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ABSTRACT: Arynes generated directly from alkyne 
building blocks in the presence of silver catalyst effective-
ly activate primary, secondary and tertiary alkane C–H 
bonds. This C–H insertion requires only a catalytic 
amount of silver complex and modest heating compared 
to harsh conditions and extra promoters including di-
recting groups, oxidants, and bases in typical transition 
metal-based C–H bond functionalizations. Preliminary 
mechanistic studies suggest that the C–H bond-breaking 
and new bond-forming events take place in a concerted 
manner, rendering a formal 1,2-addition of C–H bond 

across the π-bond of arynes. 

Alkane C–H bonds exist ubiquitously in organic compounds, 
but due to their inert nature, they are reluctant to be engaged in 
chemical processes forming new bonds. The functionalization 
of these inert C–H bonds, although challenging and thus a 
long-standing research objective in academia and industry, 
would allow the most abundant natural saturated hydrocarbon 
feedstock to be processed to more valuable products.1-3 From 
the perspective of developing environmentally benign and at-
om-economical methods, the direct catalytic C–H bond func-
tionalization would have a significant merit because in princi-
ple, this technology will allow production of valuable chemical 
entities with the formation of a lesser amount of harmful by-
products in more cost- and energy-effective manners. In recent 
years, a rapid evolution of directing group-assisted metal-
catalyzed C–H bond functionalization processes has been wit-
nessed.4 Despite their benefits in facilitating the functionaliza-
tion of inert C–H bonds in these approaches, the directing 
group needs to be removed after all when it is not a part of the 
target molecules, which is a significant limitation of this ap-
proach. In addition, the necessity of stoichiometric amounts of 
activators such as oxidants and bases or other additives signifi-
cantly compromise the practicality of the current metal-
catalyzed C–H functionalization approaches.5 

Scheme 1.  

 

 

Previously we reported an unusual reactivity of multynes6 
with Grubbs ruthenium alkylidene complexe7 under an eth-
ylene atmosphere whereby a 1,4-hydrovinylative cyclization was 
effectively promoted (Scheme 1).8,9 While expanding the syn-
thetic utilities of this hydrovinylation process,10 we found that 
in the presence of other metal complexes such as AgOTf, 
tetrayne 1 was converted into a tricyclic compound, which 
could be rationalized by the formation of an aryne intermedi-
ate11,12 followed by  its alkane C–H bond insertion. Even though 
arynes have been employed in organic synthesis for more than 
a century,13,14 alkane C–H bond functionalization by aryne spe-
cies has not been reported in the literature except for electron-
rich aromatic C–H bonds,15 We surmised that the effective C–H 
bond functionalization should be the consequence of the    
presence of a suitable metal catalyst that would generate an 

 

intermediate viewed as a metal-stabilized aryl cation (A in eq 1) 
or a 1,2-bis-carbene-carbenoid canonical form (B in eq. 1). Dif-
ferent from free arynes, these metal-complexed arynes16 have a 
subtle balance for its stability and reactivity such that even the 
least nucleophilic C–H bonds can be activated. Here we report 
a new C–H bond functionalization by arynes in the presence of 
silver catalyst, where unactivated 1°, 2° and 3 ° C–H bonds are 

effectively added across the π-bond of arynes.  

Table 1. Screening of Catalysts and Reaction Conditions      

TsN

R

Catalyst (10 mol%)

toluene, 90 oC, 5 h N
Ts

R

AgOTf

AgSbF6

AgNO3

AgOAc

AgO

Cu(OTf)2

Zn(OTf)2

1

2

3

4

5

6

7

91

88

82

85

23

86

73

entry catalyst yield (%)a entry catalyst yield (%)a

aDetermined by 1H NMR. bNo conversion at 60 oC.

cHBF4 OEt2 (15 mol%) was used. dNo conversion without HBF4 OEt2

Sm(OTf)3

In(OTf)3

Sc(OTf)3

Ru3(CO)12

PPh3AuCl

PtCl2

none

8

9

10

11

12

13

14

62

78

63

53

0

0

0

Et

b

c,d

Et
R = Ph

1 2

. .

