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Abstract—Oxindoles 3b–d (91–98% ee) having a chiral quaternary carbon center at the C-3 position were prepared from readily
available oxindoles 5a–c in 50–64% overall yields, in which an enantioselective desymmetrization of prochiral 1,3-diols 2b–d using
a Candida rugosa lipase (Meito OF) and 1-ethoxyvinyl 2-furoate 1 was employed as the key step. © 2001 Elsevier Science Ltd.
All rights reserved.

Many biologically important indole alkaloids such as
spirotryprostatins A and B, (−)-physostigmine, and (−)-
esermethole, have a common structure; viz., indoline I
with a chiral, nonracemic quaternary carbon center at
the C-3 position.1–3 Effective construction of the chiral
quaternary carbon has been one of the pivotal issues
for their asymmetric total synthesis, for which a variety
of methodologies have been developed based on the
enantio- or diastereoselective carbon�carbon bond for-
mation at the C-3 position.4 On the other hand, neither
chemical nor biocatalytic enantioselective desym-
metrization of the prochiral substrates II having two

identical carbon substituents at the C-3 position has
been reported. Especially an effective enzymatic desym-
metrization of a diol II (R5=CH2OH) must provide a
useful alternative for the preparation of optically active
I having the advantages of the easy, safe operation and
the divergent derivatization to either enantiomer as
have often been emphasized in many successful enzy-
matic reactions5 (Scheme 1).

Very recently, the first attempt on the desymmetrization
of II (R5=CH2OH) was reported; however, the reac-
tion did not proceed.6 Alternatively, the authors have

Scheme 1.
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achieved the desymmetrization by an enantioselective
hydrolysis of a prochiral diester II (R5=CH2OCOEt)
to give the product with 95% ee in 38% yield after 5
days. We present herein a highly effective desym-
metrization of the diols 2 using a prominent acyl donor,
1-ethoxyvinyl 2-furoate 1.7 The products 3 were
obtained with 91–98% ee in 68–79% yields. The pre-
sented desymmetrization method is quite useful in
terms of the short step and the good overall yield from
readily available oxindoles 5a–c.

The majority of the natural indole alkaloids are
classified as either compounds having no substituent at
the C-4 through C-7 positions of the indole skeleton or
those having an oxygen substituent at the C-5 or C-6
position. Aiming at production of chiral synthons use-
ful for total synthesis of these natural products, the
substrates 2a–d were subjected to the desymmetrization.
However, we encountered a serious problem when we
applied the reaction conditions [Candida rugosa lipase
(Meito MY), wet iPr2O] used in our previous work7a to
2a. Thus, the very poor solubility of 2a in iPr2O
became an obstacle to its fast esterification and resulted
in enhancement of the further esterification of the solu-
ble product 3a to provide the diester 4a exclusively.
Although 2a was soluble in polar solvents such as THF,
dioxane and acetonitrile, the lipase MY-catalyzed reac-
tion did not proceed. After investigation of the solvent
system and the lipase, the use of a Candida rugosa
lipase (Meito OF) in a mixed solvent (iPr2O–THF) was
found to be effective.8 Some different ratios of these
two solvents were examined in each case of 2a–d, and
the best results were summarized in Table 1. The ratio
of iPr2O to THF around 5:1 was usually the best
choice, and the N-Boc derivatives 2b–d were found to
be suitable substrates (entries 2–4). In the case of 2c,
use of iPr2O alone gave a better result than the mixed
solvent providing 3c (98% ee, 77% yield) within 3 h

(entry 3). Optically pure 3d (>99% ee) was obtained by
single recrystallization of 3d (91% ee) from benzene.9

The diols 2a–d were readily prepared from commercial
5a or the known oxindoles 5b4a and 5c10 in good yields
(Scheme 2).11–13 The presented method is useful,
because 3b and 3c (97–98% ee), for instance, were
obtained in three steps in 50–53% overall yields from 5a
and 5b, respectively.
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