hz, CHOTIPS), 4.46 (1H, dd, J =

Tetrahedron

9.4, 4.5 Hz, CHH'O), 4.31 (1H, dd, J = 9.4, 8.8 Hz, CHH'O), TC 3.79 (3H, s, OMe), 3.24 (1H, ddd, J = 8.8, 7.7, 4.5 Hz, CHCH₂O), 3.08 (1H, dtd, J = 16.0, 2.4, 0.9 Hz, CHH'C=CH₂), 2.78 (1H, d, J = 16.0 Hz, CHH'C=CH₂), 1.03–1.12 (21H, m, TIPS); $\delta_{\rm C}$ (100 MHz CDCl₃) 175.7 (CO), 170.2 (CO), 147.0 (CH₂=C), 109.2 (CH₂=C), 74.2 (CHOTIPS), 65.9 (CH₂O), 56.9 (CCO₂Me), 53.4 (OMe), 47.7 (CHCH₂OR), 35.9 (CH₂C=CH₂), 18.0 (CHMe₂), 12.2 (SiCHMe₂); m/z LRMS (ESI⁺) 391 (M+Na⁺, 100); HRMS (ESI⁺): found 391.1930, C₁₉H₃₂O₅SiNa⁺ (M+Na⁺), requires 391.1911; $[\alpha]_{\rm D}^{25}$ -69.6 (c = 1.0 in CHCl₃).

(Minor **38cv**) $R_f 0.55$ (7:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2956m, 1777s, 1747s, 1061s; δ_H (400 MHz CDCl₃) 5.12 (1H, s, CHH'=C), 5.07 (1H, s, CHH'=C), 4.56 (1H, dd, J = 9.4, 8.8 Hz, CHH'O), 4.29 (1H, dd, J = 2.5, 0.8 Hz, CHOTIPS), 3.94 (1H, dd, J = 9.4, 5.0 Hz, CHH'O), 3.78 (3H, s, OMe), 3.51 (1H, ddt, J = 16.4, 2.5, 0.8 Hz, CHH'C=CH₂), 3.20 (1H, ddd, J = 8.8, 5.0, 2.5 Hz, CHCHOTIPS), 2.70 (1H, d, J = 16.4 Hz, CHH'C=CH₂), 1.00–1.10 (21H, m, TIPS); δ_C (100 MHz CDCl₃) 175.8 (CO), 169.5 (CO), 148.4 (CH₂=C), 111.2 (CH₂=C), 79.9 (CHOTIPS), 69.3 (CH₂OR), 58.4 (CCO₂Me), 54.2 (CHCH₂O), 53.3 (OMe), 36.8 (CH₂C=CH₂), 17.9 (CHMe₂), 12.2 (SiCHMe₂); $[\alpha]_D^{25}$ +11.3 (c = 1.0 in CHCl₃).

4.1.39. Methyl (3aR,6R,6aS)-6-hydroxy-5methylene-3-oxotetrahydro-1H-cyclopenta[c]furan-3a(3H)-carboxylate **29-cc**

To a stirred solution of 38cc (0.368 g, 1.00 mmol) in THF (5 mL) at 0 °C was added TBAF(1.30 mL, 1 M in THF, 1.30 mmol) and the reaction mixture was stirred for 5 min. sat. aq. NH₄Cl (2 mL) was added followed by EtOAc (10 mL) and the mixture was allowed to warm to RT. The organic phase was separated, and the aqueous phase extracted with ethyl acetate (3 \times 10 mL). The combined organic extracts were washed with brine, dried (MgSO₄), filtered, and concentrated in vacuo. Purification by flash column chromatography (3:1 petrol:EtOAc) gave the title compound 29-cc as a colorless oil (0.193 g, 0.91 mmol, 91%); R_f 0.10 (3:1 petrol:EtOAc); v_{max} /cm⁻¹ (thin film) 3478 (OH), 1766 (CO), 1737(CO); δ_H (500 MHz, CDCl₃) 5.19 (1H, q, *J* = 1.9 Hz, *H*H'C=C), 5.12 (1H, q, *J* = 2.0 Hz, HH'C=C), 4.63 - 4.66 (1H, 1H, CHOH), 4.55 (1H, dd, J = 9.5, 3.1 Hz, COOCHH'C), 4.41 (1H, dd, J = 9.5, 7.7 Hz, COOCHH'C), 3.80 (3H, s, OMe), 3.27 (1H, td, J = 7.6, 3.1 Hz, COOCHH'CCH), 3.13 (1H, dt, J = 16.7, 2.2 Hz, H₂C=CCHH'), 2.95 (1H, dd, J = 16.6, 1.6 Hz, H₂C=CCHH'); δ_C (126 MHz, CDCl₃) 175.6 (CCOOCH₂), 169.9 (CCOOMe), 148.7 (CH₂=C), 109.8 73.7 (*C*OH), 66.1 $(COOCH_2C),$ 58.0 $(CH_2=C).$ (C(COOMe)COOCH₂), 53.5 (OMe), 48.4 (COHCHCH₂), 36.2 $(CH_2=CCH_2); m/z \text{ HRMS (ESI^+) } 235.0578 \text{ found, } C_{10}H_{12}O_5Na^+$ $(M+Na^{+})$, requires 235.0577.