HH

 

First we examined the effectiveness of various catalysts for 
C–H bond activation with bis-1,3-diyne substrate 1 containing 
ynamide tether (Table 1).17 When a catalytic amount (10 mol%) 
of silver trifluoromethanesulfonate (AgOTf) was employed in 
toluene at 90 °C, complete conversion was observed within 5 h 
of reaction time, and the isolated product was unambiguously 
identified as the expected C–H insertion product 2 (entry 1). 
Various silver salts including AgSbF6, AgNO3, AgOAc exhibited 
similar level of catalytic activity, affording 82–88% yields of 2 
but AgO gave only 23% yield of the product (entries 2 to 5). 
Other metal triflates such as Cu(OTf)2, Zn(OTf)2, Sm(OTf)3, 
In(OTf)3, and Sc(OTf)3 were found to promote the C–H activa-
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tion in only slightly lower (86–62%) yields (entries 6 to 10). A 
cationic ruthenium carbonyl complex, known for hydroamina-
tion and C–H bond activation generated from Ru3(CO)12 and 
HBF4�OEt2

18 also promoted the reaction smoothly, providing 
53% yield of the C–H insertion product (entry 11), but 
Ru3(CO)12 alone was ineffective, and the starting material de-
composed. On the contrary, other metal complexes known for 
their high affinity for alkynes such as PPh3AuCl and PtCl2

19 

generated only intractable material (entries 12 and 13). Without 
catalysts13 under otherwise identical conditions, the substrate 
decomposed with no vestige of the product (entry 14).  

Table 2. Reaction Scope of Primary, Secondary and Tertiary 
C–H Bond Insertion 

TsN

R

TsN

R

92%

95%

Y

X

R

R'

AgOTf (10 mol%)

toluene, 90 oC, 5 h

N
Ts

R

4c 78%R = Ph-(4-OMe)

4d 75%Ph-(4-Cl)

TsN

R

96%

4b

4e 4f

3a–p

N
Ts

R

62%*

4a

N
Ts

R

H

H

72%

Ph-(4-Cl)

4g

R =

N
Ts

R

82%

CH2OBn

79%

Ph-(4-OMe)

4h 4i

N
Ts

R

4j 92%

93%

nBu

Ph-(4-OMe)

CH2OPMB 4k 88%

4a–p

X
Y

R

H R1 R2

TsN

R

TsN

R

96% 90%

N
Ts

R

Ph

90%

R =

OTBS

4m 4n

4o
TBS

OTBS

TsN

R

85%

4p

H 1:1

N
Ts

R

N
Ts

R

4l

R =

R =

Isolated yields are indicated below each entry. *Reactions were performed with

AgSbF6 (10 mol%) in iodobenzene and the reported yields were measured by

1H NMR with an internal standard.  

The scope of this catalytic C–H insertion reaction was fur-
ther explored with various unsymmetrical and symmetrical bis-
1,3-diyne substrates (Table 2). In general, 1°, 2° and 3° C–H 
bonds were activated to afford 5-membered ring products, yet 
the substituent pattern in the alkyl chain significantly affected 
the reaction efficiency. While the insertion of the 1° C–H bond 
of 3a was best achieved with AgSbF6 (10 mol%) in iodobenzene 
to form 4a in 62% yield, substrate 3b containing geminal di-

methyl group at the propargylic carbon afforded 4b in marked-
ly improved yield (92%) even under standard conditions 
(AgOTf, toluene), probably due to the known beneficial effect of 
the geminal dialkyl group on ring closure reactions.20 The reac-
tions of 3c and 3d were also performed with AgSbF6 in iodo-
benzene, providing 2° C–H bond insertion products 4c and 4d 
in 78% and 75% yields, respectively. Nearly quantitative yields 
of 2o and 3° C–H bond insertion products 4e and 4f were ob-
tained from substrates 3e and 3f.  While the C–H insertion 
onto a pendant cyclopentyl moiety provided a single diastere-
omer 4g in 72% yield, substrates containing the corresponding 
cyclohexyl and cycloheptyl moieties generated diastereomeric 
mixtures of 4h and 4i.21 Interestingly, bridged bicycle frame-
works, such as bicyclo[2,2,1]heptanes 4j and 4k as well as bicy-
clo[3,2,1]octane 4l, were created in high yields via the insertion 
into a remote C–H bond on the pendant cycloalkyl groups. 
Substrates 4m–o containing a silyl ether moiety, alkene and 
alkyne functionalities were tolerant if these functional groups 
are not directly attached to the carbon center where the C–H 
insertion occurs.22 The existing stereogenic center like in (S)-
citronellyl substituted bis-1,3-diyne 3p did not impose any 
stereochemical bias for the diastereotopic C–H insertion 
events, affording 4p as a 1:1 diastereomeric mixture in 85% 
yield. Next, we briefly examined the chemoselectivity of the 
insertion using substrates 3q and 3r that possess two different 
kinds of available C–H bonds for insertion environment of 
which is biased by both electronic and steric factors. It was 
found that the 2° C–H bond in substrate 3q was significantly 
more reactive than its 1° C–H bond, affording a mixture of 4q 
and 4q' in 80% yield with a 13:1 ratio (eq. 2). The C–H inser-
tion in substrate 3r occurred at the indicated cyclic secondary 
C–H bond with significant preference over the primary C–H 
bond, generating a 10:1 mixture of 4r and 4r' in 88% yield (eq. 
3).  

