

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 786–789

Isolation, synthesis, and anti-tumor activities of a novel class of podocarpic diterpenes

Yi Xiong,^a Kuiwu Wang,^a Yuanjiang Pan,^{a,*} Hongxiang Sun^b and Jue Tu^b

^aDepartment of Chemistry, Zhejiang University 310027, PR China ^bCollege of Animal Science, Zhejiang University 310027, PR China

Received 12 September 2005; revised 26 October 2005; accepted 8 November 2005 Available online 23 November 2005

Abstract—A novel unusual 17-carbon diterpenoid, named (+)-7-deoxynimbidiol, was isolated from the stalks of *Celastrus hypoleucus* (*Oliv.*) Warb. Its racemate and derivatives were synthesized, and the inhibitory activities of these compounds against four cultured human-tumor cell lines were evaluated. The structure–activity relationship was discussed. © 2005 Elsevier Ltd. All rights reserved.

Cancer remains the second leading cause of death in most of the countries and as a result there is a need for effective compounds. To totally synthesize and modify structure of bioactive natural products is an effective approach to find some potential compounds with anti-tumor activity. The natural tri-ring diterpene is a significant kind of potential anti-cancer agent.¹⁻⁵ Some tri-ring diterpenes from natural plants have been synthesized or modified, and their anti-tumor activities have been investigated.^{6–11} During our chemical studies on the bioactive compounds from the plants of Celastraceae family, a novel podocarpic diterpene (+)-7-deoxynimbidiol (Fig. 1)¹², which attracts our intensive interest for its good anti-tumor activity, was isolated from Celastrus hypoleucus. We wish to find some potent anti-tumor agents by modifying the structure of (+)-7-deoxynimbidiol.

In this paper, we report a convenient and high-yield route to totally synthesize the (\pm) -7-deoxynimbidiol (1)and its diastereoisomer named *cis*- (\pm) -7-deoxynimbidiol $(2)^{13}$ along with isolation of (+)-7-deoxynimbidiol. In modifying the structure of 1, two different approaches were designed to find out the pharmacophore including etherification of the phenolic hydroxyl with the substituted benzyl bromide and oxidation of the C-6 or C-7. The diastereoisomer 2 was treated in a similar manner. A class of analogs of the (+)-7-deoxynimbidiol (all the

Keywords: Diterpene; Isolation; Synthesis; Anti-tumor activity.

compounds are racemic) were synthesized, and their anti-tumor activities against four cultured human-tumor cell lines (HeLa, A549, CNE, and MCF) have been investigated.

The shade-dried stalks (10 kg) were extracted with methanol, and 514 g of extract was obtained, which was partitioned with petroleum ether, EtOAc, and *n*-BuOH successively. The petroleum ether extract (103 g) was subjected to column chromatography (CC) over silica gel (200–300 mesh, 2 kg) eluting with petroleum ether/ EtOAc (10:0–0:10, gradients) to afford 5 fractions. First fraction was separated on silica gel CC (300–400 mesh, 100 g) repeatedly, using *n*-hexane/acetone (20:1) as eluent to yield pure (+)-7-deoxynimbidiol (20.1 mg).

Synthesis of the (\pm) -7-deoxynimbidiol was from the cyclization reaction of geranic acid **3**. The cyclocitric acid **4** was methylated by dimethyl sulfate in acetone with the presence of potassium carbonate. Methyl ester cyclocitric acid **5** was reduced by LiAlH₄ in absolute diethyl ether, and then the obtained cyclocitric alcohol

Figure 1. The structure of (+)-7-deoxynimbidiol.

^{*} Corresponding author. Tel.: +86 571 87951264; fax: +86 571 87951264; e-mail: panyuanjiang@css.zju.edu.cn

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.11.023

Scheme 1. Reagents and conditions: (a) 85% phosphate acid, toluene, 100 °C, 2 h, 82%; (b) Me₂SO₄, K₂CO₃, acetone, rt, 5 h, 91%; (c) Ar, LiAlH₄, absolute diethyl ether, rt, 4 h, 85%; (d) PCC, CH₂Cl₂, rt, 4 h, 55%; (e) Ar, *n*-BuLi, 3,4-dimethyl-benzyl triphenyl phosphonium chloride, absolute THF, rt, 6 h, 74.5%; (f) H₂, 10% Pd/C, diethyl ether, 30 min, quantitative yield; (g) BF₃·(C₂H₃)O, CH₂Cl₂, 24 h, 83.5%; (h) BBr₃, CH₂Cl₂, 0–5 °C, 2 h.