4.1.40. Methyl (3aR,6R,6aS)-5-methylene-3-oxo-6-(((R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoyl)oxy)tetrahydro-1Hcyclopenta[c]furan-3a(3H)-carboxylate **39**

To a stirred solution of the alcohol **39** (0.015 g, 0.07 mmol) in CH₂Cl₂ (1 mL) was added DCC (0.043 g, 0.21 mmol), DMAP (0.024 g, 0.21 mmol), (R)-(+)- α -methoxy- α -

trifluoromethylphenylacetic acid (0.048 g, 0.21 mmol), and the reaction was stirred for 16 h. The mixture was filtered, and the filtrate was concentrated in vacuo. Purification by flash column chromatography (4:1 petrol:EtOAc) gave the title compound 39 as a colorless oil (0.014 g, 0.03 mmol, 46%); 0.12 (4:1 petrol:EtOAc); v_{max} /cm⁻¹ (thin film) 1778s (CO) 1749(CO); δ_{H} (400 MHz, CDCl₃) δ 7.38 (5H, m, Ar*H*), 5.74 (1H, d, *J* = 7.2 Hz, CHOMPTA), 5.23 (1H, q, 1.9 Hz, HHC=C), 5.20 (1H, q, 1.9 Hz, H*H*C=C), 4.22 (1H, dd, *J* = 9.8, 8.0 Hz, COOC*H*H'C), 3.93 (1H, dd, J = 9.8, 3.5 Hz, COOCHH'C), 3.81 (3H, s, COOMe), 3.53 (3H, q, J = 1.3 Hz, ROOCCOMe), 3.51 (1H, dt, J = 7.7, 3.4 Hz, COOCH₂CH), 3.21 (1H, dt, J = 17.0, 2.3 Hz, H₂C=CCHH'), 2.89 (1H, ddq, $J = 17.0, 2.7, 1.5, Hz, H_2C=CCHH'$); δ_C (126 MHz, CDCl₃) 174.4 (CCOOCH₂), 169.1 (CCOOMe), 166.0 (F₃CCR₂COOR), 142.8 (CH₂=C), 131.6, 129.9, 128.6, 127.0, 123.1 (q, J = 288.8 Hz, CF_3), 113.2 ($CH_2=C$), 84.5 (q, J = 28.1Hz, F₃CC), 77.1 (COMPTA), 65.4 (COOCH₂C), 58.0 (C(COOMe)COOCH₂), 55.5 (ROOCCR₂OMe), 53.6 (COOMe), 46.9 (C(OMPTA)CHCH₂), 35.8 (CH₂=CCH₂); *m/z* HRMS (ESI⁺) 451.0973 found, $C_{20}H_{19}F_3O_7Na^+$ (M+Na⁺), requires 451.0975.

4.1.41. Methyl (3aR,6R,6aS)-5-methylene-3-oxo-6-(((S)-3,3,3-trifluoro-2-methoxy-2phenylpropanoyl)oxy)tetrahydro-1Hcyclopenta[c]furan-3a(3H)-carboxylate **40**

