PHOSPHORYLATED 3-THIOINDOLES

P. A. Gurevich, T. V. Komina, G. Yu. Klimentova, T. V. Zykova, and G. I. Ruzal'

Phosphorylated mercaptoindoles are not described in the literature, although their biological activity is no doubt of interest. It has already been found [3] that certain derivatives of P^{3+} acids are used as N- and C³-phosphorylating agents.

In the present work we showed that in the reaction of 3-mercaptoindole (I) [1] with chlorides of P^{3+} acids, mixtures of S- and N-phosphorylation products (II-IV and IX-XI) are formed in a ratio depending on the reaction temperature.

II, IX : $R=R^1=NEt_2$; III, VI. X: $R=R^4=OEt$; IV, XI. R-OEt, $R^1=NEt_2$; V : $R=R^1=OMe$; VII: $R=R^1=CH_2CI$; VIII: R=-CH=CHOEt, $R^1=indoly1-3-thio$; II-IV, IX-XI: Z = (none), P^{3+} ; V, VI, Z=S; VII, VIII: Z=0.

According to the data of ^{31}P NMR spectrum, at -15°C in the reaction products there are 85% of II-IV and 15% of IX-XI, at 5°C 60 and 40%, respectively, and at the temperature of boiling ether, 50 and 50%. Hence, the mercapto group is more reactive in the reaction with chlorides of P³⁺ acids.

Chlorides of P^{5+} acids selectively phosphorylate I in boiling benzene at the SH group. Thiophosphoryl chlorides are thus less active [2] in these reactions. It requires 4.5-5 h to complete their reaction with I, while with phosphoryl and phosphonyl chlorides the reaction is completed after 3-3.5 h.

 β -Ethoxyvinylphosphonyl dichloride reacts with I in benzene already at room temperature in the presence of a two- to threefold excess of Et₃N. By frequently removing the Et₃N·HCl precipitate that separates out, the reaction can be completed in 16-18 h. Increase in temperature to 50-60°C shortens the duration of the reaction to 4-5 h.

Com-	Yield.	bp, °C,		Found, %				Empirical	Calculated, %			
pound	%	mm Hg (mp, °C)	831P	с	н	N	Р	formula	с	н	N	р
Ш	50,0	Light- yellow	136	59,30	8,01	12,80	9,34	$C_{16}H_{26}N_3PS$	59,41	8,10	12,99	9, 38
111	61,8	$\frac{124,6}{0,09}$	126	53,38	5,84	5,53	11,08	C ₁₂ H ₁₆ NO ₂ PS	5 3 ,5 2	5, 9 9	5,20	11,50
IV	47,0	$\frac{117-8}{0,08}$	134	56,61	7,01	9,80	10,11	C ₁₄ H ₂₁ N ₂ OPS	56,74	7,14	9,45	10,45
V VI VII VIII	78,2 82,7 63,0 87,0	(90-2) (78-9) (110-1) (162-3)	80 82 35 28	43,81 47,71 40,70 58,05	4,30 5,20 3,41 4,28	5,43 4,91 4,82 6,70	11,02 10,08 10,27 7,50	C ₁₀ H ₁₂ NO ₂ PS ₂ C ₁₂ H ₁₆ NO ₂ PS ₂ C ₁₀ H ₁₀ NCI ₂ OPS ₂ C ₂₀ H ₁₈ N ₂ O ₂ PS ₂	43,94 47,82 40,83 58,17	4,43 5,35 3,43 4,30	5,12 4,64 4,76 6,77	11,33 10,27 10,53 7,50
I X	45,0	$\frac{54-6}{0.08}$	105	65,68	8,83	14,25	10,47	C ₁₆ H ₂₆ N ₃ PS	65,71	8,96	14,37	10,59
Х	36,2	<u>83-5</u> 0,09	128	53,41	5,88	5,47	11,20	C ₁₂ H ₁₆ NO ₂ PS	53,5 2	5,99	5,20	11,50
XI	30,7	$\frac{117-9}{0,08}$	122	56,63	7,03	9,14	10,53	C ₁₄ H ₂₁ N ₂ OPS	56,74	7,14	9,45	10,43

TABLE 1. Chemical Characteristic of Phosphonylthioindoles

S. M. Kirov Kazan' Chemical Engineering Institute. Translated from Khimiko-farmatsevticheskii Zhurnal, Vol. 18, No. 7, pp. 833-835, July, 1984. Original article submitted January 9, 1984.

