Phytochemistry 70 (2009) 1195-1202

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Cytotoxic 16-β-[(D-xylopyranosyl)oxy]oxohexadecanyl triterpene glycosides from a Malagasy plant, *Physena sessiliflora*

Masaki Inoue^{a,*}, Kazuhiro Ohtani^a, Ryoji Kasai^a, Mayu Okukubo^a, Marta Andriantsiferana^b, Kazuo Yamasaki^a, Tohru Koike^a

^a Department of Medicinal Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, 734-8551 Hiroshima, Japan ^b Laboratoire de Chimie Organigue, Produits Naturels, Universite' d'Antananarivo, Madagascar

ARTICLE INFO

Article history: Received 27 February 2009 Received in revised form 21 May 2009 Available online 13 July 2009

Keywords: Physena sessiliflora Capparidaceae Physenaceae Physenoside Triterpene glycoside Cytotoxicity 16-Hydroxy-oxohexadecanoic acid

ABSTRACT

Brine shrimp lethality assay-guided separation of the MeOH extract of leaves of *Physena sessiliflora*, which is endemic to Madagascar, afforded eight triterpene glycosides, Physenoside S1–4 and 16– β -[(*D*-xylopyr-anosyl)oxy]oxohexadecanyl homologues, Physenoside S5–8. Structural elucidation of these compounds was based on both spectroscopic analyses and chemical properties. Physenoside S7 and S8 have significant cytotoxic activities in the brine shrimp lethality assay.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A bushy tree, Physena sessiliflora Tul. is endemic to Madagascar and only two species, P. sessiliflora and Physena madagascariensis, belong to this genus Physena. This genus generally classifies into Capparidaceae, but some botanists classify it into the Physenaceae (Dickison and Miller, 1993), which is an endemic family in Madagascar and contains only this genus. In Madagascar, the decoction of these leaves is used for rites by witch doctor (Samyn, 1999). Triterpenes (Deng et al., 1999) and prenyl biflavones (Deng et al., 2000; Cao et al., 2006) were isolated from P. madagascariensis, but no phytochemical and biological investigations on *P. sessiliflora* have been reported. As a part of our studies on the phytochemical constituents of Malagasy plants, we have undertaken chemical investigation of the leaves of this plant. Besides, the MeOH extract of these leaves showed cytotoxic activity in the brine shrimp lethality assay (Meyer et al., 1982; Anderson et al., 1991; Solis et al., 1993; Carballo et al., 2002). Herein, we describe isolation and structure elucidation of eight novel triterpene glycosides, Physenoside S1-4, and 16-\beta-[(D-xylosyl)oxy]oxohexadecanyl homologues, Physenoside S5-8. In general, keto-fatty acids such as oxohexadecanoic acid are rarely found as plant lipid constituents (Deas et al., 1974).

2. Results and discussion

The methanolic extract of the leaves of *P. sessiliflora* showed cytotoxic activity using the brine shrimp lethality assay at 100 µg/mL. This extract was partitioned into *n*-hexane, EtOAc, *n*-BuOH, and water layers, successively. The *n*-BuOH extract exhibited the strongest activity and its activity-guided separation extract afforded eight triterpene glycosides, Physenoside S1–8(**1–8**), whose structures are shown in Fig. 1. An alkaline hydrolysis product **9** was obtained from **7** and **8**. The various NMR spectroscopic analyses such as ¹H, ¹³C, DEPT, COSY, HMQC, and HMBC, in conjunction with FABMS spectroscopy, established that the compounds **1–9** (Fig. 1) were olean-12-en-28-oic acid type triterpene glycosides with oxygenated carbons (C-2, C-3, C-23, and/or C-16).

Acid hydrolysis of **1–6** afforded the same aglycone, bayogenin $(2\beta, 3\beta, 23$ -trihydroxyolean-12-en-28-oic acid) **1a** (see Fig. 2), which was identified on the basis of NMR spectroscopic data when compared with literature data (Jurenitsch et al., 1986). On the other hand, alkaline hydrolysis of **1–6** gave a glucoside **1b** (Fig. 2), which was identified as 3-O-β-D-glucopyranoside of **1a** based on the comparison of its spectroscopic data with reference data (Kasai et al., 1986; Marston et al., 1988).

Compound **1**, named Physenoside S1, was obtained as a white amorphous powder. Its negative FABMS exhibited a quasi-molecular ion peak at m/z 1191 [M–H][–], indicating a molecular weight of 1192. The molecular formula was established as $C_{57}H_{92}O_{26}$ by a

^{*} Corresponding author. Tel.: +81 82 257 5281; fax: +81 82 257 5336. *E-mail address:* D066862@hiroshima-u.ac.jp (M. Inoue).

^{0031-9422/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.phytochem.2009.06.002

Fig. 1. Structures of 1-15, Acyl A, and Acyl B.

positive-ion mode HRFABMS with a pseudo-molecular ion peak at m/z 1215.5790 [M+Na]⁺ (calcd for 1215.5775 C₅₇H₉₂O₂₆Na). Acid hydrolysis of **1** gave p-glucose (Glc), L-arabinose (Ara), L-rhamnose (Rha), and p-xylose (Xyl) as sugar components. The ¹H and ¹³C NMR spectra of **1** displayed five anomeric protons at δ 6.48 (d, J = 3.0 Hz), 5.80 (brs), 5.12 (d, J = 7.7 Hz), 5.11 (d, J = 6.2 Hz), and 5.08 (d, J = 7.3 Hz), and five anomeric carbons at δ 107.1, 105.5, 103.4, 101.7, and 92.7 (see Tables 1 and 2). Each proton and carbon signal of **1** was assigned to individual functional groups using 1D-TOCSY, COSY, and HMQC spectra. An HMBC experiment was carried out for determination of the glycosyl linkages. The HMBC spectrum showed cross-peaks between each anomeric proton and the corresponding carbon resonance; $\delta_{\rm H}$ 5.12 (H-1 of Glc)

Fig. 2. Structures of the hydrolysis products 1a, 1b, 4b, 9a, and 9b.

and δ_C 83.1 (C-3 of aglycone), δ_H 6.48 (H-1 of inner Ara) and δ_C 176.2 (C-28 of aglycone), δ_H 5.80 (H-1 of Rha) and δ_C 74.1 (C-2 of inner Ara), δ_H 5.08 (H-1 of Xyl) and δ_C 84.0 (C-4 of Rha), and δ_H 5.11 (H-1 of outer Ara) and δ_C 74.9 (C-3 of inner Ara). Based on the ¹³C chemical shifts and coupling constants of proton signals of inner arabinosyl residue, the conformation of ester-linked arabinosyl residue of **1** was ¹C₄ form, which is congruent with the data reported by Nagao et al. (1989). The configuration of the rhamnosyl residue was determined by the same method as reported

Table 1

Selected ¹H NMR spectroscopic data (500 MHz, in pyridine- d_5) of the aglycone and anomeric protons of Physenoside S1 (1), S7 (7), and S8 (8).

