1130 Communications Synthesis

Synthesis of 4-Functionalized 1-Ethoxycarbonyl-2-oxo-3-oxabicyclo[3.1.0]hexanes by Reformatsky Reaction

Françoise Gaudemar-Bardone,** Marcel Gaudemar,* Margarita Mladenovab

- ^a Université Pierre et Marie Curie, Laboratoire de Synthèse Organométallique, Bâtiment F, 4, Place Jussieu, F-75230 Paris Cedex 05, France
- ^bInstitute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria

The title compounds are easily synthesized in good yields by reaction of the Reformatsky reagents derived from α -bromesters, α -bromocarbox-amides, and α -bromonitriles with 2-acyl-3-phenyl(or 3-alkyl)-1.1-diethoxycarbonylcyclopropanes.

We have previously reported the synthesis and the structural elucidation of 1-ethoxycarbonyl-3-oxabicyclo[3.1.0]hexane-2-ones¹ which could be conveniently obtained from *trans*-2-acyl-3-methyl(or 3-phenyl)-1,1-diethoxycarbonylcyclopropanes 1.

In connection with a pharmacological study of cyclopropanefused γ -lactones we extended this methodology to the synthesis of new functionalized 3-oxabicyclo[3.1.0]hexane-2-ones (2, 3, 4) by reaction of organozine reagents derived from α -bromesters, α -bromocarboxamides, and α -bromonitriles with the same compounds 1.

In most of the cases shown in Table 1, the reaction is carried out in two steps (Method A): preparation of the intermediary Reformatsky reagent^{2 - 5} and its addition to the carbonyl compound 1. When the two-step procedure is not applicable (for example with the ester of a-bromophenylacetic acid⁶), the reaction may be carried out using the one-step Method B. Comparative experiments have shown that the reaction proceeds without changing the stereochemistry but that Method B affords slightly lower yields. We have thus prepared three new series of bicyclic lactones containing an unsubstituted or an alkyl(or phenyl)-substituted functional group, namely, an ethoxycarbonylmethyl group (2) or a dialkylaminocarbonylmethyl group (3) or a cyanomethyl group (4), in γ -position of the lactone ring. The IR and ¹H-NMR spectroscopic data listed in the Tables are in full agreement with the structures proposed for compounds 2, 3, and 4.

As regards the stereochemistry of the products 2, 3, and 4, the following considerations should be kept in mind:

The *cis*-configuration at C-1 and C-5 is imposed by the lactone ring closure leading to the *cis*-fused 3-oxabicyclo[3.1.0] hexane system.

R¹	R ²	\mathbb{R}^3	R ⁴	
CH.	CH ₃	H	H	
	Н	H	H	
	CH_3	Н	Н	
	C_6H_5	Н	Н	
	CH ₃	CH_3	CH_3	
	C_6H_5	CH_3	CH_3	
0 5	CH ₃	C_2H_5	H	
	C_6H_6	C_2H_5	H	
C_6H_5	$ m CH_3$	C_6H_5	H	
	CH ₃ C ₆ H ₅	CH ₃ CH ₃ C ₆ H ₅ H C ₆ H ₅ CH ₃ C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ CH ₃	CH ₃ CH ₃ H C ₆ H ₅ H H C ₆ H ₅ CH ₃ H C ₆ H ₅ C ₆ H ₅ H C ₆ H ₅ CH ₃ CH ₃ C ₆ H ₅ CH ₃ CH ₃ C ₆ H ₅ C ₆ H ₅ CH ₃ C ₆ H ₅ C ₆ H ₅ CH ₃ C ₆ H ₅ C ₆ H ₅ C ₂ H ₅ C ₆ H ₅ C ₆ H ₅ C ₂ H ₅	CH ₃ CH ₃ H H C ₆ H ₅ H H H C ₆ H ₅ CH ₃ H H C ₆ H ₅ C ₆ H ₅ H H C ₆ H ₅ C ₆ H ₅ H H C ₆ H ₅ CH ₃ CH ₃ CH ₃ C ₆ H ₅ C ₆ H ₅ CH ₃ CH ₃ C ₆ H ₅ C ₆ H ₅ CH ₃ CH ₃ C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ H C ₆ H ₅ C ₆ H ₅ C ₂ H ₅ H

3	R¹	R ²	R ³	R ⁴	4	R ¹	R ²	R.3	R ⁴
b c d	C ₆ H ₅	H CH ₃ C ₆ H ₅	CH ₃ CH ₃ CH ₃	CH ₃ CH ₃ CH ₃	b c d	C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ C ₆ H ₅	C_6H_5 C_6H_5 CH_3	CH_3 CH_3 C_6H_5	CH ₃

- The *exo*-position of the substituent R¹ (C-6) derives from the *trans*-configuration of the starting compounds 1.
- The relative configuration at C-4 has been established for part of the products, namely **2a-d**, **g**, **i**, **3a**, **b**, **e** and **4d** by ¹H-NMR spectrometry. As in the previous paper we name a *cis*-isomer that isomer, in which the smallest substituents (according to the sequence rules) at positions 4 and 5 are on the same side of the lactone ring.

