

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters 15 (2005) 1467-1470

Bioorganic & Medicinal Chemistry Letters

Discovery and SAR of new benzazepines as potent and selective 5-HT_{2C} receptor agonists for the treatment of obesity

Brian M. Smith,* Jeffrey M. Smith, James H. Tsai, Jeffrey A. Schultz, Charles A. Gilson, Scott A. Estrada, Rita R. Chen, Douglas M. Park, Emily B. Prieto,
Charlemagne S. Gallardo, Dipanjan Sengupta, William J. Thomsen, Hazel R. Saldana,

Kevin T. Whelan, Frederique Menzaghi, Robert R. Webb and Nigel R. A. Beeley

Arena Pharmaceuticals Inc., 6166 Nancy Ridge Drive, San Diego, CA 92121-3223, USA

Received 3 November 2004; revised 22 December 2004; accepted 29 December 2004 Available online 23 January 2005

Abstract—We report on the synthesis, biological evaluation and structure–activity relationships for a series of 3-benzazepine derivatives as 5-HT_{2C} receptor agonists. The compounds were evaluated in functional assays measuring [³H] phosphoinositol turnover in HEK-293 cells transiently transfected with h5-HT_{2C}, h5-HT_{2A} or h5-HT_{2B} receptors. Several compounds are shown to be potent and selective 5-HT_{2C} receptor agonists, which decrease food intake in a rat feeding model. © 2005 Elsevier Ltd. All rights reserved.

The 5-HT_{2C} receptor is one of more than 14 different 5-HT receptor subtypes, several of which are known to regulate important behavioural responses.¹ Evidence for the involvement of the 5-HT_{2C} receptor in the regulation of feeding and satiety has been the subject of a number of reviews.² The nonselective 5- HT_{2C} receptor agonist mCPP has been shown to cause weight loss by reduction of food intake in humans³ and rodents.⁴ Nor-dexfenfluramine, a circulating metabolite of the weight loss drug dexfenfluramine, is a nonselective 5- HT_{2C} receptor agonist, and the anorectic effects of dexfenfluramine and nor-dexfenfluramine are blocked by the selective 5-HT_{2C} receptor antagonist, SB-242084.⁵ A number of recent papers describe the anorectic effects in rodents of newer 5-HT_{2C} receptor agonists, such as RO 60-0175,6 WAY-161503,7 YM3488 and VER-5384.9 Additionally, 5-HT_{2C} receptor knock-out mice have been shown to be hyperphagic and nonresponsive to the anorectic effects of 5-HT_{2C} agonists.¹⁰

Fenfluramine and dexfenfluramine were withdrawn from the market after reports of valvular heart defects from use among weight loss patients,¹¹ an effect which may result from the activation of other serotonergic

Keywords: 5-HT_{2C}; Serotonin; Obesity; Benzazepine.

pathways, particularly of 5-HT_{2B} receptors.¹² It has also been proposed that hallucination caused by serotonergic drugs may be an effect of 5-HT_{2A} agonism.¹³ With this in mind, the discovery of potent 5-HT_{2C} receptor agonists with appropriate selectivity versus 5-HT_{2A} and 5-HT_{2B} receptors, could lead to a safe and effective treatment for obesity and other diseases or conditions which could benefit from weight loss.

We reasoned that by taking features from the nonselective 5-HT_{2C} receptor agonist nor-dexfenfluramine and constraining them into a fused bicyclic structure, we might discover new 5-HT_{2C} receptor agonists with improved selectivity versus 5-HT_{2A} and 5-HT_{2B} receptors. If a different conformation of the nor-dexfenfluramine ethylamino side chain is required to activate the 5-HT_{2C} receptor versus other receptors, and if we could find compounds with this 5-HT_{2C} preferred conformation by sampling a number of possible constrained ring systems, then these compounds might also be selective. What we discovered was that one of these fused bicyclic core structures, the 3-benzazepines, could in fact yield

^{*} Corresponding author. Tel.: +1 858 453 7200x1301; fax: +1 858 453 7210; e-mail: bsmith@arenapharm.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.12.080

potent and selective $5-HT_{2C}$ receptor agonists when properly substituted. Herein we describe some of the more interesting SAR for this series.