		1	7	8
Aglycone	16	5.50 (<i>m</i>)	5.14 (brs)	5.14 (brs)
	18	3.20 (dd, 13.7, 4.3)		
	23	3.68 (d, 10.6)		
	24	1.30 (s)	1.85 (s)	1.86 (s)
	25	1.52 (s)	1.46 (s)	1.46 (s)
	26	1.12 (s)	1.03 (s)	1.03 (s)
	27	1.23 (s)	1.67 (s)	1.66 (s)
	29	0.88 (s)	0.88 (s)	0.88 (s)
	30	0.95 (s)	1.00 (s)	1.00 (s)
С-3				
Glc-	1	5.11 (d, 6.2)	4.99 (d, 7.8)	4.99 (d, 7.8)
C-28				
inner-Ara-	1	6.48 (d, 3.0)	6.17 (d, 4.6)	6.17 (d, 3.7)
outer-Ara-	1	5.12 (d, 7.7)	4.92 (d, 6.4)	4.91 (d, 6.4)
Rha-	1	5.80 (brs)	5.90 (brs)	5.90 (brs)
Xyl-	1	5.08 (d, 7.3)	5.04 (<i>d</i> , 7.6)	5.04 (<i>d</i> , 7.6)
Acyl group				
Xyl-	1		4.64 (d, 7.6)	4.64 (d, 7.6)

Table 2 13 C NMR spectroscopic data (125 MHz, in pyridine- d_5) of the glycosidic parts of 1–9.

		1	2	3	4	5	6	7	8	9
С-3										
Glc-	1	105.5	105.2	105.6	105.0	105.6	105.6	104.7	104.7	105.7
	2	75.5	75.2	75.5	75.2	75.6	75.6	74.7	74.7	75.5
	3	78.6	78.2	78.6	78.5	78.6	78.6	77.9	77.9	78.6
	4	71.6	71.3	71.7	71.6	71.6	71.6	71.0	71.0	71.7
	5	/8.2	/8.0	/8.3	/6.6	/8.2	/8.2	//.8	//.8	/8.3
	6	62.6	62.3	62.7	70.1	62.7	62.7	62.1	62.1	62.7
Glc-	1				104.9					
	2				75.3					
	3				/8.2					
	4				71.7					
	6				62.7					
C 20	0				02.7					
C-28	1	02.7	02.0	02.4	02.5	02.2	02.2	02.9	02.0	02.7
IIIIei-Aid-	1	92.7 74 1	92.9 73 3	92.4 74 1	92.5 74 1	95.2 73.4	95.2 73.4	95.8 73.5	95.6 73.5	92.7 74 1
	3	74.1	77.0	73.2	74.2	73.3	73.3	73.3	73.3	74.1
	4	65.3	65.5	64.7	64.7	69.9	69.9	69.9	69.9	65.3
	5	63.5	63.6	63.0	63.0	62.6	62.6	62.2	62.3	63.5
outer-Ara-	1	103.4		103.0	103.0			104.9	104.9	103.4
	2	71.1		71.1	70.8			71.6	71.6	71.1
	3	74.1		74.2	74.2			73.7	73.7	74.1
	4	68.4		68.4	68.3			68.2	68.2	68.4
	5	66.2	110.0	66.3	66.2	110.0	1100	66.0	66.0	66.2
Арі-	1		110.0			110.3	110.3			
	2		77.9			78.2	78.2			
	4		75.2			75.5	75.5			
	5		64.9			65.8	65.8			
Pha	1	101 7	101.5	101.6	101 5	101.0	101.0	101.2	101.2	101.6
Kild-	2	71 9	71.5	72.3	71.6	71 7	71 7	71.4	71.4	71.9
	3	72.5	72.2	80.7	80.7	72.5	72.5	71.9	71.9	72.5
	4	84.0	83.5	77.8	77.8	84.1	84.1	82.8	82.8	84.0
	5	68.7	68.7	69.4	69.3	68.9	68.9	68.5	68.6	68.7
	6	18.4	18.3	18.7	18.6	18.6	18.4	18.2	18.2	18.4
Rha-	1			103.9	104.0					
luiu	2			71.7	72.2					
	3			72.7	72.7					
	4			74.4	74.1					
	5			70.1	70.0					
	6			18.7	18.6					
Xyl-	1	107.1	106.7	105.5	105.4	107.2	107.2	106.2	106.2	107.1
	2	76.0	75.7	75.5	75.2	76.0	76.0	75.5	75.5	76.0
	3	78.6	78.2	78.3	78.2	78.6	78.6	77.8	77.8	78.6
	4	70.9	70.7	70.9	71.1	71.0	71.0	70.7	70.7	70.9
	5	67.4	67.1	67.1	67.1	67.5	67.5	66.9	66.9	67.4
Acyl group										
Xyl-	1					105.3	105.3	104.8	104.8	
	2					75.0	75.0	74.4	74.5	
	3					78.4 71.2	78.4	77.6	77.6	
	4 5					67.2	67.2	66.7	66.7	
	5					07.2	07.2	00.7	00.7	

previously (Kasai et al., 1979). From these experimental facts, we confirmed the structure of compound **1** to be β -D-xylopyranosyl-(1-4)- α -L-rhamnopyranosyl-(1-2)-[α -L-arabinopyranosyl-(1-3)]- α -L-arabinopyranosyl 3-O- β -D-glucopyranosyl-2 β ,3 β ,23-trihydroxy-olean-12-en-28-oate.

Physenoside S2 (**2**) was obtained a white powder, and its positive HRFABMS spectrum exhibited a quasi-molecular ion peak at m/z 1215.5801 [M+Na]⁺ (calcd. for 1215.5775 C₅₇H₉₂O₂₆Na) as for as **1**. The ¹³C NMR spectrum of **2** was similar to that of **1** except for a terminal L-arabinosyl residue. On acid hydrolysis of **2**, D-glucose, L-arabinose, L-rhamnose, D-xylose, and D-apiose (Api) were detected. HMBC spectrum coupled with 1D-TOCSY and HMQC suggested that compound **2** had a structure in which the terminal α -Larabinose of **1** was replaced by β-D-apio-D-furanose. The anomeric center of the apio-D-furanose was determined to be β-configuration by comparing the ¹³C NMR spectroscopic data with the reported values for α - and β -D-apiofranosides (Kitagawa et al., 1993). Consequently, the structure of **2** was assigned to β -D-xylo-pyranosyl-(1-4)- α -L-rhamnopyranosyl-(1-2)-[β -D-apio-D-furanosyl-(1-3)]- α -L-arabinopyranosyl 3-O- β -D-glucopyranosyl-2 β ,3 β ,23-tri-hydroxyolean-12-en-28-oate.