The configuration of compounds **2b** and **3b** are assigned on the basis of the coupling constants for protons H^b and H^c . Thus, for **2b** we assign the *cis*-configuration to the isomer with $J_{H^b,H^c}=5.4$ Hz and the *trans*-configuration to the isomer with $J_{H^b,H^c}=0$ Hz. For **3b**, the *cis*-isomer has $J_{H^b,H^c}=4.0$ Hz and the *trans*-isomer again $J_{H^b,H^c}=0$ Hz.

Table 1. Bicyclic Lactones 2, 3, and 4 Prepared

Product	Method	Yield ^a (%)	cis/trans $(M/m \text{ or } A/B)$ ratio	m.p. (°C) ^b b.p. (°C)/Torr (solvent)	Molecular Formula ^e	Isomer	IR (CHCl ₃) ^d v (cm ⁻¹)
2a	A	70	> 95/5	126-127/0.05	C ₁₄ H ₂₀ O ₆ (284.3)	cis	1772, 1725
2b	A	70	65/35		17 4V V	cis	
			,	205 - 209/0.05	$C_{18}H_{20}O_6$ (332.3)	trans	1775, 1720
2c	Α	96	92/8	70–71 (ÉtOH)	$C_{19}H_{22}O_6$ (346.4)	cis	1775, 1725
						trans	
2d	Α	84	< 5/95	122–123 (CHCl ₃ /hexane)	$C_{24}H_{24}O_6$ (408.4)	trans	1780, 1720
2e	A	90	> 95/5	89-90 (CHCl ₃ /hexane)	$C_{21}H_{26}O_6$ (374.4)	M	1770, 1710
2f	A	75	>95/5	118.5 -119.5 (CHCl ₃ /hexane)	$C_{26}H_{28}O_6$ (436.5)	M	1780, 1720
2g	Α	68	50/50	92~93 (EtOAc/hexane)		cis-A	1775, 1718
				117-118 (EtOAc/hexane)	$C_{21}H_{26}O_6$ (374.4)	cis-B	1775, 1720
2h	Α	69	52/48	117-118 (EtOAc/hexane)		M- A	1778, 1718
				110 111 (EtOAc/hexane)	$C_{26}H_{28}O_6$ (436.5)	M- B	1780, 1720
2i	В	74	50/50	167-168 (CHCl ₃ /hexane)		cis-A	1775, 1722
				170 -172 (CHCl ₃ /hexane)	$C_{24}H_{24}O_6$ (408.4)	cis-B	1778, 1722
3a	Α	60	> 95/5	130-131 (EtOAc/hexane)	$C_{21}H_{27}NO_5$ (373.4)	cis	1770, 1722, 1
3b	Α	80	50/50	154-155 (CHCl ₃ /hexane)		CIS	1780, 1720, 1
				156-157 (CHCl ₃ /hexane)	$C_{20}H_{25}NO_5$ (359.4)	trans	1775, 1720, 1
3e	Α	75	>95/5	120-121 (CHCl ₃ /hexane)	$C_{21}H_{27}NO_5$ (373.4)	M	1780, 1720, 1
d	Α	80	>95/5	170 171 (CHCl ₃ /hexane)	$C_{20}H_{29}NO_5$ (435.5)	M	1782, 1720, 10
3e	В	71	33/67			cis-A	
				232-233	$C_{25}H_{27}NO_5$ (421.5)	cis-B	1770, 1720, 16
la	A	7 7	67/33	126-127 (CHCl ₃ /hexane)		M	2230, 1780, 13
				111-411.5 (CHCl ₃ /hexane)	$C_{19}H_{21}NO_4$ (327.4)	m	2230-1780, 17
lb	A	75	17/83			M- A	
				165 166 (EtOAc/hexane)	$C_{23}H_{21}NO_4$ (375.4)	M- B	2230, 1785, 17
le	Α	86	> 95/5	174–175 (CHCl ₃ /hexane)	$C_{24}H_{23}NO_4$ (398.4)	M	2230, 1778, 17
ld	В	61	36/64	177 178 (CHCl ₃ hexane)		cis-A	2240, 1785, 17
				137-139 (CHCl ₃ /hexane)	$C_{23}H_{21}NO_4$ (375.4)	cis-B	2240, 1780, 1
le	В	60	≈15/85			M- A	
				176 177 (CHCl ₃ /hexane)	$C_{28}H_{23}NO_4$ (437.5)	M- B	2240, 1790, 17

Yield of isolated product based on 1.

