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Efficient a-Helix Induction in a Linear
Peptide Chain by N-Capping with
a Bridged-tricyclic Diproline Analogue

Secondary structure induction : The syn-
thetic tricyclic amino acid ProM-5, which
is formally created by stereoselective
introduction of a vinylidene bridge into
a di-proline unit, acts as a powerful
scaffold to nucleate a-helix formation in
a linear peptide chain. This might be
exploited in the development of new
proteomimetics for the modulation of
protein interactions.
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The recognition of short amino acid sequences forming an a-
helical motif represents an important event in many protein–
protein interactions (PPI), and misfolding of such motifs is
often associated with diseases, including cancer and HIV.[1–3]

Accordingly, the search for synthetic compounds stabilizing
or mimicking the relevant secondary structure while properly
presenting the key interaction residues to the recognizing
protein surface constitutes a great challenge.[4] As the key
structural properties defining the PPI of interest and their
contribution to the free energy of the PPI are mostly not
known, it would be attractive to identify these properties by
using modified linear peptides with a defined (stabilized)
secondary structure. However, conformational stabilization
of a linear peptide is a complex task and several strategies
were developed to address this problem. For instance, the
helical propensity can be enhanced by means of a chemical
linkage between the side chains of i and i + 4 residues.[5]

Another concept uses unnatural oligomers such as peptoids[6]

or ß-peptides[7] adopting a helical conformation. Since mostly
the surface built by the side chains of the residues i, i + 3 and/
or i + 4, and i + 7 is important for a-helix recognition,
conformationally restricted scaffolds that orient functional
residues in spatially defined positions (resembling the amino
acid side chains) are promising mimics of short a-helical
peptides.[8] An elegant concept was introduced by Kemp and
co-workers who devised conformationally restricted diproline
templates positioned at the N-terminus of a peptide.[9] By pre-
orienting the first four hydrogen bonds they achieved a bias in
favor of the a-helical secondary structure. However, the
effects were not particularly pronounced owing to the
biconformational behavior of the used scaffold in which the
two proline units were bridged by a flexible thiomethylene

unit and only one of two conformers (equally populated in
solution) exhibited the desired helix-inducing properties.[10]

Supported by molecular modeling, we envisioned that the
scaffold ProM-5[11] (1), that is, a Pro-Pro analogue made rigid
by means of an ethylidene bridge, should display better
properties than the a-helix-inducing N-cap presented by
Kemp[9,10] because it should exhibit a more or less mono-
conformational behavior (Figure 1).

According to our own modeling studies, and in agreement
with the results of Kemp,[10] we expected the a-helix-inducing
capacity of the tricyclic scaffold 1 being strengthened through
attachment of an Ac-bHAsp residue to the N-terminus
(Figure 2).

For the synthesis of the designed scaffold 1, we devised the
strategy sketched in Scheme 1. As a key feature, the bridged
ring system is generated through Ru-catalyzed ring-closing
metathesis from a dipeptidic precursor (2), which in turn
would be derived from two protected vinylproline building
blocks of type 3 and 4.

Figure 1. Structural representation of ProM-5 (1). The vinylidene
bridge restricts the flexibility of the 8-membered ring strongly favoring
the desired conformer 1b. The energy difference between the con-
formers 1a and 1b was calculated based on DFT minimizations of
both conformers in water (for details, see the Supporting Information).

Scheme 1. Retrosynthetic analysis of 1.
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As protecting groups, the combination of a N-Boc and
a tert-butyl ester appeared to be most promising according to
our previous experience.[12] The required building block of
type 3, that is, the (so far unknown) N-Boc-protected cis-4-
vinylproline derivative 12, was synthesized in a seven-step
sequence (Scheme 2).