The FABMS spectrum of Physenoside S3 (**3**) showed a quasimolecular ion peak at 1337 $[M-H]^-$, which is 146 mass units greater than **1**. Its positive HRFABMS spectrum also exhibited a quasi-molecular ion peak at m/z 1361.6371 $[M+Na]^+$ (calcd for 1361.6354 $C_{63}H_{102}O_{30}Na$). Acid hydrolysis of **3** gave D-glucose, Larabinose, L-rhamnose, and D-xylose. Two methyl proton signals at δ 1.74 (d, J = 6.7 Hz) and 1.64 (d, J = 6.7 Hz) indicated the presence of two rhamnosyl residues, and fragment ion peak at m/z1191 $[M-146]^-$ suggesting that one of rhamnosyl residues is the terminal residue. A comparison of the ¹³C NMR spectrum of **3** with that of **1** showed glycosylation shifts for C-3 of Rha ($\Delta\delta$ +8.2 ppm) on going from **1** to **3**. The HMBC spectrum of **3**, followed by assignments of protons and carbons of sugar moieties, showed a cross-peak between $\delta_{\rm H}$ 5.78 (H-1 of terminal Rha) and $\delta_{\rm C}$ 80.7 (C-3 of inner Rha). These data of **3** were consistent with the structure of β -D-xylopyranosyl-(1-4)-[α -L-rhamnopyranosyl-(1-3)]- α -L-rhamnopyranosyl-(1-2)-[α -L-arabinopyranosyl-(1-3)]- α -L-arabinopyranosyl 3-O- β -D-glucopyranosyl-2 β ,3 β ,23-trihydroxyolean-12-en-28-oate.

Physenoside S4 (4), $C_{69}H_{112}O_{35}$, was isolated as a white powder having a molecular weight of 1500. Acid hydrolysis of 4 gave D-glucose, L-arabinose, L-rhamnose, and D-xylose. On the other hand, alkaline hydrolysis of **4** yielded compound **4b**. Two anomeric protons at δ 4.89 (*d*, *J* = 7.8 Hz) and 4.98 (*d*, *J* = 7.8 Hz) in ¹H NMR, and two anomeric carbons at δ 104.9 and 105.0 in $^{13}\mathrm{C}$ NMR were observed. The carbon signals indicated the presence of gentiobiosyl unit in **4b**. These experimental results established that compound **4b** is $3-O-\beta-D-glucopyranosyl-(1-6)-\beta-D-glucopyranosyl-bayoge$ nin. The ¹H and ¹³C NMR spectra of **4** showed seven anomeric signals. In the ¹³C NMR spectrum of **4**, carbon resonances of sugar chain at C-28 were essentially the same as those of 3. These NMR spectroscopic data suggested that compound **4** is β -D-xylopyranosyl-(1-4)- $[\alpha$ -L-rhamnopyranosyl-(1-3)]- α -L-rhamnopyranosyl-(1-2)- $[\alpha-L-arabinopyranosyl-(1-3)]-\alpha-L-arabinopyranosyl 3-O-\beta-D-gluco$ pyranosyl-(1-6)-β-D-glucopyranosyl-2β,3β,23-trihydroxyolean-12-en-28-oate. This formulation was confirmed by HMBC experiment coupled with COSY, 1D-TOCSY, and HMQC.

Physenoside S5 (5) showed a quasi-molecular ion peak [M+Na]⁺ at m/z 1615.8251 in the positive HRFABMS, in accordance with an empirical molecular formula of $C_{78}H_{128}O_{33}Na.$ The 1H and ^{13}C NMR spectra of **5** displayed six anomeric protons at δ 6.33 (*brs*), 5.78 (brs), 5.76 (d, J = 1.6 Hz), 5.12 (d, J = 7.8 Hz), 5.07 (d, J = 7.3 Hz), and 4.71 (*d*, J = 7.6 Hz), and six anomeric carbons at δ 110.3, 107.2, 105.6, 105.3, 101.9, and 93.2. Acid hydrolysis of 5 afforded D-glucose, L-arabinose, D-apiose, L-rhamnose, and D-xylose as sugar components. Alkaline hydrolysis of 5 gave compound 10 as well as 1a. Alkaline treatment of 5 with 2% KOHaa also vielded 10 in addition to compound **1**. These results indicated that compound **5** is ester of **1** and **10**. In the ¹³C NMR spectrum of **10**, one carbonyl ($\delta_{\rm C}$ 210.3), one carboxyl (δ_c 172.9), 14 methylene carbon signals together with signals assigned as xylosyl residue were observed. The HRFABMS of **10** showed a quassi-molecular ion peak at m/z441.2450 $[M+Na]^+$, suggesting the molecular formula $C_{21}H_{38}O_8$ (calcd. 441.2464 for C₂₁H₃₈O₈Na). Acid hydrolysis of **10** gave D-xylose and compound 11, and the HMBC spectrum displayed a crosspeak between $\delta_{\rm H}$ 4.71 (*d*, *J* = 7.6 Hz, H-1 of Xyl) and $\delta_{\rm C}$ 69.7 (CH₂). These results showed that compound **10** is $16-\beta-[(D-xylopyrano$ syl)oxy]- χ -oxohexadecanoic acid. To determine the position of the carbonyl group, compound 11 was converted to 12 by methylation followed by trimethylsilylation. The ELMS of 12 showed a typical fragment ion peak at m/z 171 (Fig. 3), indicating that the carbonyl group exist at C-8 position. This result was accorded with the data in the literature (Deas et al., 1974; Ray et al., 1995). Thus, compound 10 was elucidated as 8-oxo-16-β-[(D-xylopyranosyl)oxy]hexadecanoic acid. The ester substituent in 5 was placed at C-4 of ester-linked arabinosyl residue as a result of downfield shifts observed for H-4 and C-4 of arabinosyl unit in the ¹H and ¹³C NMR spectra, respectively, compared to those of **1**; This was also confirmed by observation of correlations between $\delta_{\rm H}$ 5.62 (*ddd*, *J* = 3.2, 3.2, 8.0 Hz, H-4 of inner Ara) and $\delta_{\rm C}$ 173.3 (C-1 of **Acyl** A) in the HMBC spectrum of compound 5. Consequently, the structure of **5** was determined to be β -D-xylopyranosyl-(1-4)- α -Lrhamnopyranosyl-(1-2)-{[β-D-apio-D-furanosyl-(1-3)]-4-O-(8-oxo-16- β -[(D-xylopyranosyl)oxy]hexadecanoyl)}- α -L-arabinopyranosyl 3-O-β-D-glucopyranosyl-2β,3β,23-trihydroxyolean-12-en-28-oate.

Fig. 3. Fragmentation points observed in EIMS of 12 and 15.

The chromatographic behavior of Physenoside S6 (6) was almost the same as 5. The ¹H and ¹³C NMR spectroscopic data of 6 were also guite similar to those of **5**. Alkaline hydrolysis of **6** with 2% KOHaq at room temperature yielded 1 and 13. The NMR spectroscopic data suggested that compound 13 is the isomer of 10, and that the difference between 10 and 13 is the position of the carbonyl group. In the EIMS of the trimethylsililated methyl ester **15**, a critical fragment ion at m/z 185 (Fig. 3) was observed (Deas et al., 1974; Ray et al., 1995). Therefore, the structure of 13 was assigned to 9-oxo-16-β-[(D-xylopyranosyl)oxy]hexadecanoic acid. In the similar manner, the position of ester linkage between 1 and 13 in 6 was determined as 0-4 of 28-0-linked arabinose. The above evidence showed that compound **6** is β -D-xylopyranosyl-(1-4)- α -Lrhamnopyranosyl-(1-2)-{[β-D-apio-D-furanosyl-(1-3)]-4-0-(9-oxo-16- β -[(D-xylopyranosyl)oxy]hexadecanoyl)}- α -L-arabinopyranosyl 3-O- β -D-glucopyranosyl-2 β ,3 β ,23-trihydroxyolean-12-en-28-oate.