Table 2. ¹H-NMR Data for Bicyclic Lactones 2, 3, and 4

Product	Isomer	1 H-NMR (CDCl ₃ /TMS) a,b δ , J (Hz)
2a	cis	a1.29 (t, 3H, $J = 7.2$); 1.33 (t, 3H, $J = 7.2$); 1.32 (d, 3H, $J = 6.4$); 1.59 (s, 3H); 1.77 (m, Ha); 2.62 (d, 1H, $J = 15.3$, HCHCOOEt); 2.74 (d, 1H, $J = 15.3$, HCHCOOEt); 2.61 (d, Hb, $J = 5.4$); 4.19 (q, 2H, $J = 7.2$); 4.29 (q, 2H, $J = 7.2$)
2b	cis	But 1.29 (d, 1H, $J = 7.0$); 2.67 (dd, 1H, $J = 16.5$, 8.2, HCH -COOEt); 2.88 (dd, 1H, $J = 16.5$, 5.4, HCHCOOEt); 2.92 (d, H ^a , $J = 5.48$); 3.52 (dd, H ^b , $J = 5.48$, 5.40); 3.89-4.0 (m, 2H); 4.23 (q, 2H, $J = 7.0$); 5.09-5.17 (m, H ^a); 7.30 (s, 5H)
	trans	a.e 0.91 (t, 3H, $J = 7.1$); 1.30 (t. 3H, $J = 7.2$); 2.83-2.97 (m, 3H, $H^a + CH_2COOEt$); 3.23 (d, H^b , $J = 5.5$); 3.89-4.0 (m. 2H); 4.23 (q, 2H, $J = 7.0$); 4.85 (t, H^c , $J = 6.13$); 7.26 (s, 5H)
2c	cis trans	^a 0.90 (t, 3H, $J = 7.1$); 1.26 (t, 3H, $J = 7.1$); 1.69 (s, 3H); 2.72 (d, 1H, $J = 15.9$, HCHCOOEt); 2.87 (d, 1H, $J = 15.9$, HCHCOOEt); 2.97 (d, H ^a , $J = 5.6$); 3.46 (d, H ^b , $J = 5.6$); 3.95 (q, 2H, $J = 7.1$); 4.19 (q, 2H, $J = 7.1$); 7.30 (s, 5H)
2d	trans	a.e 1.56 (s, 3H); 2.44 (s, 2H); 3.42 (d, Hb, $J = 5.6$); 7.27 (s, 5H) a 0.87 (t, 3H, $J = 7.1$); 1.12 (t, 3H, $J = 7.2$); 3.06 (d, 1H, $J = 15.5$, HCHCOOEt); 3.20 (d, 1H, $J = 15.5$, HCHCOOEt); 3.20 (d, Ha, $J = 5.6$); 3.98 (d, Hb, $J = 5.6$); 3.90 (q, 2H, $J = 7.1$); 4.06 (q, 2H, $J = 7.2$); 7.28–7.64 (m, 10H)
2 e	M	^b 0.86 (t, 3 H, $J = 7.2$); 1.24 (t, 3 H, $J = 7.2$); 1.32 (s, 6 H); 1.50 (s, 3 H); 3.23 (s, 2 H, H ^a + H ^b); 3.94 (q, 2 H, $J = 7.2$); 4.16 (q. 2 H, $J = 7.2$); 7.32 (s, 5 H)