Entry into the benzazepine series was first accomplished with the synthesis of 8-bromo-7-methoxy-1-methylbenzazepine, 8 (Scheme 1). Important features of this route include the use of a methoxy substituent to activate and direct halogenation on two occasions, and the intramolecular Heck reaction to close the 7-membered ring.¹⁴ A further advantage of this synthesis was the ease at which substitution could be introduced into this series by appropriate manipulation of the late-stage intermediates 6 and 7. Compounds 9a-d were prepared by eliminating the bromination step (9a), substituting NCS (9b) or NIS (9c) for NBS, or by treating the protected bromide with sodium trifluoroacetate and copper (I) iodide (9d). Compounds 10a-d were prepared by removal of the methyl group from intermediate 7 with BBr₃, followed by alkylation of the resulting phenol with the appropriate alkyl halide, and then deprotection. Substitution was also introduced at the 1-position by choosing appropriate allyl bromides for the preparation of intermediates similar to 4, leading to compounds 11b and c. Oxidation of the olefin 5 to the ketone, followed by reduction with Pd-H₂, resulted in the 1-unsubstituted 11a. To further explore the SAR of this series, it was desired to make compounds without the 7-methoxy substituent. Benzazepines 15-18 were in some cases

Scheme 1. Reagents and conditions: (a) $(CF_3CO)_2O$, pyridine, CH_2Cl_2 ; (b) ICl, MeOH; (c) allylbromide, NaOH, K_2CO_3 , *n*-Bu₄NBr, toluene; (d) Pd(OAc)₂, various conditions; (e) 10% Pd–C, H₂, MeOH; (f) NBS, CH₃CN; (g) NaOH, MeOH–H₂O.

prepared similarly, starting with mono- or disubstituted halophenethylamines. In this case, the deactivated aromatics were iodinated with bispyridine iodoniumtetrafluoroborate. Alternatively, benzazepines 15–19 were also prepared using a Friedel-Crafts cyclization as the key step as shown in Scheme 2 for 8-chlorobenzazepine 15. Phenethylamine 12 was acylated to form chloroacetamide 13, which underwent Friedel-Crafts alkylation to benzazepinone 14. Reduction with BH₃ or LAH, led to the final benzazepine 15. In this manner, the regioisomeric 7- and 9-chlorobenzazepines 16b and c were made from 3-chlorophenethylamine, separating the regioisomers at the benzazepinone stage. Variations on the Friedel-Crafts acylation were explored, and in some cases, found to have advantages. Racemic compounds of interest were separated by chiral HPLC and the absolute stereochemistry determined by crystallography or comparison of synthetic derivatives. In the case of (R)and (S)-18c, these compounds were prepared via NCS chlorination of the N-trifluoroacetyl protected (R)- or (S)-15, separation of the regioisomers and then deprotection.

The functional activity of the compounds for the h5- HT_{2C} (INI isoform), h5- HT_{2A} and h5- HT_{2B} receptors was determined by measurement of [³H]phosphoinositol turnover in transiently transfected HEK-293 cells, and the results are summarized in Tables 1-4. Compound 8, our first designed compound in this series, demonstrated excellent 5-HT_{2C} receptor potency and moderate selectivities versus the 5-HT_{2A} and 5-HT_{2B} receptors (Table 1). With this result in hand, a small set of compounds based on 8 was designed to explore the effects of substitution at the 8-, 7- and 1-positions. At the 8-position, substitution of chlorine (9b), iodine (9c) or trifluoromethyl (9d) resulted in compounds of similar 5-HT_{2C} receptor potencies and selectivities towards 5-HT_{2A} and 5-HT_{2B} receptors. The 8-unsubstituted compound (9a) was of much lower potency at all receptors. At the 7-position, replacing the methyl with hydrogen (10a), ethyl (10b) or isopropyl (10c) showed a trend towards decreasing potency at the 5-HT_{2C} receptor with increasing size of the substituent, but little change in potencies at the 5- HT_{2A} and 5- HT_{2B} receptors was observed. The anomaly was the 7-benzyl ether (10d), which was of similar potency to the isopropyl ether (10c) at the 5-HT_{2C} recep-