Alkaline treatment of Physenoside S7 (**7**) and S8 (**8**) with 2.5% NaOHaq gave the same compound **9**. On the other hand, acid hydrolysis of physenoside S7 and S8 afforded the same aglycone, zanhic acid (Dimbi et al., 1984) (2β , 3β , 16α -trihydroxyolean-12-en-23,28-dioic acid) **9a**, which was identified on the basis of the NMR spectroscopic data compared with the reported values (Lavaud et al., 1998; Sakai et al., 1999). Furthermore, alkaline hydrolysis of **7** and **8** yielded the same compound (**9b**), which was identified as 3-O-β-D-glucopyranoside of **9a**.

The ¹H and ¹³C NMR spectroscopic data of the sugar moieties including the β -[(p-xylopyranosyl)oxy]acyl group of compounds **7** and **8** were essentially identical to those of corresponding compounds **1** and each acyl component (Tables 1 and 2). Therefore, the structures of **7** and **8** were identified as $28 - 0 - \beta - p$ -xylopyranosyl-(1-4)- α -L-rhamnopyranosyl-(1-2)-{[α -L-arabinopyranosyl-(1-3)]-4-0-($8-0x0-16-\beta$ -[(p-xylopyranosyl)0xy]hexadecanoyl)}- α -L-arabinopyranosyl $3-0-\beta$ -p-glucopyranosyl- 2β , 3β , 16α -trihydroxy-olean-12-en-23,28-dioic acid and $28-0-\beta$ -p-xylopyranosyl-(1-4)- α -L-rhamnopyranosyl-(1-2)-{[α -L-arabinopyranosyl-(1-4)- α -L-rhamnopyranosyl-(1-2)-{[α -L-arabinopyranosyl-(1-4)- α -L-rhamnopyranosyl-(1-2)-{[α -L-arabinopyranosyl-(1-3)]- $4-0-(9-0x0-16-\beta$ -[(p-xylopyranosyl)0xy]hexadecanoyl)]- α -L-arabinopyranosyl-(1-3)]- $4-0-(9-0x0-16-\beta$ -[(p-xylopyranosyl)0xy]hexadecanoyl)]- α -L- α -L- α -Rabinopyranosyl-(1-3)]- $4-0-(9-0x0-16-\beta$ -[(p-xylopyranosyl)0xy]hexadecanoyl)]- α -L- α -L- α -Rabinopyranosyl-(1-2)-{[α -L- α -Rabinopyranosyl-(1-3)]- $4-0-(9-0x0-16-\beta$ -[(p-xylopyranosyl)0xy]hexadecanoyl)]- α -L- α -Rabinopyranosyl 3- $0-\beta$ -p-glucopyranosyl- 2β , 3β , 16α -trihydroxyloean-12-en-23,28-dioic acid, respectively.

Finally, we conducted the brine shrimp lethality assay for determination of the toxicity of the isolated compounds **1–8**. The assay is proven to be an effective and rapid screening method to determine cytotoxicity of water-soluble compounds (Meyer et al., 1982; Anderson et al., 1991; Solis et al., 1993; Carballo et al., 2002). Table 3 shows the assay results as LD_{50} values with comparison of a positive control, Etoposide phosphate. Among the subfractions prepared from the MeOH extract by solvent partition, only *n*-BuOH extract exhibited the lethality at 32 µg/mL. This result indicated that toxic compounds of this plant are less-lipophilic substances. Compounds **7** (8.5 µg/mL) and **8** (22 µg/mL) exhibited high degrees of toxicity in isolated compounds.

Table 3

Brine shrimp lethality assay results of the extracts of *P. sessiliflora*, the isolated compounds **1–9**, and Etoposide phosphate (a positive control).

	Brine shrimp lethality		
	(LD ₅₀ in $\mu g/mL$)		
MeOH extract	50.4		
$MeOH \rightarrow n$ -hexane	>500.0		
$MeOH \rightarrow EtOAc$	>500.0		
$MeOH \rightarrow n-BuOH$	32.0		
1	>500.0		
2	>500.0		
3	>500.0		
4	>500.0		
5	394.0		
6	>500.0		
7	8.5		
8	22.1		
9	420.0		
Etoposide phosphate	3.5		

3. Conclusions

In this study, we isolated eight new triterpene glycosides (Pysenoside S1–8) in the methanolic extract of the leaves of *P. sessiliflora*. For four of the eight compounds, novel acyl moieties were found as $16-\beta-[(p-xylopyranosyl)oxy]-8$ -oxohexadecanyl and $16-\beta-[(p-xylopyranosyl)oxy]-9$ -oxohexadecanyl groups. Pysenoside S7 and S8 gave significant lethal activities for the brine shrimp, suggesting that the $\beta-[(p-xylopyranosyl)oxy]acyl$ moiety and the aglycone having 23-carboxylic and 16α -hydroxyl groups play important role for the cytotoxicity.

4. Experimental

4.1. General procedure

Optical rotations were measured on a JASCO DIP-1030 automatic polarimeter in MeOH at 30 °C. NMR spectra were recorded on a JEOL JNM ECP-500 with a field gradient unit (500 MHz for ¹H and 125 MHz for ¹³C) in pyridine- d_5 , unless otherwise stated, using TMS as an internal standard at 35.0 ± 0.1 °C. FABMS in glycerol matrix in the negative-ion mode and EIMS were recorded on a JEOL SX-102A instrument. FL-100D (Fuji silysia, Tokyo, Japan) and ODS-A-120 (YMC, Kyoto, Japan) were used for column chromatography. HPLC were carried out using a D-ODS-5 (20 mm i.d. × 15 cm, YMC) column or Polyamine-II (20 mm i.d. × 15 cm, YMC) with two JASCO PU-1500 pumps, and a JASCO UV-1500 UV detector, and/or a JASCO RI-1500 differential refractometer as a detector. TLC was performed using a Merck Art. 5554 (silica-gel) TLC plate. All reagents and solvents were of the highest commercial quality and were used without further purification.

4.2. Plant material

The leaves of *P. sessiliflora* were collected in the Berenty Reserve in March 2000. The identity of the plant was confirmed by Dr. Armand Rakotozafy from the Institut Malgache de Recherches Appliquées. A voucher specimen (PHYS200012) is on deposit at ESSD, Antananarivo, Madagascar.