To a stirred solution of the alcohol 39 (0.015 g, 0.07 mmol) in CH₂Cl₂ (1 mL) was added DCC (0.043 g, 0.21 mmol), DMAP (0.024)0.21 mmol), (S)-(+)- α -methoxy- α g, trifluoromethylphenylacetic acid (0.048 g, 0.21 mmol), and the reaction was stirred for 16 h. The mixture was filtered, and the filtrate was concentrated in vacuo. Purification by flash column chromatography (4:1 petrol:EtOAc) to give the title compound 40 as a colorless oil (0.016 g, 0.04 mmol, 53%); 0.11 (4:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 1779(CO), 1749(CO); δ_{H} $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.46 (5\text{H}, \text{m}, \text{Ar}H), 5.76 (1\text{H}, \text{d}, J = 7.5 \text{ Hz},$ CHOMPTA), 5.16 (2H, q, J = 1.9 Hz, H₂C=C), 4.34 (1H, dd, J = 9.8, 8.0 Hz, COOCHH'C), 4.12 (1H, dd, J = 9.8, 3.4 Hz, COOCHH'C), 3.81 (3H, s, COOMe), 3.52 (1H dt, J = 7.7, 3.9 Hz, COOCH₂CH), 3.49 (3H, q, J = 1.3 Hz, ROOCCOMe), 3.17 $(1H, dt, J = 17.1, 2.2 Hz, H_2C=CCHH'), 2.82 (1H, m, m)$ H₂C=CCHH'); δ_C (126 MHz, CDCl₃) 174.4 (CCOOCH₂), 169.1 (CCOOMe), 166.0 (F₃CCR₂COOR), 142.8 (CH₂=C), 131.2, 130.0 128.7, 127.35 (C-Ar), 123.19 (q, J = 288.6 Hz, CF_3), 113.11 (*C*H₂=C), 84.8 (q, *J* = 28.1 Hz, F₃C*C*), 77.1 (*C*OMPTA), 65.7 $(COOCH_2C)$, 58.0 $(C(COOMe)COOCH_2),$ 55.4 (ROOCCR₂OMe), 53.7 (COOMe), 47.1 (C(OMPTA)CHCH₂), 35.9 (CH₂=CCH₂); m/z HRMS (ESI⁺) 451.0972 found, $C_{20}H_{19}F_{3}O_{7}Na^{+}$ (M+Na⁺), requires 451.0975.

4.1.42. (3aR,6R,6aS)-5-Methylene-3-oxo-6-((triisopropylsilyl)oxy)tetrahydro-1Hcyclopenta[c]furan-3a(3H)-carboxylic acid **41**

To a rapidly stirred solution of ester **38cc** (4.60 g, 12.5 mmol) in THF:H₂O (35 mL:35 mL) was added LiOH•H₂O (2.61 g, 62.0 mmol). The reaction was stirred for 16 h and then carefully acidified to pH 2 using 2 M aq. HCl (ca. 35 mL). The mixture was then extracted with EtOAc (4×50 mL). The combined

organic layers were dried (MgSO₄), filtered and then concentrated in vacuo to give the crude acid (4.43 g, 12.5 mmol, quant.). The acid was used as the crude mixture for all further reactions but an analytical sample can be obtained by purification by flash column chromatography (2:1:0.01 petrol:EtOAc:AcOH) to give the title compound 41 as a colorless oil; $R_f 0.38$ (2:1:0.01 petrol:EtOAc:AcOH); v_{max}/cm⁻¹ (thin film) 3089br w, 2943m, 1774s, 1645s; δ_H (400 MHz CDCl₃) 10.08 (1H, br s, CO₂H), 5.21 (1H, s, CHH'=C), 5.08 (1H, s, CHH'=C), 4.76 (1H, d, J = 7.4 Hz, CHOTIPS), 4.47 (1H, dd, J = 9.5, 4.8 Hz, CHH'O), 4.36 (1H, dd, J = 9.5, 8.8 Hz, CHH'O), 3.36 (1H, ddd, J = 8.8, 7.4, 4.8 Hz, CHCH₂O), 3.06 (1H, dt, J = 16.2, 2.0 Hz, CHH'CCO₂H), 2.81 (1H, d, J = 16.2 Hz, CHH'CCO₂H), 1.03–1.16 (21H, m, TIPS); $\delta_{\rm C}$ (100 MHz CDCl₃) 176.2 (CO), 174.2 (CO), 146.7 (CH₂=C), 109.6 (CH₂=C), 74.3 (CHOTIPS), 66.4 (CH₂O), 47.5 (CCO_2H) , 17.9 $(CHMe_2)$, 12.2 $(SiCHMe_2)$; m/z LRMS (ESI^+) 377 (M+Na⁺, 100); HRMS (ESI⁺): found 377.1755, $C_{18}H_{30}O_5SiNa^+$ (M+Na⁺), requires 377.1754; $[\alpha]_D^{25}$ -20.8 (c = 1.0 in CHCl₃).

4.1.43. (3aS,4R,6aS)-6a-Bromo-5-methylene-4-((triisopropylsilyl)oxy)hexahydro-1Hcyclopenta[c]furan-1-one **42**

