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Selective bifunctionalization of pyrido[2,3-d]pyrimidines in positions
2 and 4 by SNAr and palladium-catalyzed coupling reactions
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Abstract—Selective disubstitution of 2,4-dichloropyrido[2,3-d]pyrimidine with various nucleophiles was investigated. Suzuki and
Stille cross-coupling reactions on monosubstituted compound 4-tert-butylamino-2-chloro-pyrido[2,3-d]pyrimidine were performed
in high yields.
� 2005 Elsevier Ltd. All rights reserved.
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Pyrido[2,3-d]pyrimidines are known to be pharmacopho-
ric elements in numerous active compounds such as anti-
cancer,1–3 anti-viral,4,5 and anti-inflammatory agents.6

Many publications are devoted to the synthesis of poly-
substituted7,8 and fused pyrido[2,3-d]pyrimidine9,10 sys-
tem, most whose involve substitution on a pyridine
ring.11,12 Prior exploration on the reactivity of pyrim-
idine moiety has shown that substitution essentially
occurred at position 4.13

Aiming to extend pyrido[2,3-d]pyrimidine libraries, a
useful pathway has been developed to obtain pyr-
ido[2,3-d]pyrimidines, that are selectively substituted in
positions 2 and 4 with various nucleophiles.

We also describe two types of palladium-mediated cross-
coupling reactions (Suzuki and Stille) in position 4, lead-
ing to new dissymmetrical species.

Starting material: 2,4-dichloropyrido[2,3-d]pyrimidine 3
was prepared from 2-aminonicotinic acid 1 via 2,4-
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Scheme 1. Previous synthesis of 2,4-dichloropyrido[2,3-d]pyrimidine 3.
dihydroxypyrido[2,3-d]pyrimidine 2 following Robin
and Hitchings method14 (Scheme 1).

Compound 3 was easily substituted at position 4 with
different nucleophiles15 (Scheme 2). This position was
more reactive than position 2, as in simple pyrimidinic
systems.16 The structures were confirmed by NOESY
studies.
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Scheme 3. Reagents and conditions: (A) 1 equiv nucleophile, 1.05 equiv NaH, THF, 0 �C; (B) large excess tert-butylamine, THF, reflux overnight.
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The reactions proceeded in good yield with high selectiv-
ity for position 4, without an isomer in position 2.

The chlorine at position 2 of monosubstituted com-
pounds 4–6 could be substituted with several other nucleo-
philes17 to give products 7–12 as shown in Scheme 3.

The introduction of a tert-butylamino-group required
harsher conditions than for other nucleophiles such as
sodium ethoxide or sodium ethanethiolate, although
expected products were obtained in high yield (Table 1).

We also found that compounds 9 and 11 were easily
substituted at position 4 by sodium ethoxide under very
mild conditions, affording 1318 (Scheme 4). It should be
Table 1. Nucleophilic substitutions at position 4

R1 R2 Yield (%)

NH-t-Bu OEt 78
SEt 75

OBn NH-t-Bu 81
OEt 72

SPh NH-t-Bu 83
OEt 77
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noted that compound 7 (tert-butylamino-group in posi-
tion 4) did not react even under stringent conditions.

A similar reactivity was already observed with the
pyrido[4,3-d]pyrimidine system, as methylsulfanyl- or
anilino-groups in position 4 were also displaced
by nucleophiles.13

Position 2 was also functionalized using palladium-pro-
moted cross-coupling reactions performed on com-
pound 4. Suzuki19 and Stille20 conditions were applied
(Scheme 5). Unfortunately, the chlorine in position
N N

N

OEt

OEt

3 13  98%

7 13

9 13 79%

11 13  80%

EtONa 1 eq.
THF

R.T. overnight

13

N N

N

Cl N N

N

R3

"Pd"

4 14-26

Scheme 5. Suzuki conditions: boronic acid 1.05 equiv, Pd(PPh3)4
5 mol%, Na2CO3 2 equiv, DME/H2O, 75 �C. Stille conditions: tin
derivative 1.25 equiv, Pd(PPh3)4 5 mol%, toluene reflux then TBAF
1 M/THF.



Table 2. Cross-coupling yields

Reaction type R3 Reaction time Yield (%) Compd

Suzuki coupling Ph 10 min 92 14

o-MeOPh 1 h 90 15

m-MeCOPh 1 h 89 16

1-Naphtyl 1 h 88 17

4-Pyridyl 12 h 86 18

2-Furyl 2 h 90 19

2-Thiophenyl 4 h 80 20

3-Thiophenyl 4 h 84 21

Stille coupling Ph 1 h 80 14

2-Furyl 1 h 70 19

2-Thiophenyl 6 h 68 20

OEt O
HCl 10% Coupling: 1 h 71 22

Deprotection: 5 min 100 23

1 h 82 24

SnBu3
via 3 h 72 25

Me 1 h 78 26
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2 did not react under the Sonogashira or Heck
protocols.

The transformation proceeded under quite mild
conditions and reaction times were often short. The
experiments led to the expected compounds in excellent
yields (Table 2) even for ethoxyvinyl product 22, of
which derivatives are usually sensitive.
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The Suzuki and Stille coupling for different R3 groups
are summarized in Table 2. Interestingly, Stille coupling
with allenic tin derivatives afforded alkyne 25, which is
unreachable by the Sonogashira method in the present
case. Formation of 25 could be explained by a rapid
thermal isomerization of allenic intermediate 25 0 pro-
duced just after the cross-coupling. The possibility of a
base-catalyzed isomerization of 25 0 with fluoride anion
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from TBAF workup is less likely since compound 25
was also observed without this workup (Scheme 6).

To resume, disubstituted-pyrido[2,3-d]pyrimidines were
prepared by the means of easy and clean reactions. Posi-
tions 2 and 4 were diversified by introduction of various
nucleophiles. Two typical cross-coupling palladium-
mediated reactions were successfully investigated from
4-tert-butylamino-2-chloro-pyrido[2,3-d]pyrimidine. In
this way, a new alkyne species 25 was obtained.
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