4.3. Extraction and isolation

Air-dried leaves (200 g) were extracted with MeOH ($2 L \times 3$) under conditions where the suspension was heated until reflux began, thus being maintained for 3 h. The suspensions were filtered with the solvent removed from the filtrate *in vacuo* to yield the

crude residue (55 g). The MeOH extract was partitioned between equal portions of *n*-hexane/MeOH- H_2O (7:3), then the solvent was removed from the *n*-hexane layer to yield the *n*-hexane extract (3.2 g). After removing MeOH from the aqueous layer, H_2O then added until one liter, the latter was partitioned with EtOAc (1 L) and then *n*-BuOH (1 L) successively. From each layer, the solvents were removed in vacuo to afford residues of 9.1 g (EtOAc), 21.4 g (*n*-BuOH), and 21.5 g (H₂O), respectively. The active *n*-BuOH soluble fraction was subjected to silica-gel column chromatography (CC) with a step gradient solvent system of CH₂Cl₂-MeOH-H₂O (30:10:1, 20:10:1, 10:5:1, and finally 7:5:1), to give six fractions (Fr. I to VI). Active fraction IV was applied to a silica-gel eluted with CH₂Cl₂-MeOH-H₂O (30:10:1) to give 5 fractions (Fr. IVa to IVe). Fraction IVb was further separated by HPLC on an ODS column with MeCN-H₂O (3:7) to give compound 1-3 (176, 32, and 128 mg, respectively). Compound 7 (15 mg) and 8 (22 mg) was purified by HPLC on an ODS column with MeCN-H₂O (37:63) and further with MeOH/0.05% TFAaq (65:35) from Fr. IVc. Fr. III was subjected to an ODS CC using a MeOH-H₂O (4:6 to 9:1) gradient solvent system give four fractions and then Fr. IIIc was purified by HPLC on a Polyamine-II column with MeCN-H₂O 82.5: 17.5) to afford compounds 5 (14 mg) and 6 (16 mg), respectively. Fr. V was separated by MPLC on an ODS using a MeOH-H₂O gradient (4:6 to 100:0) to give eight fractions. Fr. Vc was purified by HPLC on a Polyamine-II column with MeCN-H₂O (77.5:22.5) afforded compound **4** (18 mg). All separations was guided by brine shrimp lethality testing.

4.4. Identification of the component monosaccharides

Compounds (2 mg) were heated with 1 mol/L H₂SO₄ (1 mL) at 80 °C for 2 h with reaction mixtures washed with Et₂O, and aqueous layers neutralized with amberlite MB-3 resin and dried. Each residue dissolved in H₂O (100 μ L) and subjected to HPLC analysis equipped with an optical rotation detector. HPLC conditions: column, Polyamine-II (4.6 mm i.d. × 15 cm, YMC); column temp., 40 °C; mobile phase, MeCN-H₂O (4:1); flow rate, 1.0 mL/min; detection, OR-2090 detector (JASCO). Retention time and a symbol of optical rotation: p-Glc, 12.5 min, +; L-Ara, 8.3 min, +; L-Rha, 6.0 min, -; p-Api, 5.7 min, -; p-Xyl, 9.1 min, +.

4.5. Physenoside S1 (1)

White powder; $[\alpha]_D + 17.8^{\circ}$ (*c* 1.0, MeOH); for ¹H NMR spectrum (pyridine- d_5) assignments, see Table 1; and for ¹³C NMR (pyridine- d_5) assignments of the glycosidic parts, see Table 2; ¹³C NMR data of aglycone δ 15.0 (C-24), 17.3 (C-25), 17.6 (C-26), 18.1 (C-6), 23.2 (C-16), 23.7 (C-30), 24.0 (C-11), 26.1 (C-27), 28.3 (C-15), 30.8 (C-20), 32.7 (C-22), 33.1 (C-7), 33.1 (C-29), 34.1 (C-21), 37.0 (C-10), 40.0 (C-8), 41.9 (C-18), 42.4 (C-14), 42.7 (C-4), 44.1 (C-1), 46.2 (C-19), 47.3 (C-17), 47.8 (C-9), 48.5 (C-5), 65.6 (C-23), 70.4 (C-2), 83.1 (C-3), 122.9 (C-12), 144.1 (C-13), 176.2 (C-28); FABMS (negative ion mode) *m/z* 1191 [M–H]⁻, 1059 [M–132–H]⁻, 1029 [M–162–H]⁻, 913 [M–132–146–H]⁻, 649 [M–132×3–146–H]⁻; HRFABMS (positive-ion mode) *m/z* 1215.5790 [M+Na]⁺ (calcd. for 1215.5775 C₅₇H₉₂O₂₆Na).

4.6. Acid hydrolysis of 1

Compound **1** (10 mg) was dissolved in 1 mol/L H₂SO₄ (2 mL) and heated at 80 °C for 2 h. The reaction mixture was extracted with Et₂O, and the organic layer washed with saturated NaHCO₃, and solvent then removed. The residue was crystallized from MeOH to give **1a** as colorless needles. Bayogenin (**1a**): $[\alpha]_D$ +17.8° (c 1.0, MeOH); ¹H NMR (pyridine-*d*₅) δ 5.49 (1H, *t*, *J* = 3.6 Hz, H-12), 4.80 (1H, *ddd*, *J* = 3.9, 3.6, 3.6 Hz, H-2), 4.35, 3.68

(2H, each *d*, *J* = 10.8 Hz, H-23), 4.31 (1H, *d*, *J* = 3.9 Hz, H-3), 3.29 (1H, *dd*, *J* = 4.4, 13.4 Hz, H-18), 1.54 (3H, s, H-25), 1.33 (3H, s, H-24), 1.27 (3H, s, H-26), 1.07 (3H, s, H-27), 1.00 (3H, s, H-30), 0.93 (3H, s, H-29); ¹³C NMR (pyridine- d_5) δ 15.0 (C-24), 17.2 (C-25), 17.5 (C-26), 18.4 (C-6), 23.7 (C-16), 23.8 (C-30), 24.0 (C-11), 26.3 (C-27), 28.3 (C-15), 31.0 (C-20), 33.0 (C-22), 32.8 (C-7), 33.3 (C-29), 34.3 (C-21), 37.2 (C-10), 49.9 (C-8), 42.1 (C-18), 42.4 (C-14), 42.2 (C-4), 44.1 (C-1), 46.5 (C-19), 46.7 (C-17), 48.3 (C-9), 48.5 (C-5), 65.6 (C-23), 71.6 (C-2), 73.3 (C-3), 123.0 (C-12), 144.2 (C-13), 180.2 (C-28).