Starting from commercially available (S)-trans-4-hydrox-
yproline (5), the double protected derivative 7 was prepared
in high yield through methyl ester formation and Boc
protection.[13] Activation of the OH group by tosylation[14]

and treatment of the resulting intermediate 8 with NaCN in
DMSO at 80 8C then afforded the SN2 substitution product 9
with good diastereoselectivity (14:1).[15] Attempts to convert
the nitrile to an aldehyde function through Raney-Ni-
mediated hydrogenation[12] was associated with an epimeri-
zation at the 4-position, affording a 1:2 (cis/trans) mixture of
diastereomeric aldehydes. In contrast, the reduction of 9 with
DIBALH (3 equiv) proceeded without epimerization. The
crude product (isolated in 62% yield and identified by NMR
as the hemiacetal 10) was directly converted by Wittig
reaction to afford the vinyl prolinol derivative 11 as the

pure cis isomer after chromatography.[16] Finally, the re-
oxidation of the side chain was achieved under mild
conditions by TEMPO-mediated oxidation with bis-
(acetoxy)iodobenzene (BAIB) in MeCN/water.[17] This way,
the building block 12 was obtained (in 12% overall yield from
5). Its relative configuration was secured by X-ray analysis
(Figure 3).

The second building block, that is, the trans-5-vinyl-
proline derivative 16, was synthesized as shown in Scheme 3.
Exploiting our one-pot double-protection procedure,[18] (S)-
proline (13) was first converted into the N-Boc-tert-butyles-

ter, which was electrochemically oxidized[12b,19] to the
methoxylated derivative 14. The crude product (14) was
then reacted with an excess of a vinyl MgBr-derived cuprate
in the presence of BF3·Et2O, exactly following the procedure
of Nagaike et al.[20] to afford the pure trans isomer 15 (after
chromatography) in 47 % overall yield from 13 (3 steps).
Selective cleavage of the N-Boc protecting group was
smoothly achieved with TMSOTf (CH2Cl2, 0 8C, 5 min) to
give the pure amine 16 after aqueous work-up. It should be
mentioned that the configuration of 16 (obtained by a differ-
ent route as a minor diastereomer) had been secured by X-ray
crystal structure analysis in the course of our previous
work.[12]

The connection of the two vinylproline building blocks 12
and 16 was then carried out using COMU[21] as a coupling
reagent in the presence of H�nig�s base to give 17 in 61%
yield (Scheme 4). The comparable low yield of 17 reflects the
steric bulkiness of the coupling partners.

An X-ray crystal structure analysis of the coupling
product 17 (Figure 4) confirmed its expected configuration
but also indicated an unfavorable pre-organization of the
vinyl moieties with respect to cyclization. Nevertheless, the

Figure 2. Model of an Ac-bHAsp-[ProM-5]-capped a-helical peptide.
The four carbonyl oxygen atoms of the bHAsp-[ProM-5] take part in
hydrogen bonds stabilizing the a-helical secondary structure of the
peptide.

Scheme 2. Synthesis of the type 3 building block 12 : a) SOCl2, MeOH,
RT, 15 h, quant.; b) Boc2O, NEt3, MeCN, RT, 15 h, 98 %; c) TsCl, NEt3,
CH2Cl2, RT, 15 h, 88%; d) NaCN, DMSO, 80 8C, 5 h, 94 %; e) DIBALH,
CH2Cl2/nHex, �78 8C to RT, 7.5 h, 62%; f) Ph3PMeBr, BuLi, THF/nHex,
RT, 2 h, 32%; g) TEMPO, BAIB, MeCN/H2O, RT, 3 h, 76%. Boc= tert-
butoxycarbonyl, DIBALH= diisobutylaluminum hydride,
TEMPO= (2,2,6,6-tetramethylpiperidin-1-yl)oxyl, BAIB= bis-
(acetoxy)iodobenzene, Ts =para-tolylsulfonyl.