To a solution of the crude acid 42 (4.43 g, 12.5 mmol) from the previous step in benzene (40 mL) at 0 °C was added oxalyl chloride (5.4 mL) followed by DMF (50 µL). The reaction was warmed to RT and stirred for 1 h by which point gas evolution had ceased. The mixture was then concentrated *in vacuo* before being redissolved in CBrCl₃ (62 mL). The solution was then added dropwise down the side of reflux condenser over a period of approximately 1 h into a suspension of 2-mercaptopyridine Noxide sodium salt (2.28 g, 15.2 mmol) in CBrCl₃ (62 mL) heated to 130 °C (external oil bath temperature). The reaction was stirred for a further 10 min and then cooled to RT and filtered, washing with CH₂Cl₂. The solution was then concentrated in vacuo. Purification by flash column chromatography (15:1 petrol:EtOAc) gave the title compound 42 as a white solid (3.74 g, 9.90 mmol, 79%); m.p. 38-40 °C; R_f 0.42 (15:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2944m, 1781s, 1464m; δ_{H} (400 MHz CDCl₃) 5.21 (1H, s, CHH'=C), 5.06 (1H, s, CHH'=C), 4.85 (1H, d, J = 7.7 Hz, CHOTIPS), 4.48 (1H, dd, J = 9.6, 3.3 Hz, CHH'O), 4.38 (1H, dd, J = 9.6, 8.0 Hz, CHH'O), 3.24 (1H, d, J = 16.6 Hz, CHH'CBr), 3.21 (1H, td, J = 8.0, 3.3 Hz, CHCH₂O), 2.94 (1H, dd, J = 16.6, 2.0 Hz, CHH'O), 1.02–1.18 (21H, m, TIPS); δ_C (100 MHz CDCl₃) 175.5 (CO), 146.7 (CH₂=C), 110.0 (CH₂=C), 74.2 (CHOTIPS), 65.1 (CH₂OR), 53.7 (CBr), 53.6 (CHCH₂O), 43.6 (CH₂CBr), 18.0 (SiCHMe₂), 12.3 $(SiCHMe_2); m/z LRMS (ESI⁺) 411 (M⁷⁹+Na⁺, 50) 413$ $(M^{81}+Na+, 50)$; HRMS (ESI⁺): found 411.0962, 413.0941, $C_{17}H_{29}O_3BrSiNa^+$ (M+Na⁺), requires 411.0962, 413.0941; $[\alpha]_D^{25}$ $36.8 (c = 1.0 \text{ in CHCl}_3).$

4.1.44. (1R,2S,3R)-1-(Dimethoxymethyl)-2-(hydroxymethyl)-4-methylene-3-((triisopropylsilyl)oxy)cyclopentan-1-ol 43

To a stirred solution of lactone 42 (3.70 g, 9.50 mmol) in THF (95 mL) at -78 °C was added DIBAL (37 mL, 1 M in hexane, 37

mmol) dropwise. The reaction was stirred for 16 h at -78 °C and then quenched by the addition of MeOH (95 mL). NaOMe (16.9 mL, 25% wt/wt in MeOH, 74 mmol) was added and the reaction was warmed to RT and stirred for 2 h. The reaction was quenched by the addition of sat. aq. NH₄Cl (50 mL) and sat. aq. sat. aq. Rochelle's salt (50 mL). The mixture was vigorously stirred for 1 h and then diluted with H₂O (100 mL) and EtOAc (100 mL). The aqueous layer was separated and extracted with EtOAc (2 \times 150 mL). The combined organic layers were dried (MgSO₄), filtered and then concentrated *in vacuo*. Purification by flash column chromatography (2:1 petrol:EtOAc) gave the title compound 43 as a colorless oil (2.98 g, 7.96 mmol, 84%); R_f 0.34 (2:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 3400br m, 2943w, 1079s; $\delta_{\rm H}$ (400 MHz CDCl₃) 5.06–5.08 (1H, m, CHH'=C), 4.88– 4.90 (1H, m, CHH'=C), 4.65 (1H, d, J = 5.7 Hz, CHOTIPS), 4.18 $(1H, s, CH(OMe)_2)$, 3.98 (1H, ddd, J = 11.5, 7.4, 3.0 Hz, CHH'OH), 3.83 (1H, ddd, J = 11.5, 9.1, 4.1 Hz CHH'OH), 3.74 (1H, s, OH), 3.56 (3H, s, OMe), 3.49 (3H, s, OMe), 3.10 (1H, dd, *J* = 9.1, 3.0 Hz, OH), 2.71 (1H, dt, *J* = 17.2, 2.2 Hz, CHH'COH), 2.43 (1H, ddt, J = 17.2, 2.0, 0.6 Hz, CHH'COH), 2.24 (1H, ddd, J = 7.4, 5.7, 4.1 Hz, CHCH₂OH), 1.02–1.06 (21H, m, TIPS); $\delta_{\rm C}$ (100 MHz CDCl₃) 150.2 (CH₂=C), 108.9 (CH(OMe)₂), 108.2 (CH2=C), 82.5 (COH), 78.1 (CHOTIPS), 59.4 (CH2OH), 58.4 (OMe), 57.5 (OMe), 50.0 (CHCH₂OH), 41.4 (CH₂COH), 18.1 × $(SiCHMe_2)$, 12.4 $(SiCHMe_2)$; m/z LRMS (ESI^+) 397 $(M+Na^+)$, 100); HRMS (ESI⁺): found 397.2378, C₁₉H₃₈O₅SiNa⁺ (M+Na⁺), requires 397.2381; $[\alpha]_D^{25}$ -19.3 (c = 1.0 in CHCl₃).