4.7. Alkaline hydrolysis of 1

Compound 1 (20 mg) was treated with 1 mol/L NaOHag at 80 °C for 30 min. The reaction mixture was acidified with 2 mol/L HCl, and then extracted with *n*-BuOH. The *n*-BuOH layer was washed with saturated NaHCO₃ and evaporated to dryness. The residue was chromatographed on a silica-gel with CH₂Cl₂-MeOH-H₂O (30:10:1) to give **1b** (10 mg). 3-O- β -D-glucopyranosyl bayogenin (**1b**): ¹H NMR (pyridine- d_5) δ 5.49 (1H, t, J = 3.6 Hz, H-12), 4.80 (1H, ddd, J = 3.9, 3.6, 3.6 Hz, H-2), 4.35, 3.68 (2H, each d, J = 10.8 Hz, H-23), 4.31 (1H, d, J = 3.9 Hz, H-3), 3.29 (1H, dd, J = 4.4, 13.4 Hz, H-18), 1.54 (3H, s, H-25), 1.33 (3H, s, H-24), 1.27 (3H, s, H-26), 1.07 (3H, s, H-27), 1.00 (3H, s, H-30), 0.93 (3H, s, H-29), 5.15 (1H, d, J = 7.8 Hz, H-1 of Glc), 4.17 (1H, dd, J = 7.8, 8.2 Hz, H-2 of Glc), 4.20 (1H, dd, J = 8.2, 8.7 Hz, H-3 of Glc), 4.16 (1H, dd, J = 8.7, 8.9 Hz, H-4 of Glc), 3.90 (1H, ddd, J = 8.9, 2.7, 5.0 Hz, H-5 of Glc), 4.45 (1H, dd, J = 2.7, 11.8 Hz, H-6a of Glc), 4.31 (1H, dd, J = 5.0, 11.8 Hz, H-6b of Glc); ¹³C NMR (pyridine- d_5) δ 15.0 (C-24), 17.2 (C-25), 17.5 (C-26),18.0 (C-6), 23.7 (C-16), 23.8 (C-30), 24.0 (C-11), 26.3 (C-27), 28.3 (C-15), 31.0 (C-20), 33.0 (C-22), 33.3 (C-7), 33.3 (C-29), 34.3 (C-21), 37.0 (C-10), 40.0 (C-8), 42.1 (C-18), 42.4 (C-14), 42.8 (C-4), 44.1 (C-1), 46.5 (C-19), 46.7 (C-17), 47.8 (C-9), 48.6 (C-5), 62.7 (Glc-1), 65.6 (C-23), 70.4 (C-2), 71.7 (Glc-4), 75.5 (Glc-2), 78.3 (Glc-5), 78.6 (Glc-3), 83.1 (C-3), 105.7 (Glc-1), 123.3 (C-12), 144.9 (C-13), 180.2 (C-28).

4.8. Physenoside S2 (2)

White powder; $[\alpha]_D$ +18.8° (*c* 0.6, MeOH); for ¹³C NMR (pyridine-*d*₅) assignments of the glycosidic parts: see Table 2. ¹³C NMR data of the aglycone were almost the same (within ±0.2 ppm) as those for compound **1**; FABMS (negative ion mode) *m*/*z* 1191 [M–H]⁻, 1159 [M–132–H]⁻, 1029 [M–162–H]⁻, 913 [M–132–146–H]⁻, 649 [M–132×3–146–H]⁻; HRFABMS (positive-ion mode) *m*/*z* 1215.5801 [M+Na]⁺ (calcd. for 1215.5775 C₅₇H₉₂O₂₆Na); Acid hydrolysis in the same manner as described above gave **1a**. Alkaline hydrolysis gave **1b**.

4.9. Physenoside S3 (3)

White powder; $[\alpha]_D$ +12.7° (*c* 0.9, MeOH); for ¹³C NMR (pyridine- d_5) assignments of the glycosidic parts: see Table 2. ¹³C NMR data of the aglycone were almost the same (within ±0.2 ppm) as those for compound **1**; FABMS (negative ion mode) m/z 1337 [M–H]⁻, 1205 [M–132–H]⁻, 1191 [M–146–H]⁻, 1175 [M–162–H]⁻, 649 [M–132×3–146×12–H]⁻; HRFABMS (positive-ion mode) m/z 1361.6371 [M+Na]⁺ (calcd. for 1361.6354 $C_{63}H_{102}O_{30}Na$); Acid hydrolysis in the same manner as described above gave **1a**. Alkaline hydrolysis gave **1b**.

4.10. Physenoside S4 (4)

White powder; $[\alpha]_D$ +16.6° (*c* 0.5, MeOH); for ¹³C NMR (pyridine-*d*₅) assignments of the glycosidic parts: see Table 2. ¹³C

NMR data of the aglycone were almost the same (within ±0.2 ppm) as those for compound **1**; FABMS (negative ion mode) m/z 1499 [M–H]⁻, 1367 [M–132–H]⁻, 1353 [M–146–H]⁻, 1337 [M–162–H]⁻, 1175 [M–162×2–H]⁻, 811 [M–132×3–146–H]⁻; HRFABMS (positive-ion mode) m/z 1523.6901 [M+Na]⁺ (calcd. for 1523.6882 C₆₉H₁₁₂O₃₅Na); Acid hydrolysis in the same manner as described above gave **1a**. Alkaline hydrolysis gave **1b**.

4.11. Physenoside S5 (5)

White powder; $[\alpha]_D$ +1.3 (*c* 1.0, MeOH); for ¹³C NMR (pyridined₅) assignments of the glycosidic parts: see Table 2. ¹³C NMR data of the aglycone were almost the same (within ±0.2 ppm) as those for compound **1**; FABMS (negative ion mode) m/z 1621 [M–H]⁻, 1489 [M–132–H]⁻, 1459 [M–162–H]⁻, 1343 [M–146–132–H]⁻, 649 [M–132×3–146–430–H]⁻, 441 [Acyl]⁻; HRFABMS (positiveion mode) *m*/*z* 1615.8252 [M+Na]⁺ (calcd. for 1615.8235 C₇₈H₁₂₈O₃₃Na); Acid hydrolysis in the same manner as described above gave **1a**. Alkaline hydrolysis gave **1b**.

4.12. Physenoside S6 (6)

White powder; $[\alpha]_D$ +10.2° (*c* 1.0, MeOH); for ¹³C NMR (pyridine-*d*₅) assignments of the glycosidic parts: see Table 2. ¹³C NMR data of the aglycone were almost the same (within ±0.2 ppm) as those for compound **1**; FABMS (negative ion mode) *m*/*z* 1621 [M–H]⁻, 1489 [M–132–H]⁻, 1459 [M–162–H]⁻, 1343 [M–146–132–H]⁻, 649 [M–132×3–146–430–H]⁻, 441 [Acyl]⁻; HRFABMS (positive-ion mode) *m*/*z* 1615.8239 [M+Na]⁺ (calcd. for 1615.8235 C₇₈H₁₂₈O₃₃Na); Acid hydrolysis in the same manner as described above gave **1a**. Alkaline hydrolysis gave **1b**.

4.13. Mild alkaline hydrolysis of 5 and 6

Each of the saponins (10 mg) was dissolved into 0.5 (w/v)% KO-Haq and left at 20 °C for 15 min. The reaction mixture was acidified by 1 mol/L HCl and extracted with EtOAc, and then the organic layer was washed with saturated NaHCO₃. The solvent was removed *in vacuo* from the EtOAc layer to afford corresponding 8/ 9-oxo-16- β -[(p-xylopyranosyl)oxy]hexadecanoic acid (**10** and **13**, respectively). The aqueous layer was extracted *n*-BuOH to give the corresponding saponin.