Figure 3. Structure of the cis-4-vinylproline 12 in the crystalline state.
C gray, H white, O red, N blue.[38]

Scheme 3. Synthesis of the type 3 building block 16 : a) Boc2O, NEt3,
then DMAP, RT, 15 h, quant.; b) Bu4NBF4, �2 e� , MeOH, 0 8C,
260 mA, 5 cm, 47% (3 steps); c) BF3·Et2O, CuBr·SMe2, vinyl-MgBr,
THF, �78 8C, 47%; d) TMSOTf, CH2Cl2, 0 8C, 5 min, 87%. DMAP=4-
(N,N-dimethylamino)pyridine, TMS= trimethylsilyl, OTf = trifluorome-
thanesulfonate.

Angewandte
Chemie

3Angew. Chem. Int. Ed. 2013, 52, 1 – 6 � 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

These are not the final page numbers! � �

http://www.angewandte.org


projected ring-closing metathesis was successfully performed
using 30 mol% of the Grubbs II catalyst. After chromatog-
raphy, the desired bridged tricyclic product 18 was obtained in
59% yield along with 27 % of recovered starting material
(17). The cleavage of both protecting groups was accom-
plished by treatment of 18 with TFA in CH2Cl2. After solvent
change to THF/water the final Fmoc-protection (Fmoc-Cl,
NaHCO3) proceeded smoothly to give the projected target
molecule (Fmoc-1) in 87% yield.

Using standard solid-phase Fmoc chemistry,[22] the scaf-
fold 1 (that is, ProM-5) was then incorporated as a potential a-
helix-inducing unit into a peptide sequence derived from an
a-helical linker motif in peptide analogues of the peptide
hormone urocortin.[23] Taking Ac-bHAsp-Pro-Pro-Glu-Lys-
Glu-Glu-Lys-Glu-Lys-Lys-Arg-Lys-Glu-NH2 (P-1) as a refer-
ence, the corresponding peptide P-2, in which the Pro-Pro
unit is replaced by ProM-5, was prepared (Table 1).

To investigate the a-helix-inducing (nucleating) effect of
the ProM-5 scaffold, we first looked at the CD spectra (20 mm

potassium phosphate, pH 6.5, H2O, 2 8C) of peptides P-1 and
P-2, respectively (Figure 5). For comparison purposes, we

used the spectra of coiled peptides (poly-l-glutamic acid,
poly-l-lysine, and others)[24] and of poly-l-glutamic acid in its
a-helical state.[25–28]

The CD spectrum of P-1 shows a negative Cotton effect at
201 nm indicating a mainly random-coiled (conformationally
unordered) peptide chain, as also reflected by the similarity to
the spectrum of an unordered peptide (negative Cotton effect
near 195 nm). Much to our satisfaction, the CD spectrum of
P-2, where the Pro-Pro unit is substituted by our a-helix-
inducing scaffold ProM-5, indicates a high degree of a-
helicity.[29] The observed Cotton effects (189 nm, 205 nm and
227 nm, respectively) and the zero-crossing (198 nm) differ
only slightly from the ones reported for the ideal a-helix of
poly-l-glutamic acid at low pH (193 nm, 208 nm, 222 nm;
zero-crossing at 200 nm).[24,26, 27, 30,31]

Further support for the a-helical structure of P-2 was
gained through NMR experiments. One-dimensional
1H NMR spectra but also TOCSY[32] and 1H-15N-SOFAST-
HMQC[33] spectra were used to obtain secondary chemical
shifts (Figure 6).

The secondary shifts of the Ha, HN, and also N
resonances[34] indicated an increase in helical content of P-2
as compared to the reference peptide P-1 (Figure 6). In the
ROESY spectra,[35] we found an increased number of HN-HN
cross peaks for P-2 as compared to P-1 (see the Supporting
Information), suggesting that up to six residues of the peptide
chain are involved in the proposed a-helix. Even though no
sequence-specific assignment was possible owing to signal
overlap, the ROESY and TOCSY spectra showed a character-
istic pattern, which allowed the conclusion that these residues

are located prior to the only argi-
nine in the sequence.