Scheme 2. Reagents and conditions: (a) CH₃CHClCOCl, pyridine, CH_2Cl_2 ; (b) AlCl₃, 150–200 °C; (c) BH₃, ether.

(S)-15

(*R*)-18c (*S*)-18c

Table 1. 5-HT $_{2C},$ 5-HT $_{2A}$ and 5-HT $_{2B}$ functional activity for compounds $8{-}11$

Table 2. 5-HT $_{\rm 2C},$ 5-HT $_{\rm 2A}$ and 5-HT $_{\rm 2B}$ functional activity for compounds 15--17

CI	NH	CI II	NH X NH		
15		16		17	
Compd	Х	EC ₅₀ (nM)			
		5-HT _{2C}	5-HT _{2A}	5-HT _{2B}	
15	8-C1	11	260	1100	
16a	6-Cl	860	>5000	>5000	
16b	7-Cl	35	150	530	
16c	9-C1	930	>5000	>5000	
17a	8-F	410	1600	>10,000	
17b	8-Br	12	510	1500	
17c	8-CF ₃	7	100	380	
17d	8-OMe	420	940	780	
17e	8-H	340	1600	>5000	

tor, but with increased potency at the 5-HT_{2A} receptor and greatly reduced potency at the 5-HT_{2B} receptor. At the 1-position, the difference in 5-HT_{2C} receptor potency observed between hydrogen (11a), ethyl (11b), *R*methyl (11d) or *S*-methyl (11e) is small, when compared to the greater than 10-fold reduction in potency observed for the isopropyl substitution (11c). There appears to be a trend towards increasing potency at the 5-HT_{2B} receptor for *S*-methyl > ethyl > *R*methyl > hydrogen. Comparison of the enantiomers 11d and e shows the *R*-methyl enantiomer 11d to be somewhat more potent at the 5-HT_{2C} receptor and significantly more selective versus the 5-HT_{2A} and 5Table 3. 5-HT $_{\rm 2C},$ 5-HT $_{\rm 2A}$ and 5-HT $_{\rm 2B}$ functional activity for compounds 18

		10		
Compd	Х	EC ₅₀ (nM)		
		5-HT _{2C}	5-HT _{2A}	5-HT _{2B}
18a	6,8-DiCl	20	170	840
18b	7,8-DiCl	4	16	78
18c	8,9-DiCl	6	220	1800
18d	8-Cl, 7-F	7	72	360
18e	8-Cl, 9-F	22	840	>10,000

Table 4. 5-HT_{2C}, 5-HT_{2A} and 5-HT_{2B} functional activity and percent responses relative to serotonin control for compounds 19, (*R*)-15, (*S*)-15, (*R*)-18c and (*S*)-18c

265 (70)

135 (35)

2400 (100)

16 (100)

230 (85)

3 (90)

1400 (100)

(25 @ 10 uM)

>10,000

 HT_{2B} receptors. Data for some mono substituted analogues is shown in Table 2. The first compound from this group to be prepared, the 8-chloro derivative **15**, showed improved receptor selectivity over the previous set of compounds, **8–11**. Moving the chloro substituent around the ring shows the 6-chloro (**16a**) and 9-chloro (**16c**) to be nearly 100-fold less potent at the 5-HT_{2C} receptor, with reduced potencies also observed at the 5-HT_{2A} and 5-HT_{2B} receptors. Moving the chlorine to the 7-position (**16b**), results in a 3-fold drop in potency at the 5-HT_{2C} receptor, but slightly increased potency at the 5-HT_{2A} and 5-HT_{2B} receptors.