4.1.45. tert-Butyl(((1S,2R,5R)-2-((tertbutyldimethylsilyl)oxy)-2-(dimethoxymethyl)-4methylene-5-

((triisopropylsilyl)oxy)cyclopentyl)methoxy)dimethy lsilane 44

To a solution of diol 43 (2.89 g, 7.72 mmol) in CH₂Cl₂ (38 mL) at -78 °C was added 2,6-lutidine (4.04 mL, 35.0 mmol), and TBSOTf (5.30 mL, 23 mmol). The reaction was then warmed to 0 °C and stirred for 1 h before being quenched with sat. aq. NaHCO3 (50 mL) and diluted with petrol (70 mL). The aqueous layer was separated and extracted with 10:1 petrol:EtOAc (2×50 mL). The combined organic layers were dried (MgSO₄), filtered and then concentrated in vacuo. Purification by flash column chromatography (20:1 petrol:EtOAc) gave the title compound 44 as a colorless oil (4.65 g, 7.71 mmol, quant); R_f 0.67 (20:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2987m, 1463m; δ_{H} (400 MHz CDCl₃) 4.96–4.99 (1H, m, CHH'=C), 4.84–4.87 (1H, m, CHH'=C), 4.63 (1H, d, J = 6.7 Hz, CHOTIPS), 4.19 (1H, s, CH(OMe)₂), 3.95 (1H, dd, J = 10.0, 7.2 Hz, CHH'OTBDMS), 3.86 (1H, dd, J = 10.0, 6.2 Hz, CHH'OTBDMS), 3.53 (3H, s, OMe), 3.44 (3H, s, OMe), 2.52-2.54 (2H, m, CH2COTBDMS), 2.28 (1H, q, J = 6.7 Hz, CHCH₂OTBS), 1.04–1.10 (21H, m, TIPS), 0.89 (9H, s, SiCMe₃), 0.85 (9H, s, SiCMe₃), 0.10 (3H, s, SiMe), 0.04 (6H, s, SiMe), 0.03 (3H, s, SiMe); δ_{C} (100 MHz CDCl₃) 152.5 (CH₂=C), 110.1 (CH(OMe)₂), 107.7 (CH₂=C), 84.2 (COTBDMS), 75.6 (CHOTIPS), 60.0 (CH2OTBDMS), 58.9 (*OMe*), 56.9 (*OMe*), 52.2 (CHCH₂OTBDMS), 41.0(CH₂COTBDMS), 26.2 (SiCMe₃), 26.1 (SiCMe₃), 18.8 (SiCMe₃), 18.4 (SiCHMe₂), 18.3 (SiCHMe₂), 12.8 (SiCHMe₂), -2.5 (SiMe), -2.8 (SiMe), -5.2 (SiMe), -5.5 (SiMe); m/z LRMS (ESI⁺) 625 (M+Na⁺, 100); HRMS (ESI⁺): found 625.4108, C₃₁H₆₆O₅Si₃Na⁺ (M+Na⁺), requires 625.4110; $[\alpha]_D^{25}$ -19.6 (*c* = 1.0 in CHCl₃).

4.1.46. tert-Butyl(((3S,4R,5S,6R)-6-((tertourna butyldimethylsilyl)oxy)-6-(dimethoxymethyl)-4-((triisopropylsilyl)oxy)-1-oxaspiro[2.4]heptan-5yl)methoxy)dimethylsilane 45