H

H

N
Ts

R

N
Ts

R4q : 4q' = 13 : 1

H

H

80% 4q

4q'

2:1

+

R =

TsN

R AgOTf (10 mol%)

toluene, 90 oC, 5 h

H

H

3q

(2)

R =

TsN

R AgOTf (10 mol%)

toluene, 90 oC, 5 h

3r

TsN

R

TsN

R

H

H88% 4r

4r'

+

(3)

4r : 4r' = 10 : 1

OMe

 

To gain mechanistic insights into the C–H activation pro-
cess, a deuterium-labeled substrate 3s was employed (eq. 4). 
Under the typical C–H insertion conditions, nearly complete 
deuterium incorporation (>98%) at the C2 position of product 
4s was observed. When a competition experiment was per-
formed with an equimolar mixture of a deuterium-labeled sub-
strate 3s and the unlabeled substrate 3j, no crossover products 
were detected (Scheme S1). These results taken together imply 
that C(sp3)–H bond-breaking and C(sp2)–H bond-forming 
events take place in a concerted rather than a stepwise manner.  

In addition, diastereomerically-enriched substrate 3t (dr = 
10:1 and 1.1:1) provided 4t with diasteromeric ratios identical 
to that of starting material 3t (eq. 5). The conserved stereo-
chemistry in these two experiments is more favorably in line 

Page 2 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

with a concerted mechanism for the C–H activation step more 
than a stepwise process via radical or cationic intermediate.  

TsN

R

D

D
Ph

TsN

R

D

toluene, 90 oC

98% D incorporation

93%
Ph3s 4s

1

2

3

TsN

R

Ph
N
Ts

R

3t
R = Ph-(4-OMe)

4t

TsN

R

H/D

TsN

R

H

D
Ph

3u 4u

AgOTf

toluene, 90 oC

AgOTf

91%

R =

Ph

Ph

R =

D

kH/kD = 1.0 ± 0.1

(4)

(5)

(6)
toluene, 90 oC

AgOTf

with dr = 10 : 1

with dr = 1.1 : 1

with dr = 10 : 1

with dr = 1.1 : 1

85% yield

83% yield

 

Finally, the transformation of mono-deuterated substrate 
3u to the insertion product 4u showed a negligible magnitude 
of deuterium kinetic isotope effect23 (kH/kD = 1.0 ± 0.1), which 
suggests that the rate-limiting step involves the aryne for-
mation not the C–H bond cleavage (eq. 6). Although a complete 
picture of the mechanism for the current C–H insertion re-
mains to be established, a tentative mechanism is proposed 
(Scheme 2). In this mechanistic scenario, a sequence of bond-
forming events would lead to a key silver-complexed aryne in-
termediate A or its resonance form B,24  which then undergoes 
C–H insertion  through C to generate the final product or an-
other intermediate D, respectively. Once, D is formed, a [1,2]-H 
shift would provide the same product with a concomitant cata-
lyst transfer.  

Scheme 2. Possible Mechanism for C–H Insertion  

 

 

In conclusion, we have developed a new catalytic alkane C–
H insertion to form carbon-carbon bonds mediated by arynes 
generated directly from alkyne building blocks. The simplicity 
of operation, broad substrate scope, and excellent site-
selectivity of this unprecedented C–H activation method would 
inspire the synthesis of various molecular structures in green 
and atom-economical manners.          
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