Replacement of the 8-chloro substituent with fluorine (17a), methoxy (17d) or hydrogen (17e) results in a 30fold reduction in potency at the 5-HT_{2C} receptor and a 5-fold reduction in potency at the 5-HT_{2A} receptor. Interestingly, a similar 5-fold reduction in potency is observed at the 5-HT_{2B} receptor for the 8-fluoro (17a) and 8-unsubstituted (17c) compounds, but no shift in 5-HT_{2B} potency is observed for the 8-methoxy compound (17d). For replacement of 8-chloro (15) with 8-bromo (17b) or 8-trifluoromethyl (17c), similar 5-HT_{2C} potencies are observed, with 5-HT_{2A} and 5-HT_{2B} selectivities being somewhat increased for the bromo analogue and decreased for the trifluoromethyl analogue. Functional activity data for some dihalo analogs, 18a–e, is displayed in Table 3. The 6,8-dichlorobenzazepine (18a) has a slightly lower 5-HT_{2C} potency compared to 15 and lower selectivity.

Adding a 7-position substituent to 15 increases 5-HT_{2C} potency as seen with compounds 18b and 18d (compare also compound 8), but an even greater increase in 5-HT_{2A} and 5-HT_{2B} receptor potencies results in reduced selectivities. In contrast, the 8,9-disubstituted benzazepines 18c and e, show significant improvement in receptor selectivity compared to 15, with 5-HT_{2C} potency slightly increased for 18c, and decreased for 18e. Upon comparison of the enantiomers of 15 with the enantiomers of 18c, unexpected results were obtained. It can be seen that (R)-15, (S)-15 and 19^{15} are all of similar potency and selectivity. A slight advantage in 5-HT_{2C} potency for (R)-15 and 19 over (S)-15 is observed and a slight advantage in 5- HT_{2A} selectivity is observed for (R)-15 and (S)-15 over 19. In comparison, (S)-18c is about 70-fold more potent at the 5-HT_{2C} receptor than (R)-18c, which represents not only a change in magnitude, but also a switch in preferred stereochemistry. Also of interest is the drop in 5-HT_{2A} maximal response, relative to the serotonin control, observed for (S)-18c. In all previous cases, compounds have been full, or nearly full agonists at the three receptors. The 5-HT_{2C} and 5-HT_{2B} responses have all been in the 90-100% range. The 5-HT_{2A} responses have occasionally dipped to 70%. For (S)-18c, the 5-HT_{2A} maximal response is only 35%, and for the 5-HT_{2B} receptor only 25% response is observed at the highest test concentration of 10 uM. In this case, we believe that a steric interaction between the (S)-1-methyl and 9-chloro substituents further locks the seven-membered ring into a conformation favorable to 5-HT_{2C} receptor activation and less favourable to either 5-HT_{2A} or 5-HT_{2B} activation. In contrast, the interaction between the (R)-1-methyl and 9-chloro substituents of (R)-18c locks the seven-membered ring into a conformation less favourable to activation of all three receptors.

A number of compounds were screened for the ability to reduce food intake in male Sprague–Dawley rats. Rats were caged separately and spent two weeks on reverse light cycle. On the day of the experiment rats (8 per group) were injected P.O. (oral gavage) with vehicle, 12.5, 25 and 50 mg/kg 1 h before the dark cycle. Food intake was measured 6 h post injection and compared to vehicle control. A number of compounds including **8**, **9b** and **c**, **15**, **17c** and **18b–e**, were shown to decrease food intake with ED₅₀ values in the range of 10–40 mg/ kg over a 6 h period.

Using structural features from known 5-HT_{2C} agonists and incorporating these into a rigid framework, a series

of 3-benzazepines was designed. This series has provided a number of potent and selective 5-HT_{2C} receptor agonists which are orally active in an acute feeding model in Sprague–Dawley rats. Further studies have resulted in the identification and advancement of one compound from this series into human clinical trials.