Scheme 2. Reagents and conditions: (a) substituted benzyl bromide, NaI, K₂CO₃, acetone, reflux, 5 h.

6 was dissolved in methylene chloride and oxidized by the pyridine chromium trioxide chloride (PCC) to get cyclocitric aldehyde **7** (35% yields of total four steps). After **7** was added to the clear solution of *n*-BuLi and 3,4-dimethyl-benzyl triphenyl phosphonium chloride in absolute THF at room temperature, the mixture was stirred for 3 h to yield the olefin **8** (74.5%). The double bond at C6-C7 of **8** was hydrogenated with H₂ and 10% Pd/C in diethyl ether to yield **9** (quantitative yield). **9** was treated with the boron trifluoride etherate $(BF_3 \cdot (C_2H_5)_2O)$ in methylene chloride at room temperature and the mixture stood for 24 h, given the product **10** and its diastereoisomer **11** (isomer ratio = 2:1). Treatment of the methyl ether **10** with boron tribromide in methylene chloride at 0–5 °C for 2 h yielded the target molecular (±)-7-deoxynimbidiol (76.3%). The diastereoisomer **2** was obtained from **11** in the same manner as described above (74.5%) (Scheme 1). Compound **1** was

Scheme 3. Reagents and conditions: (a) CrO₃, CH₂Cl₂, rt, 2 h; (b) CrO₃, CH₂Cl₂, 50 °C, 2 h; (c) BBr₃, CH₂Cl₂, 0-5 °C, 2 h.

Table 1. Biological activities of the synthesized compounds

Compound	HeLa ^a IC ₅₀ (µg/ml) ^b	A549 IC ₅₀ (µg/ml)	CNE IC50 (µg/ml)	MCF IC50 (µg/ml)
1	24.3 (±0.98)	19.6 (±0.22)	25.1 (±0.17)	41.2 (±0.11)
2	10.9 (±0.48)	5.7 (±0.24)	3.6 (±0.22)	9.6 (±0. 51)
10	41.5 (±0.23)	41.7 (±0.09)	25.1 (±0.25)	39.5 (±0.07)
11	13.2 (±0.04)	9.6 (±0.07)	4.5 (±0.09)	10.9 (±0.11)
1a	>50	>50	>50	>50
1b	>50	>50	>50	>50
1c	>50	>50	>50	>50
1d	>50	>50	>50	>50
1e	>50	>50	>50	>50
1f	>50	>50	>50	>50
2a	42.2 (±0.07)	46.9 (±0.15)	27.2 (±0.04)	>50
2b	15.3 (±0.97)	13.7 (±0.27)	7.2 (±0.16)	12.4 (±0.09)
2c	>50	36.4 (±0.18)	32.9 (±0.34)	>50
2d	>50	>50	>50	>50
2e	13.4 (±0.25)	35.0 (±0.33)	17.8 (±0.78)	42.9 (±0.05)
2f	18.6 (±0.08)	>50	>50	>50
12	12.7 (±0.13)	26.3 (±0.08)	3.1 (±0.05)	7.8 (±0.22)
13	16.1 (±0.09)	33.8 (±0.06)	5.6 (±0.54)	16.5 (±0.07)
14	25.7 (±0.06)	>50	>50	>50
15	17.6 (±0.45)	>50	13.5 (±0.02)	36.2 (±0.14)
16	18.0 (±0.09)	25.8 (±0.11)	9.1 (±0.12)	24.8 (±0.12)
17	27.7 (±0.02)	>50	22.1 (±0.07)	>50
(+)-7-Deoxynimbidiol	42.0 (±1.25)	36.1 (±0.03)	12.1 (±0.33)	36.5 (±0.04)
CDDP ^c	5.89 (±0.15)	3.58 (±0.14)	2.34 (±0.04)	6.53 (±0.25)

^a Cultured human-tumor cell lines: HeLa, cervical carcinoma; A549, lung adenocarcinoma; CNE, nasopharyngeal carcinoma; MCF, breast adenocarcinoma.