In our opinion, the results of the
CD and NMR experiments clearly
demonstrate a powerful a-helix-
inducing effect of the ProM-5 scaf-
fold. However, the thermal folding

Scheme 4. Synthesis of Fmoc-1: a) COMU, Et(iPr)2N, MeCN, RT, 5 d,
61%; b) 30 mol% Grubbs II, toluene, D, 24 h, 59 %; c) TFA, CH2Cl2,
RT, 1 h, then Fmoc-Cl, NaHCO3, H2O/THF 2:1, RT, 15 h, 87 %;
COMU= 1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylaminomor-
pholinocarbenium hexafluorophosphate.

Figure 4. Structure of the dipeptide 17 in the crystalline state. C gray,
H white, O red, N blue.[38]

Table 1: Sequences of the measured peptides.

Peptide Sequence

P-1 Ac-bHAsp-Pro-Pro-Glu-Lys-Glu-Glu-Lys-Glu-Lys-Lys-Arg-Lys-Glu-NH2

P-2 Ac-bHAsp-[ProM-5]-Glu-Lys-Glu-Glu-Lys-Glu-Lys-Lys-Arg-Lys-Glu-NH2

Figure 5. Far-UV CD spectra of peptides P-1 (black solid line) and P-2
(red solid line) in comparison to the spectra of random-coiled peptides
(black dotted line) and 100% a-helical poly-l-glutamic acid at low pH
(red dotted line). The pairs of similar spectra were scaled to their
maximum Cotton effects.
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stability of P-2 proved to be rather poor (as confirmed by CD-
thermal shifts; see the Supporting Information), similar to the
behavior of peptides containing Kemp�s scaffold.[10] In the
course of our study we were also able to show that in contrast
to P-1 (which unfolds in a two-state process), the P-2 peptide
unfolds in a more complex manner (for spectra, see the
Supporting Information). This observation might be attrib-
uted to a progressing unfolding of the helix.

The relative a-helical content of both peptides was
determined through titration experiments monitored by CD
spectroscopy (Figure 7). Such measurements are normally

interpreted on the level of molar ellipticities.[27,36] However,
the determination of the absolute peptide concentration by
quantitative amino acid analysis or absorption measurements
proved difficult in our case. We therefore applied a different
approach based on the titration with trifluoroethanol (TFE),
which induces a-helical content in any peptide depending on
the TFE concentration, the end-point of such a titration
indicating 100 % a-helical content (q100 %). In contrast, titra-
tion with urea leads (especially for peptides containing
glutamic acid or lysine)[36, 37] to a complete unfolding of any
secondary structure, the end-point corresponding to 0% a-
helical content (q0%). Focusing on the CD signal at 222 nm (as
a characteristic a-helix maximum), these measurements
allowed the percentage of the a-helical content of both
peptides to be calculated. After fitting the experimental data
at 2 8C with a simple two-state thermodynamic model
(Figure 7) to obtain q100 % and q0%, the percentage of inducible
a-helical content was calculated as 26 % for P-1 and 66% for
P-2. The relatively high alpha-helical content of P-1 reflects
the enhanced probability of the Glu-Lys-rich peptide to adopt
an a-helical secondary structure.[23]

In conclusion, we have demonstrated that the rigidified
diproline mimetic ProM-5 (1), for which an efficient synthesis
was elaborated, acts as a powerful a-helix-inducing unit when
embedded (as a N-cap) into a linear model peptide, as
thoroughly analyzed by CD and NMR spectroscopy. In
contrast to the rather flexible scaffold earlier introduced by
Kemp,[10] our scaffold displays a mono-conformational behav-
ior. Thus, ProM-5 is not only a promising module for the
synthesis of a-helical proteomimetics but also a novel sp3-rich
key building block (with stereodefined exit vectors) for the
synthesis of meaningful screening libraries.
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