TIPSO OMe OMe TIPSO OTBDMS

DMDO (80 mL, 0.08 M in acetone, 6.4 mmol) cooled to -20 $^\circ C$ was added to alkene 44 (3.68 g, 6.10 mmol) at RT. The reaction was stirred for 4 h at RT and then concentrated in vacuo to approximately 10 mL and then diluted with petrol (90 mL), dried (MgSO₄), filtered and then concentrated in vacuo. Purification flash column chromatography by (20:1)petrol:EtOAc) gave the title 45 compound as a colorless oil (3.34 g, 5.4 mmol, 88%); $R_f 0.32$ (20:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 2949m, 1471w; $\delta_{\rm H}$ (400 MHz $CDCl_3)$ 4.29 (1H, s, CH(OMe)₂), 4.25 (1H, d, J = 7.9 Hz, CHOTIPS), 4.00 (1H, dd, J = 10.1, 8.2 Hz, CHH'OTBDMS), 3.81 (1H, dd, J = 10.1, 5.8 Hz, CHH'OTBDMS), 3.59 (3H, s, OMe), 3.42 (3H, s, OMe), 3.06 (1H, d, J = 5.0 Hz, CHH'OC), 2.72 (1H, d, J = 5.0 Hz,CHH'OC), 2.42 (1H, ddd, J = 8.2, 7.9, 5.8 Hz, C*H*CH₂OTBDMS), 2.07 (1H, d, *J* = 14.3 Hz, C*H*H'COTBDMS), 1.97 (1H, d, J = 14.3 Hz, CHH'COTBS), 1.06 (21H, s, TIPS), 0.89 (9H, s, SiCMe₃), 0.86 (9H, s, SiCMe₃), 0.08 (3H, s, SiMe), 0.04 (3H, s, SiMe), 0.03 (6H, s, SiMe); $\delta_{\rm C}$ (100 MHz CDCl₃) 108.9 (CH(OMe)₂), 84.1 (COTBDMS), 75.5 (CHOTIPS), 67.1 (CH₂OC), 59.8 (CH₂OTBDMS), 59.6 (OMe), 56.2 (OMe), 51.2 (CH₂OC), 50.5 (CHCH₂OTBDMS), 38.4 (CH₂COTBDMS), 26.2 (SiCMe₃), 26.1 (SiCMe₃), 18.9 (SiCMe₃), 18.4 (SiCMe₃), 18.2 (SiCHMe₂), 18.1 (SiCHMe₂), 12.9 (SiCHMe₂), -2.8 (SiMe), -2.9 (SiMe), -5.2 (SiMe), -5.4 (SiMe); m/z LRMS (ESI^+) 641 $(M+Na^+)$, 100); HRMS (ESI⁺): found 641.4058, $C_{31}H_{66}O_6Si_3Na^+$ (M+Na⁺), requires 641.4059; $[\alpha]_D^{25}$ -16.3 (c = 1.0 in CHCl₃).

4.1.47. (1R,2R,3S,4R)-4-((tert-Butyldimethylsilyl)oxy)-3-(((tertbutyldimethylsilyl)oxy)methyl)-4-(dimethoxymethyl)-1-methyl-2-((triisopropylsilyl)oxy)cyclopentan-1-ol **46**

To a solution of epoxide 45 (800 mg, 1.29 mmol) in THF (8 mL) was added LiHEt₃ (3.87 mL, 1 M in THF, 3.87 mmol). The reaction was stirred for 16 h, and then quenched by the careful addition of sat. aq. NH₄Cl (10 mL), and then diluted with H₂O (20 mL) and petrol (20 mL). The aqueous layer was separated and extracted with petrol (2 \times 20 mL). The combined organic layers were dried (MgSO₄), filtered and then concentrated in vacuo. Purification by flash column chromatography (15:1 petrol:EtOAc) gave the title compound 46 as a colorless oil (764 mg, 1.23 mmol, 95%); R_f 0.33 (15:1 petrol:EtOAc); v_{max}/cm^{-1} (thin film) 3485br m, 2948m; $\delta_{\rm H}$ (400 MHz CDCl₃) 4.27 (1H, br s, OH), 4.16 (1H, s, CH(OMe)₂), 4.02 (1H, dd, J = 4.7, 1.0 Hz, CHOTIPS), 3.96 (1H, dd, J = 9.9, 6.6 Hz, CHH'OTBDMS), 3.77 (1H, dd, J = 9.9, 6.6 Hz, CHH'OTBDMS), 3.59 (3H, s, OMe), 3.51 (3H, s, OMe), 2.37 (1H, td, J = 6.6, 4.8 Hz, CHCH₂OTBDMS), 2.13 (1H, dd, J = 14.6, 1.0 Hz, CHH'COTBDMS), 1.99 (1H, d, *J* = 14.6 Hz, CHH'COTBDMS), 1.29 (3H, s, MeCOH), 1.09-1.14 (21H, m, TIPS), 0.89 (9H, s, SiCMe₃), 0.85 (9H, s, SiCMe₃), 0.09 (3H, s, SiMe), 0.03 (3H, s,

-SiMe), 0.03 (3H, s, SiMe), 0.02 (3H, s, SiMe); $\delta_{\rm C}$ (100 MHz CDCl₃) 110.7 (CH(OMe)₂), 84.6 (quat), 83.0 (quat), 81.5 (CHOTIPS), 60.4 (CH₂OTBS), 59.5 (OMe), 57.9 (OMe), 51.0 (CHCH₂OTBS), 48.9 (CH₂COTBS), 26.1 (SiCMe₃), 22.2 (MeCOH), 18.6 (CMe₃), 18.6 (CHMe₂), 18.6 (CHMe₂), 18.4 (CMe₃), 13.5 (SiCHMe₂), -2.0 (SiMe), -2.5 (SiMe), -5.1 (SiMe), -5.4 (SiMe); m/z LRMS (ESI⁺) 643 (M+Na⁺, 100); HRMS (ESI⁺): found 643.4213, C₃₁H₆₈O₆Si₃Na⁺ (M+Na⁺), requires 643.4216; [α]_D²⁵-8.7 (c = 1.0 in CHCl₃).