^b Values are means of three experiments, standard deviation is given in parentheses.

^c CDDP was used as positive control.

added to the mixture of sodium iodide, potassium carbonate, and substituted benzyl bromide in acetone, and then the mixture was stirred at 50-60 °C for 5 h to give the products **1a–1f** in which 12-OH or 13-OH was

etherified solely. In the same method, we obtained the compounds 2a-2f from compound 2. The ratio of 12-substituted products and 13-substituted products was 1:1 (Scheme 2).

Figure 2. Comparison of the backbone structures of compounds 1 and 2.

Treatment of the compound 11 with chromium trioxide in acetic acid at room temperature for 2 h yielded the C-7 oxidized compound 12 (81.3%). When the temperature was increased to 50 °C, compound 13 (66.5%) in which both C-7 and C-6 were oxidized appeared. But for the compound 10, we didnot find the further oxidized product besides compound 14 (85.6%) obtained by oxidizing C-7. The compounds 12, 13, and 14 were demethylated with boron tribromide in methylene chloride at 0-5 °C for 2 h to yield 15 (58.2%), 16 (44.7%), and the known nature product (\pm)-nimbidiol 17 (62.4%), respectively (Scheme 3).

The biologic activities of (+)-7-deoxynimbidiol and all synthesized compounds were assessed against cultured human-tumor cell lines using the MTT assay¹⁴ (Table 1). Compounds 2, 11, 2b, 2e, and 12 showed potential activities against HeLa; compounds 2, 11, and 2b showed potential activities against A549; compounds 2, 11, 2b, 12, 13, and 16 showed potential activities against CNE; compounds 2, 11, 2b, and 12 showed potential activities against MCF. As shown in Table 1, the racemate 1 showed better activity than the (+)-enantiomer against HeLa and A549. The compounds in which 13-OH was etherified (2e, 2d, and 2f) had as much potent activity as those in which 12-OH was etherified (2a, 2b, and 2c). Comparing the methylated compounds with those demethylated, the anti-cancer activity had no obvious contrast. We obtained an attractive matter from Table 1 that the bioactivities of the compounds with 5- β -H were prominently better than those of the analogs with 5- α -H. With the purpose of developing a preliminary SAR concept, the major conformations of compounds 1 and 2 were investigated with MM2 energy minimization by Chem3D program (Fig. 2). The skeleton of the tricycle of the compound 1 was found close to planar configuration, but that of the compound 2 showed distinctly a hooked configuration. Further research of the relation between this structural diversity and the bioactivity is in progress.

In summary, a novel podocarpic diterpene (+)-7-deoxynimbidiol was isolated and synthesized conveniently, whose structure was modified as a lead compound. 2, 11, and 2b were identified to have potent anti-cancer activity. Further SAR studies to find more potent antagonists are being pursued.

Acknowledgment

The generous financial support of Natural Science Foundation of China (20472073) was gratefully acknowledged.