4.14. 8-oxo-16-β-[(D-xylopyranosyl)oxy]hexadecanoic acid (10)

White powder; $[\alpha]_D$ +52.1° (*c* 0.3, MeOH); ¹H NMR (pyridine-*d*₅) δ 1.26–1.41 (12H, m, H-4, H-5, H-11, H-12, H-13 and H-14), 1.58 (8H, m, H-3, H-6, H-10 and H-15), 2.15 (2H, t, J = 7.6 Hz, H-2), 2.44 (4H, m, H-7 and H-9), 3.15 (1H, dd, J = 7.5, 9.2 Hz, H-2 of Xyl), 3.18 (1H, dd, J = 10.3, 11.4 Hz, H-5a of Xyl), 3.31 (1H, dd, J = 8.7, 9.2 Hz, H-3 of Xyl), 3.47 (1H, d, J = 5.3, 8.7, 10.3 Hz, H-4 of Xyl), 3.53 (1H, *dt*, *J* = 9.6, 6.7 Hz, H-16a), 3.79 (1H, *dt*, *J* = 9.6, 6.7 Hz, H-16b), 3.84 (1H, dd, J = 5.2, 11.4 Hz, H-5b of Xyl), 4.18 (1H, d, J = 7.5 Hz, H-1 of Xyl); ¹³C NMR (pyridine- d_5) δ 24.5 (C-6), 24.8 (C-10), 25.8 (C-3), 26.9 (C-14), 29.7 (C-4), 30.2 (C-5), 30.4 (C-11, C-12 and C-13), 30.7 (C-15), 34.0 (C-2), 43.3 (C-7), 43.5 (C-9), 66.9 (Xyl-5), 70.9 (C-16), 71.2(Xyl-4), 74.9(Xyl-2), 77.9 (Xyl-3), 104.8(Xyl-1), 178.4 (C-1), 214.3 (C-8); HRFABMS (positive-ion mode) m/z 441.2450 [M+Na]⁺ (calcd. 441.2464 for C₂₁H₃₈O₈Na); Compound **10** (10 mg) was dissolved in 1 mol/L H₂SO₄ (2 ml) and heated at 80 °C for 2 h. The reaction mixture was extracted with Et₂O, and the organic layer washed with saturated NaHCO₃, and the solvent was removed to give **11** (5 mg).

4.15. 9-oxo-16- β -[(*D*-xylopyranosyl)oxy]hexadecanoic acid (**13**)

White powder; $[\alpha]_D$ +48.5° (*c* 0.3, MeOH); ¹H NMR (pyridine-*d*₅) δ 1.26–1.41 (12H, *m*, H-4, H-5, H-6, H-12, H-13 and H-14), 1.58 (8H, *m*, H-3, H-7, H-11 and H-15), 2.15 (2H, *t*, *J* = 7.6 Hz, H-2), 2.43 (4H, *m*, H-8 and H-10), 3.15 (1H, *dd*, *J* = 7.5, 9.2 Hz, H-2 of Xyl), 3.18 (1H, *dd*, *J* = 10.3, 11.4 Hz, H-5a of Xyl), 3.31 (1H, *dd*, *J* = 8.7, 9.2 Hz, H-3 of Xyl), 3.48 (1H, *d*, *J* = 5.3, 8.7, 10.3 Hz, H-4 of Xyl), 3.51 (1H, *dt*, *J* = 9.6, 6.7 Hz, H-16a), 3.80 (1H, *dt*, *J* = 9.6, 6.7 Hz, H-16b), 3.84 (1H, *dd*, *J* = 5.2, 11.4 Hz, H-5b of Xyl), 4.19 (1H, *d*, *J* = 7.5 Hz, H-1 of Xyl); ¹³C NMR (pyridine-*d*₅) δ 24.8 (C-7), 24.9 (C-11), 25.9 (C-3), 29.8 (C-4), 30.1 (C-5), 30.2 (C-6, C-12 and C-13), 30.7 (C-14 and C-15), 34.0 (C-2), 43.3 (C-8 and C-10), 66.9 (Xyl-5), 70.9 (C-16), 71.2(Xyl-4), 74.9(Xyl-2), 77.9 (Xyl-3), 105.1 (Xyl-1), 178.4 (C-1), 214.5 (C-9); HRFABMS (positive-ion mode) *m/z* 441.2488 [M+Na]⁺ (calcd. 441.2464 for C₂₁H₃₈O₈Na); Acid hydrolysis of **13** (10 mg) gave **14** (5 mg).

4.16. Preparation of methyl 16-trimethylsilyloxy-8/9oxohexadecanoate for EIMS

Trimethylsilyldiazomethane (20 μ L) was added to an EtOH solution (100 μ L) of compounds **11** or **14** (1 mg). After 1 h, the solvent was removed from the reaction mixture, and then added TMSI-H (100 μ L) to the residue. After 15 min, H₂O (1 drop) was added to stop the reaction, and the reaction mixture was extracted with *n*-hexane. The organic layer furnished methyl 16-trimethylsilyloxy-8/9-oxohexadecanoate (**12** and **15**, respectively).

4.17. Compound **9** (alkaline treatment product of Physenoside S7 (**7**) and S8 (**8**) with 2.5% NaOHaq)

White powder; $[\alpha]_D$ +6.9° (*c* 1.0, MeOH); for ¹³C NMR (pyridined₅) assignments of the glycosidic parts, see Table 2. ¹³C NMR (pyridine-d₅) data of the aglycone: δ 13.9 (C-24), 16.8 (C-25), 17.2 (C-26), 20.9 (C-6), 23.7 (C-11), 24.4 (C-30), 26.8 (C-27), 30.5 (C-20), 31.6 (C-22), 32.8 (C-29), 33.0 (C-7), 35.6 (C-15), 35.7 (C-21), 36.5 (C-10), 40.2 (C-8), 41.3 (C-18), 42.0 (C-14), 44.1 (C-1), 47.0 (C-19), 47.5 (C-9), 49.3 (C-17), 52.3 (C-5), 52.6 (C-4), 69.8 (C-2), 73.4 (C-16), 85.6 (C-3), 122.3 (C-12), 144.2 (C-13), 175.7 (C-28), 180.9 (C-23); FABMS (negative ion mode) *m/z* 1221 [M-H]⁻, 1089 [M-132-H]⁻, 1059 [M-162-H]⁻, 943 [M-132-146-H]⁻, 649 [M-132×3-146-H]⁻; HRFABMS (positive-ion mode) *m/z* 1245.5562 [M+Na]⁺ (calcd. for 1245.5516 C₅₇H₉₀O₂₈Na).

4.18. Physenoside S7 (7)

White powder; $[\alpha]_D$ +5.2° (*c* 1.0, MeOH); for ¹H NMR spectroscopic (pyridine-*d*₅) assignments, see Table 1, and for ¹³C NMR (pyridine-*d*₅) assignments of the glycosidic parts: see Table 2; ¹³C NMR data of the aglycone were almost the same (within ±0.2 ppm) as those for compound **9**; FABMS (negative ion mode) *m*/*z* 1621 [M–H]⁻, 1489 [M–132–H]⁻, 1459 [M–162–H]⁻, 1343 [M–132–146–H]⁻; Acid hydrolysis in the same manner as described above gave **9a**. Alkaline hydrolysis of **7** gave **9b**. Mild alkaline hydrolysis with 0.5 (w/v)% KOH*aq* also gave 8-oxo-16-β-[(p-xylopyranosyl)oxy]hexadecanoic acid (**10**).