References and notes

- 1. Hoyer, D.; Hannon, J. P.; Martin, G. R. Pharmacol. Biochem. Behav. 2001, 72, 1.
- 2. Bickerdike, M. J. Curr. Top. Med. Chem. 2003, 3, 885.
- Sargent, P. A.; Sharpley, A. L.; Williams, C.; Goodall, E. M.; Cowen, P. J. *Psychopharmacology* 1997, 133, 309.
- Vickers, S. P.; Easton, N.; Webster, L. J.; Wyatt, A.; Bickerdike, M. J.; Dourish, C. T.; Kennet, G. A. *Psychopharmacology* **2003**, *167*, 274.
- Vickers, S. P.; Dourish, C. T.; Kennet, G. A. Neuropharmacology 2001, 41, 200.
- Martin, J. R.; Bos, M.; Jenck, F.; Moreau, J.-L.; Mutel, V.; Sleight, A. J.; Wichman, J.; Andrews, J. S.; Berendsen, H. H. G.; Broekkamp, C. L. E.; Ruigt, G. S. F.; Kohler, C.; van Delft, A. M. L. J. Pharmacol. Exp. Ther. 1998, 286, 913.
- Welmaker, G. S.; Nelson, J. A.; Sabalski, J. E.; Sabb, A. L.; Potoski, J. R.; Graziano, D.; Kagan, M.; Coupet, J.; Dunlop, J.; Mazandarani, H.; Rosenzweig-Lipson, S.; Sukoff, S.; Zhang, Y. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1991.
- Hayashi, A.; Sonada, R.; Kimura, Y.; Takasu, T.; Suzuki, M.; Sasamata, M.; Miyata, K. *Brain Res.* 2004, 1011, 221.
- Bentley, J. M.; Adams, D. R.; Bebbington, D.; Benwell, K. R.; Bickerdike, M. J.; Davidson, J. E. P.; Dawson, C. E.; Dourish, C. T.; Duncton, M. A. J.; Gaur, S.; George, A. R.; Giles, P. R.; Hamlyn, R. J.; Kennet, G. A.; Knight, A. R.; Malcolm, C. S.; Mansell, H. L.; Misra, A.; Monck, N. J. T.; Pratt, R. M.; Quirk, K.; Roffey, J. R. A.; Vickers, S. P.; Cliffe, I. A. *Bioorg. Med. Chem. Lett.* 2004, *14*, 2367.
- Tecott, L. H.; Sun, L. M.; Akana, S. F.; Strack, A. M.; Lowenstein, D. H.; Dallman, M. F.; Julius, D. *Nature* 1995, 374, 542.
- Connolly, H. M.; Crary, J. L.; McGoon, M. D.; Hensrud, D. D.; Edwards, B. S.; Edwards, W. D.; Shaff, H. V. N. Engl. J. Med. 1997, 337, 581.
- (a) Fitzgerald, L. W.; Burn, T. C.; Brown, B. S.; Patterson, J. P.; Corjay, M. H.; Valentine, P. A.; Sun, J.-H.; Link, J. R.; Abbaszade, I.; Hollis, J. M.; Largent, B. L.; Hartig, P. R.; Hollis, G. F.; Meunier, P. C.; Robichaud, A. J.; Robertson, D. W. *Mol. Pharmacol.* 2000, 57, 75; (b) Rothman, R. B.; Baumann, M. H.; Savage, J. E.; Rauser, L.; McBride, A.; Hufeisen, S. J.; Roth, B. L. *Circulation* 2000, 102, 2836.
- 13. Nichols, D. Pharmacol. Ther. 2004, 101, 131.
- 14. Tietze, L. F.; Schimpf, R. Synthesis 1993, 876.
- 15. Hoegerle, K; Habicht, E. U.S. Patent 3,716,639, 1973; CAN 73:120526.