References and notes

- Ara, I.; Siddiqui, B. S.; Faizi, S.; Siddique, S. J. Nat. Prod. 1988, 51, 1054.
- 2. Pettit, G. R.; Tan, R. J. Nat. Prod. 2004, 67, 1476.
- Son, K. H.; Oh, H. M.; Choi, S. K.; Han, D. C.; Kwon, B. M. Bioorg. Med. Chem. Lett. 2005, 15, 2019.
- 4. Valente, C.; Pedro, M.; Duarte, A. J. Nat. Prod. 2004, 67, 902.
- Gunasekera, S. P.; Cordell, G. A.; Farnbworth, N. R. J. Nat. Prod. 1979, 49, 658.
- Harring, S. R.; Livinghouse, T. Tetrahedron Lett. 1989, 30, 1499.
- 7. Edstrom, E. D.; Livinghouse, T. J. Org. Chem. 1987, 52, 949.
- Manuel, A.; Liliana, B. G.; Miguel, A. G Bioorg. Med. Chem. 2003, 11, 3171.
- Yang, Z. X.; Kitano, Y.; Chiba, K.; Shibata, N.; Kurokawa, H.; Doi, Y.; Arakawa, Y.; Tada, M. *Bioorg. Med. Chem.* 2001, 9, 347.
- 10. Hang, S. C.; Ho, C. T.; Lin-Shiau, S. Y. Biochemical Pharmacol. 2005, 69, 221.
- Majetich, G.; Liu, S.; Fang, J.; Siesel, D.; Zhang, Y. J. Org. Chem. 1997, 62, 6928.
- 12. Physical characters and spectral data for the (+)-7deoxynimbidiol. White powder; mp (petroleum ether/ EtOAc (5:1)) 90–92°; $[\alpha]_{20}^{20} = +49.44^{\circ}$ (*c* 0.10, MeOH); UV (MeOH) λ_{max} : 288, 212 nm; IR (KBr) cm⁻¹: 3362, 1607, 1515; ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (s, 3 H, H-C(15)), 0.93 (s, 3H, H-C(16)), 1.14 (s, 3H, H-C(17)), 1.17– 1.75 (m, 7H, H-C(1,2,3,5,6)), 1.85 (m, 1H, H-C(6)), 2.15 (m, 1H, H-C(1)), 2.78 (m, 2H, H-C(7)), 6.52 (s, 1H, H-C(14)), 6.75 (s, 1H, H-C(11)); ¹³C NMR (CDCl₃, 125 MHz) δ 19.33 (t, C-2), 19.58 (t, C-6), 21.81 (q, C-16), 25.04 (q, C-17), 30.02 (t, C-7), 33.52 (q, C-15), 33.62 (s, C-4), 37.59 (s, C-10), 39.31 (t, C-1), 41.89 (t, C-3), 50.81 (d, C-5), 111.70 (d, C-11), 115.47 (d, C-14), 128.31 (s, C-8), 141.19 (s, C-13), 141.52 (s, C-12), 143.58 (s, C-9); HRMS (ESI) calcd for C₁₇H₂₄O₂Na [M+Na]⁺ 283.1669 found 283.1667.
- 13. Spectral data for the key compounds **1** and **2**. Compound **1**, ¹H NMR (CDCl₃, 500 MHz) δ 0.92 (s, 3 H), 0.95 (s, 3H), 1.15 (s, 3H), 1.19–1.76 (m, 7H), 1.86 (m, 1H), 2.16 (m, 1H), 2.79 (m, 2H), 5.08 (b, 2H), 6.53 (s, 1H), 6.77 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.31, 19.56, 21.82, 25.13, 30.06, 33.54, 33.62, 37.60, 39.29, 41.89, 50.73, 111.71, 115.41, 128.25, 141.19, 141.54, 143.55; HRMS (ESI) calcd for C₁₇H₂₄O₂Na [M+Na]⁺ 283.1669 found 283.1673. Compound **2**, ¹H NMR (CDCl₃, 500 MHz) δ 0.41 (s, 3H), 0.91 (s, 3H), 1.11 (s, 3H), 1.25–1.47 (m, 6H), 1.92 (m, 1H), 2.14 (m, 1H), 2.28 (m, 1H), 2.76 (m, 2H), 4.92 (b, 2H), 6.53 (s, 1H), 6.79 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 18.28, 19.53, 22.95, 25.85, 32.98, 34.65, 34.75, 36.99, 38.51, 43.41, 50.21, 111.59, 115.71, 130.41, 137.01, 141.00, 141.39; HRMS (ESI) calcd for C₁₇H₂₄O₂Na [M+Na]⁺ 283.1669 found 283.1671.
- Araki, T.; Enokido, Y.; Inamura, N.; Aizawa, S.; Reed, J. C.; Hatanaka, H. *Brain Res.* **1998**, *794*, 239.