TAE	SLE	2.	Ant:	imicr	obia]	L Act	civity
of	3 - I	Phos	hon	vlthi	oindo	les	V-VIII

punoc	Menin- gococ- cus	Staphyl- ococcus-	Strepto- coccus	Diphteria bacillus		
Comp	minima tion, g/	l b acte ri /ml	cidal cor	ncentra-		
V VI VII VIII	$0,0005 \\ 0,0005 \\ 0,0025 \\ 0,0025 \\ 0,0025$	 0,001 	 0,001 0,001	0,005 0,001 0,001 0,001		

In the PMR spectra of II and VII there are resonance signals, δ , ppm: for II at 1.05 t (CH₃, J_{HH} = 5 Hz); 3.32 q (CH₂, J_{HH} = 5 Hz); 7.05 (C₂-H), 7.22-8.10 m (benzene ring); for VII, 4.4 q (CH₂, J_{PH} = 10.1 Hz); 6.8 (CH₂-H); 7.3-8.1 m (benzene ring). The resonance of the N-H proton does not appear in the spectrum because of great broadening and partial deutero exchange with the deutero solvent.

In the IR spectra of IV-VII there are appear absorption bands, v_{max} , cm⁻¹: at 3415, 3250 (NH), 1615-1617 (indole ring), 1193 (P=0), 1010, 1017 (P-O-C), 675 (P=S).

EXPERIMENTAL CHEMISTRY

The IR spectra were run on the UR-20 spectrophotometer and the NMR spectra on the WP-80 spectrometer. The chemical shifts of the ¹H nuclei were measured with reference to TMS and of the ³¹P nuclei with reference to H_3PO_4 .

3-S-(0,0-Diethylthiophosphitoyl)indole (III) and 1-(0,0-diethylphosphitoyl)-3-thioindole (X). An ethereal solution of 15.65 g of diethyl chlorophosphite is added dropwise at -15° C in an inert atmosphere to 300 ml of an ethereal solution of 7.45 g of 3-mercaptoindole and 10.1 g of Et₃N. The reaction mixture in held at the above temperature for 3 h, and at room temperature for 4 h. After separation of the Et₃N·HCl precipitate and removal of the solvent, 8.31 g (61.8%) of III and 4.87 g (36.2%) of X are chromatographically isolated on a column with SiO₂. A 3:1 mixture of absolute benzene and ether serves as eluent. The products are distilled *in vacuo*. Compounds II, IV, IX, and XI are obtained in a similar way (Table 1).

<u>3-S-(Bis-chloromethylphosphinatoyl)indole (VII).</u> A mixture of 11.15 g of 3-mercaptoindole, 7.5 g of Et₃N and 13.35 g of bis(chloromethyl)phosphinyl chloride in 250 ml of absolute benzene is heated for 3.5 h in a dry atmosphere, while maintaining the temperature in the bath at 120-130°C. After the removal of Et₃N·HCl and distillation of the solvent *in vacuo*, the residue is recrystallized from CHCl₃. Yield, 17.48 g (63%) of VII. Compounds V and VI are obtained in a similar way.

EXPERIMENTAL BIOLOGY

The antimicrobial activity was studied on the example of the more stable compounds V-VIII by the method of serial dilutions in a liquid serial medium [1] with respect to four types of bacteria. The compounds studied were found to be slightly active toward gram-positive and gram-negative bacteria (Table 2).

LITERATURE CITED

- Methods of Experimental Chemotherapy [in Russian], 2nd edn., (G. N. Pershin, ed.), Moscow (1971), p. 357.
- É. E. Nifant'ev, Chemistry of Organophosphorus Compounds [in Russian], Moscow (1971), p. 255.
- 3. A. I. Razumov, P. A. Gurevich, S. A. Muslimov, et al., Zh. Obshch. Khim., <u>50</u>, No. 4, 778-783 (1980).
- 4. P. L. N. Harris, Tetrahedron Lett., <u>51</u>,4465-4466 (1969).