Acknowledgments

This work was, in part, supported by Cancer Research (CR-UK) grant number C38302/A12981, through an Oxford Cancer Research Centre Prize DPhil Studentship to (EDS). We thank the EPSRC and UCB Pharama for a CASE award to MSH. JS is grateful to the EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine (EP/L015838/1) for a studentship, generously supported by AstraZeneca, Diamond Light Source, Defence Science and Technology Laboratory, Evotec, GlaxoSmithKline, Janssen, Novartis, Pfizer, Syngenta, Takeda, UCB and Vertex.

Dedication

7.

Dedicated to Professor Steve Davies, an inspirational teacher and researcher.

References and notes

1. Shi, Q.-W.; Su, X.-H.; Kiyota, H., Chem. Rev. 2008, 108, 4295-4327.

 Vasas, A.; Hohmann, J., *Chem. Rev.* 2014, *114*, 8579-612.
 (a) Corea, G.; Di Pietro, A.; Dumontet, C.; Fattorusso, E.; Lanzotti, V., *Phytochem. Rev.* 2009, *8*, 431-447; (b) Vasas, A.; Rédei, D.; Csupor, D.; Molnár, J.; Hohmann, J., *Eur. J. Org. Chem.*

2012, *2012*, 5115-5130; (c) Barile, E.; Borriello, M.; Di Pietro, A.; Doreau, A.; Fattorusso, C.; Fattorusso, E.; Lanzotti, V., *Org. Biomol. Chem.* **2008**, *6*, 1756-62.

4. Corea, G.; Fattorusso, E.; Lanzotti, V.; Taglialatela-Scafati, O.; Appendino, G.; Ballero, M.; Simon, P. N.; Dumontet, C.; Di Pietro, A., *J. Med. Chem.* **2003**, *46*, 3395-3402.

5. Throughout the manuscript solid and broken bold lines will be used for racemic compounds with two or more stereocenters and solid and broken wedges will be used for enantiopure compounds, see: H. Maehr, *J. Chem. Educ.* **1985**, *62*, 114-120.

6. Schnabel, C.; Sterz, K.; Muller, H.; Rehbein, J.; Wiese, M.; Hiersemann, M., *J. Org. Chem.* **2011**, *76*, 512-522.

Rinner, U., Eur. J. Org. Chem. 2015, 3197-3219.

8. Smith, A. B.; Guaciaro, M. A.; Schow, S. R.; Wovkulich, P. M.; Toder, B. H.; Hall, T. W., *J. Am. Chem. Soc.* **1981**, *103*, 219-222.

9. Smith, A. B.; Lupo, A. T.; Ohba, M.; Chen, K., J. Am. Chem. Soc. **1989**, 111, 6648-6656.

10. Gyorkos, A. C.; Stille, J. K.; Hegedus, L. S., *J. Am. Chem. Soc.* **1990**, *112*, 8465-8472.

11. Han, Q.; Wiemer, D. F., J. Am. Chem. Soc. 1992, 114, 7692-7697.

12. Helmboldt, H.; Hiersemann, M., J. Org. Chem. 2009, 74, 1698-1708.

13. Schnabel, C.; Hiersemann, M., Org. Lett. 2009, 11, 2555-2558.

(a) Ainsua Martinez, S.; Gillard, M.; Chany, A.-C.; Burton,
 J. W., *Tetrahedron* **2018**, *74*, 5012-5021; (b) Ferrara, S. J.; Burton, J.
 W., *Chem. Eur. J.* **2016**, *22*, 11597-11600; (c) Marx, L. B.; Burton,
 J. W., *Chem. Eur. J.* **2018**, *24*, 6747-6754.

15. Bigi, M. A.; Reed, S. A.; White, M. C., J. Am. Chem. Soc. **2012**, *134*, 9721-9726.

J. L.; Mouriño, A., Tetrahedron Lett. 1995, 36, 9023-9026.

16.

17. Bauer, M.; Maier, M. E., Org. Lett. 2002, 4, 2205-2208.

18. (a) Fráter, G., *Helv. Chim. Acta* **1979**, *62*, 2825-2828; (b) Seebach, D.; Wasmuth, D., *Helv. Chim. Acta* **1980**, *63*, 197-200.