2f	M	a 0.78 (t, 3 H, $J = 7.1$); 1.14 (s, 3 H); 1.24 (t. 3 H, $J = 7.2$); 1.46 (s, 3 H); 3.54 (d, Ha, $J = 6.0$); 3.80 (d, Hb, $J = 6.0$); 3.82 (q. 2 H, $J = 7.1$); 4.17 (q, 2 H, $J = 7.2$); 7.34–7.49 (m, 10 H)
2g	cis-A	a 0.91 (t, 3H, $J = 7.1$); 0.95 (t, 3H, $J = 7.2$); 1.11 (t, 3H, $J = 7.1$); 1.62 (s, 3H); 1.75–1.95 (m, 2H); 2.62 (dd, 1H, $J = 6.4$, 10.4); 3.08 (d, Ha, $J = 5.7$); 3.13 (d, Hb, $J = 5.7$); 3.95 (dq. 2H, $J = 7.1$, 2.3); 4.10 (q, 1H, $J = 7.2$); 4.18 (q, 1H, $J = 7.2$); 7.22–7.35 (m, 5H)
	cis-B	^a 0.91 (t, 3H, $J = 7.2$); 0.95 (t, 3H, $J = 7.3$); 1.28 (t, 3H, $J = 7.1$); 1.63 (s, 3H); 1.78–1.93 (m, 2H); 2.62 (dd, 1H, $J = 3.6$, 11.5); 3.09 (d, H ^a , $J = 5.7$); 3.16 (d, H ^b , $J = 5.7$); 3.96 (dq, 2H, $J = 7.2$, 2.4); 4.16 (q, 1H, $J = 7.1$); 4.23 (q, 1H, $J = 7.1$); 7.20–7.35 (m, 5H)
2h	M-A	* 0.83 (t, 3H, $J = 7.2$); 0.85 (t, 3H, $J = 7.2$); 1.13 (t, 3H, $J = 7.1$); 1.53–1.66 (m, 2H); 2.89 (dd, 1H, $J = 4.4$, 11.0); 3.35 (d
	М-В	H ^a , $J = 5.8$); 3.72 (d, H ^b , $J = 5.8$); 3.85 (q, 2H, $J = 7.2$); 4.13 (q, 1H, $J = 7.1$); 4.19 (q, 1H, $J = 7.1$); 7.32–7.57 (m, 10H) a 0.85 (t, 3H, $J = 7.1$); 0.87 (t, 3H, $J = 7.3$); 1.08 (t, 3H, $J = 7.1$); 1.60–1.72 (m, 1H); 1.83–1.95 (m, 1H); 2.96 (dd, 1H, $J = 3.06$, 11.9); 3.34 (d, H ^a , $J = 5.87$); 3.66 (d, H ^b , $J = 5.87$); 3.84 (q, 2H, $J = 7.1$); 3.95 (q, 1H, $J = 7.1$); 4.04 (q, 1H, $J = 7.1$); 7.34–7.54 (m, 10H)
2i	cis-A	b 0.83 (t, 3H, $J = 7.2$); 1.47 (s, 3H); 3.17 (d, H ^a , $J = 6.0$); 3.43 (d, H ^b , $J = 6.0$); 3.62 (s, 3H); 3.90 (q, 2H, $J = 7.2$); 4.07 (s, 1H); 7.30 (s, 10H)

