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Summary: DTBMS tri fl ate, readil y avail able from dichloromethylsilane, provid es carboxyl i c

esters whi ch resist r eduction by hydridoaluminate or acid ca t a lyzed hydrolysi s, and vinylogous

esters ( enol ethers of hydroxymethylene ke t ones) which resist 1, 4-addition of methyllithium.

A pr oclivi t y t oward 1, 4-addition of methyllithium t o th e trimethylsilyl (TMS) e ther 3a

interfered with the 1,Z-additi on which we required for pr epari ng unsaturated al dehyde 2 f ro m a ­

hydroxym ethylene ketone 1. 1 The pr oblem was solved by blocking 1,4-addition with bulky substi­

tuents on silicon. Thus , the proportion of 1,Z-adduct 4 versus 1,4-addllct 5 improved slightly

with the t-buty1dimethylsilyl (TBDMS) ether 3b and dramatically with the di-t-butylmethyls ilyl

(DTBMS) ether 3c (table 1). The aldehyde 2 was obtai ned i n 90% yield overall f rom 1 by silyla-

Table 1. Reaction of Me t hyll i t hium with Ke to Enol Ethers 3.

Ent ry Silyl Et he r 3 Yield (%)

R R' l , Z-Adduct 4 1,4-Adduct 5

a Me Me ( TMS) 59 39

b t-Bu Me (TBDMS) 70 Z5

c Me t-Bu (DTBMS) 90 10

tion with DTBMS trif late (vi de infra) , reaction of the silyl e t he r 3c with methyllithium, and

treatment of the 1,Z-adduc t 4c with pyr i dinium p- t oluenesulfonate i n acetone so l ution.Z
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DTBMS ethers were prepared previously by the reaction of alcohols with DTBMS perchlorate.3

The new reagent, di-tert-butyldimethylsilyl trifluoromethanesulfonate (DTBMS triflate), is

readily available (82% yield) from di-tert-butylmethylsilane3 which is prepared from inexpen­

sive dichloromethylsilane4 and tert-butyllithium:

Di-tert-butylaethylsilyl Trifluorometbanesulfonate. Trifluoromethanesulfonic acid (2.10

mL, 1.10 equiv, 23.7 mmol) was added drop wise to di-tert-butylmethylsilane3 0.41 g, 21.5 mmol)

with stirring at 4°C (ice bath) under an atmosphere of dry nitrogen. After complete addition,

the solution was warmed to room temperature and stirred for 16 hr during which time hydrogen

evolution occurred. The resulting clear yellow liquid was distilled through a Vigreux column

(200 mm) topped with a short 'path condenser. DTBKS triflate (6.27 g, 95.0% yield) is a color­

less oil (bp 63-65 °CI15 mm Hg) which fumes on exposure to air. 1H NMR (CDC1 3, 60 MHz) <5 1.12

(s, 18H), 0.50(s, 3H). M+ calcd for CI0H21F303SSi: 306.0933. Found: 306.0921.

Our previous synthesis of anhydro levuglandin D2 (8)5 involved hydride reduction of a

lactone in the presence of a sterically hindered tert-butyl ester to achieve the selective

conversion of 6a into 7a. However, difficulty was encountered in converting the tert-butyl

OTBDMS

6a, R =t-Bu

ss, R = DTBMS

OTBDMS

7a, R =t-Bu

7b,R=DTBMS
8

ester into a carboxylic acid. Thus, treatment of 7a with formic acid delivered 8 in only 12­

21% yield. We now find that lithium tert-butyldiisobutyl hydridoaluminate6 selectively reduces

DTBMS ester 6b to 7b. Moreover, treatment of 7b with aqueous HF in THF affords 8 in 43-63%

yield. Conversion of DTBMS esters to carboxylic acids can also be achieved by treatment with

BU4NF in wet THF. Under these conditions, both silyl protecting groups are removed from 6b

delivering the corresponding hydroxycarboxylic acid in 73% yield.

Other interesting transformations involving DTBMS esters were encountered during the

synthesis of 6b. Initially the DTBMS hydroxyester 9c was prepared from the acid 9a 7 by removal

of the THP group (72%)8 followed by selective silylation9 of the hydroxyacid 9b. However,

R~OOR' Br~OODTBMS

9a, R =THP, R'=H

9b,R=R'=H

ge, R =H, R'=DTBMS

9d, R=THP,R'=DTBMS

10

~OODTBMS

11a, X=OH
11b, X=Br

the THP protecting group

OTBDMS

13
9d (92%)10, and

OTBDMS

12
these steps can be reversed. Silylation of 9a affords

was removed selectively in the presence of a DTEMS ester with pyridinium p-toluenesulfonate in
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warm ethanol 1 1 to deliver 9c (78%).1 2 Catalytic partial hydrogenation 13 of 9c provides lla

(94%). The bromides 10 (91%) and lIb (98%) were prepared form 9c and 11a respectively by

reaction with methanesulfonyl chloride and LiBr. 14 Reaction of these bromides with the lithium

eno1ate 15 of lactone 12 5 provided 13 and 6b respectively.

TBDMS ethers of Cl-hydroxymethylene ketones are labile compounds prone to hydrolysis. 1

TBDMS esters are similarly labile. In contrast, DTBMS enol ethers and carboxylic esters are

stable derivatives which should find important applications in organic synthesis.
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