19. Cheng-Sánchez, I.; García-Ruíz, C.; Sarabia, F., *Tetrahedron Lett.* **2016**, *57*, 3392-3395.

20. The letters **cc** and **cv** in the compound numbers designate concave and convex and apply to the substituents on the C-2 and/or C-3 position of the cyclopentane (jatrophane numbering).

21. (a) Beckwith, A. L. J.; Schiesser, C. H., *Tetrahedron Lett.* **1985**, 26, 373-376; (b) Spellmeyer, D. C.; Houk, K. N., *J. Org. Chem.* **1987**, *52*, 959-974.

22. Inoue, T.; Kitagawa, O.; Oda, Y.; Taguchi, T., J. Org. Chem. **1996**, *61*, 8256-8263.

23. Taguchi also repored that under atom transfer radical cyclization, the benzloxy substituted malonate (19, R' = OBn) gave the lactones 20f in 60% yield as 2:1 mixture of 20f-cv:20f-cc ref. 22.
24. Brand, M.; Drewes, S. E.; Roos, G. H. P., *Synth. Commun.*

1986, 16, 883-889.
25. Chamberlin, A. R.; Mulholland, R. L.; Kahn, S. D.; Hehre, W. J., J. Am. Chem. Soc. 1987, 109, 672-677.

26. For intermolecular (addition) reactions to chiral allylic alcohols with iodine, Hehre proposes that reactions proceed *via* the most stable iodonium ion (see ref. 25). Iodocyclisations can operate under both kinetic and thermodynamic control - for a review see: Liang, X.; Liu, H., Electrophilic Cyclization. In *Comprehensive organic synthesis, II*, Knochel, P.; Molander, G. A., Eds. Elsevier: Amsterdam, 2014; Vol. 4, pp 412-494.

27. Anderson, E. M.; Larsson, K. M.; Kirk, O., *Biocatal. Biotransform.* **2009**, *16*, 181-204.

28. (a) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H., *J. Am. Chem. Soc.* **1991**, *113*, 4092-4096; (b) Hoye, T. R.; Jeffrey, C. S.; Shao, F., *Nat. Protoc.* **2007**, *2*, 2451-2458.

29. (a) Zhu, J.; Klunder, A. J. H.; Zwanenburg, B., *Tetrahedron* **1995**, *51*, 5099-5116; (b) Barton, D. H. R.; Crich, D.; Motherwell, W. B., *Tetrahedron Lett.* **1983**, *24*, 4979-4982.

30.00 f Shibatomi, K.; Kitahara, K.; Okimi, T.; Abe, Y.; Iwasa, S., *Chem Sci* **2016**, *7*, 1388-1392.

31. Achmatowicz, O.; Sadownik, A.; Bielski, R., *Pol. J. Chem.* 59, 553-564.

32. (a) Griesbaum, K.; Lie, G. O.; Keul, H., *J. Org. Chem.* **1984**, 49, 679-682; (b) Stevens, C. L.; Farkas, E.; Gillis, B., *J. Am. Chem. Soc.* **1954**, 76, 2695-2698; (c) Zhang, S.; Liu, X.; Di, J., *Synthesis* **2009**, 2009, 2749-2755.

33. Cosier, J.; Glazer, A. M., J. Appl. Crystallogr. 1986, 19, 105-107.

34. Otwinowski, Z.; Minor, W., Processing of X-ray Diffraction Data Collected in Oscillation Mode. In *Methods Enzymol.*, Carter, C. W.; Sweet, R. M., Eds. Academic Press: 1997; Vol. 276.

35. Palatinus, L.; Chapuis, G., J. Appl. Crystallogr. 2007, 40, 786-790.

36. (a) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.;
Prout, K.; Watkin, D. J., *J. Appl. Crystallogr.* 2003, *36*, 1487-1487;
(b) Parois, P.; Cooper, R. I.; Thompson, A. L., *Chemistry Central Journal* 2015, *9*, 30; (c) Cooper, R. I.; Thompson, A. L.; Watkin, D. J., *J. Appl. Crystallogr.* 2010, *43*, 1100-1107; (d) Thompson, A. L.; Watkin, D. J., *J. Appl. Crystallogr.* 2011, *44*, 1017-1022.

37. Bourcet, E.; Fache, F.; Piva, O., *Tetrahedron* **2010**, *66*, 1319-1326.

38. Batt, F.; Fache, F., *Eur. J. Org. Chem.* **2011**, *2011*, 6039-6055.

39. Švenda, J.; Myers, A. G., Org. Lett. 2009, 11, 2437-2440.

Supplementary Material

¹H and ¹³C NMR of synthetic intermediates. Chiral HPLC traces.

Synthesis of the core of the P-glycoprotein inhibitor pepluanin A reported

Key methods involve selective iodocyclization and invertive acetal formation

ournal Pre-proo

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prerk