4.19. Physenoside S8 (8)

White powder. $[\alpha]_D$ +1.2° (*c* 1.5, MeOH); for ¹H NMR spectroscopic (pyridine-*d*₅) assignments, see Table 1, and for ¹³C NMR (pyridine-*d*₅) assignments of the glycosidic parts, see Table 2. ¹³C NMR data of the aglycone were almost the same (within ±0.2 ppm) as those for compound **9**; FABMS (negative ion mode) *m*/z 1621 $[M-H]^-$, 1489 $[M-132-H]^-$, 1459 $[M-162-H]^-$, 1343 $[M-132-146-H]^-$; Acid hydrolysis in the same manner as described above gave **9a**. Alkaline hydrolysis of **8** gave **9b**. Mild alkaline hydrolysis with 0.5 (w/v)% KOH*aq* also gave 9-oxo-16- β -[(*p*-xylopyranosyl)oxy]hexadecanoic acid (**13**).

4.20. Brine shrimp lethality assay

The bioassay was performed in the similar way described in reference (Meyer et al., 1982; Anderson et al., 1991; Solis et al., 1993; Carballo et al., 2002). Brine shrimp eggs (Japan Pet Drugs Co., Tokyo, Japan) were hatched in artificial sea water prepared with commercial salt mixture (Senju Phamaceutical Co., Osaka, Japan) and oxygenated with an aquarium pump. After 48 h incubation at 28 °C, nauplii were collected with pasteur pipette after attracting the organisms to one side of vessel with a light source. Ten shrimps were transferred to each sample vial, and artificial sea water was added to make 2.5 mL. Samples for testing were made up to 1 mg/mL in artificial sea water (2.5 mL) except for water insoluble samples which were dissolved in 50 µL DMSO prior to adding sea water. Sample solutions (2.5 mL) were added to each test vial (finally, total 5 mL). The vials were maintained under illumination. Survivors were counted after 2 and 24 h, and the percent deaths at each dose and control were determined. DMSO in this concentration did not affect this bioassay. The LC₅₀ values were determined from 24 h counts using the probit analysis. The results are summarized in Table 3.

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (B) (14380289 and 15390013) from the Japan Society for the Promotion of Science.

References

- Anderson, J.E., Goetz, C.M., McLaughlin, J.L., Suffness, M., 1991. A blind comparison of simple bench-top bioassays and human tumour cell cytotoxicities as antitumor prescreens. Phytochem. Anal. 2, 107–111.
- Cao, S., Norris, A., Miller, J.S., Ratovoson, F., Birkinshaw, C., Andriantsiferana, R., Rasamison, V.E., Rakotonandrasana, S., Kingston, D.G., 2006. Cytotoxic compounds of *Physena madagascariensis* from the Madagascar rain forest paragraph sign. Nat Prod. Res. 20, 1157–1163.
- Carballo, J.L., Hernández-Inda, Z.L., Pérez, P., García-Grávalos, M.D., 2002. A comparison between two brine shrimp assays to detect *in vitro* cytotoxicity in marine natural products. BMC Biotechnol. 2, 17.
- Deas, A.H.B., Baker, E.A., Holloway, P.J., 1974. Identification of 16hydroxyoxohexadecanoic acid monomers in plant cutins. Phytochemistry 13, 1901–1905.
- Deng, Y., Jiang, T.Y., Sheng, S., Tianasoa-Ramamonjy, M., Snyder, J.K., 1999. Remangilones A-C, new cytotoxic triterpenes from *Physena madagascariensis*. J. Nat. Prod. 62, 471–476.
- Deng, Y., Lee, J.P., Tianasoa-Ramamonjy, M., Snyder, J.K., Des Etages, S.A., Kanada, D., Snyder, M.P., Turner, C.J., 2000. New antimicrobial flavanones from *Physena* madagascariensis. J. Nat. Prod. 63, 1082–1089.
- Dickison, W.C., Miller, R.B., 1993. Morphology and anatomy of the malagasy genus *Physena* (Physenaceae), with a discussion of the relationships of the genus. Adansonia 1–4, 85–106.
- Dimbi, M.Z., Warin, R., Delaude, C., Huls, R., Kapundu, M., 1984. Structure of zanhic acid and zanhic acid gamma-lactone, 2 novel triterpenoids from Zanha golungensis and Ganophyllum giganteum. Bull. Soc. Chim. Belg. 93, 323– 328.
- Jurenitsch, J., Lichtenberger, E., Robien, W., Jentzsch, K., 1986. About the constituents of Giant Golden Rod. Planta Med. 52, 236–238.
- Kasai, R., Okihara, M., Asakawa, J., Mizutani, K., Tanaka, O., 1979. ¹³C NMR study of α and β -anomeric pairs of D-mannopyranosides and L-rhamnopyranosides. Tetrahedron 35, 1427–1432.
- Kasai, R., Miyakoshi, M., Matsumoto, K., Nie, R.L., Zhou, J., Morita, T., Tanaka, O., 1986. Tubeimoside I, a new cyclic bisdesmoside from Chinese cucurbitaceous folk medicine "tu bei mu", a tuber of *Bolbostemma paniculatum*. Chem. Pharm. Bull. (Tokyo) 34, 3974–3977.
- Kitagawa, I., Hori, K., Sakagami, M., Hashiuchi, F., Yoshikawa, M., Ren, J., 1993. Saponin and sapogenol. XLIX. On the constituents of the roots of *Glycyrrhiza inflata* Batalin from Xinjiang, China. Characterization of two sweet oleanane-

type triterpene oligoglycosides, apioglycyrrhizin and araboglycyrrhizin. Chem. Pharm. Bull. 41, 1350–1357.

- Lavaud, C., Voutquenne, L., Massiot, G., le Men-Olivier, L., Das, B.C., Laprevote, O., Serani, L., Delaude, C., Becchi, M., 1998. Saponins from the stem bark of *Filicium decipiens*. Phytochemistry 47, 441–449.
- Marston, A., Gafner, F., Dossaji, S.F., Hostettmann, K., 1988. Fungicidal and molluscicidal saponins from *Dolichos kilimandscharicus*. Phytochemistry 27, 1325–1326.
- Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E., McLaughlin, J.L., 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 45, 31–34.
- Nagao, T., Hachiyama, S., Okabe, H., Yamauchi, T., 1989. Studies on the constituents of *Aster tataricus* L.f. II. Structures of Aster saponins isolated from the root.. Chem. Pharm. Bull. (Tokyo) 37, 1977–1983.
- Ray, A.K., Lin, Y.Y., Gerard, H.C., Chen, Z.J., Osman, S.F., Fett, W.F., Moreau, R.A., Stark, R.E., 1995. Separation and identification of lime cutin monomers by high performance liquid chromatography and mass spectrometry. Phytochemistry 38, 1361–1369.
- Sakai, K., Nagao, T., Okabe, H., 1999. Triterpenoid saponins from the ground part of *Aster ageratoides* var. *Ovatus.* Phytochemistry 51, 309–318.
- Samyn, J.M., 1999. Plantes Utiles des Hautes Terres de Madagascar. Graphoprint, Madagascar.
- Solis, P.N., Wright, C.W., Anderson, M.M., Gupta, M.P., Phillipson, J.D., 1993. A microwell cytotoxicity assay using *Artemia salina* (brine shrimp). Planta Med. 59, 250–252.