b m. p. s were measured in sealed capillaries and are uncorrected. Satisfactory microanalyses obtained: $C \pm 0.31$, $H \pm 0.29$, $N \pm 0.29$; except 3d, C - 0.49. Recorded on a specord 75 IR Carl Zeiss Jena spectrophotometer.

1132 Communications SYNTHESIS

Table 2. (continued)

Product	Isomer	1 H-NMR (CDCl ₃ /TMS) a,b δ , J (Hz)
	cis-B	^b 0.80 (t, 3 H, $J = 7.1$); 1.72 (s, 3 H); 2.78 (d, H ^a , $J = 6.0$); 2.98 (d, H ^b , $J = 6.0$); 3.70 (s, 3 H); 3.87 (q, 2 H, $J = 7.1$); 4.06 (s, 1 H); 7.08–7.48 (m, 10 H)
3a	cis	b 0.84 (t, 3H, $J = 7.1$); 0.90 (t, 3H, $J = 7.1$); 1.26 (t, 3H, $J = 7.2$); 1.60 (s, 3H); 2.88 (d, Ha, $J = 6.0$); 3.24 (d, 1H, $J = 14.0$, HCHCONEt ₂); 3.40 (d, Hb, $J = 6.0$); 3.56 (d, 1H, $J = 14.0$, HCHCONEt ₂); 3.95 (dq, 4H, $J = 7.1$, 2.2); 4.25 (q, 2H, $J = 7.2$); 7.32 (s, 5H)
3 b	cis	b 0.80 (t, 3 H, $J = 7.1$); 1.36 (s, 3 H); 1.42 (s, 3 H); 3.02 (s, 6 H); 3.12 (d, H ^a , $J = 4.4$); 3.56 (dd, H ^b , $J = 4.0$, 4.4); 3.88 (q, 2 H, $J = 7.1$); 4.92 (d, H ^c , $J = 4.0$); 7.28 (s, 5 H)
	trans	^b 0.84 (t, 3 H, $J = 7.0$); 1.32 (s, 3 H); 1.40 (s, 3 H); 2.82 (d, H ^a , $J = 5.9$); 3.08 (s, 6 H); 3.20 (d, H ^b , $J = 5.9$); 3.96 (q, 2 H, $J = 7.0$); 4.80 (s, H ^a); 7.28 (s, 5 H)
3c	M	a 0.89 (1, 3 H, $J = 7.1$); 1.49 (s, 3 H); 1.51 (s, 3 H); 1.57 (s, 3 H); 3.07 (s, 6 H); 3.15 (d, Ha, $J = 5.9$); 3.29 (d, Hb, $J = 5.9$); 3.94 (q, 2 H, $J = 7.1$); 7.29 (s, 5 H)
3d	M	^b 0.70 (t, 3 H, $J = 7.0$); 1.36 (s, 3 H); 1.42 (s, 3 H); 2.78 (s, 6 H); 3.40 (d, H ^a , $J = 5.8$); 3.74 (d, H ^b , $J = 5.8$); 3.77 (q, 2 H, $J = 7.0$); 7.20–7.68 (m, 10 H)
3e	cis-A	^a 0.82 (t, 3 H, $J = 7.0$); 1.76 (s, 3 H); 2.87 (s, 3 H); 3.01 (s, 3 H); 3.56 (d, H ^a , $J = 5.9$); 3.83 (d, H ^b , $J = 5.9$); 3.88 (q, 2 H); 4.32 (s, 1 H); 7.20–7.32 (m, 10 H)
	cis-B	(a) A_{J} (b) A_{J} (c) A_{J} (c) A_{J} (c) A_{J} (c) A_{J} (d) A_{J} (e) A_{J} (e) A_{J} (e) A_{J} (f)
4a	M	^b 0.88 (t, 3H, $J = 7.4$); 1.48 (s, 6H); 1.52 (s, 3H); 3.08 (d, H ^a , $J = 6.0$); 3.80 (d, H ^b , $J = 6.0$); 3.96 (q, 2H, $J = 7.4$); 7.21 (s, 5H)
	m	³ 0.88 (t, 3 H, $J = 7.2$); 1.42 (s, 3 H); 1.46 (s, 3 H); 1.56 (s, 3 H); 2.93 (d, H ^a , $J = 5.8$); 3.28 (d, H ^b , $J = 5.8$); 3.96 (q, 2 H, $J = 7.2$); 7.30 (s, 5 H)
4b	M-A	4 0.82 (t. 3 H, $J = 7.4$); 1.15 (d. 3 H, $J = 7.0$); 4.02 (q. 2 H, $J = 7.1$)
•	М-В	4 0.86 (t, 3H, $J = 7.2$); 1.36 (d, 3H, $J = 7.3$); 3.32 (q, 1H, $J = 7.3$); 3.55 (d, H ^a , $J = 5.8$); 3.63 (d, H ^b , $J = 5.8$); 3.89 (q, 2H, $J = 7.2$); 7.32 (s, 5H); 7.30 -7.68 (m, 5H)
4c	M	^a 0.84 (f, 3 H, $J = 7.1$); 1.32 (s, 3 H); 1.54 (s, 3 H); 3.68 (d, H ^a , $J = 5.9$); 3.85 (q, 2 H, $J = 7.1$); 4.09 (d, H ^b , $J = 5.9$); 7.36 (s, 5 H); 7.28–7.65 (m, 5 H)
4 d	cis-A	³ 0.80 (f, 3 H, $J = 7.3$); 1.66 (s, 3 H); 2.80 (d, H ^a , $J = 5.8$); 3.08 (d, H ^b , $J = 5.8$); 3.86 (q, 2 H, $J = 7.3$); 4.18 (s, 1 H); 7.38 (s, 5 H); 7.04–7.44 (m, 5 H)
	cis-B	5 11); 7.34 7.44 (iii, 511) 5 0.79 (t, 3 H, $J = 7.2$); 1.70 (s, 3 H); 2.86 (d, H ^a , $J = 5.9$); 3.26 (d, H ^b , $J = 5.9$); 3.68 (q, 2 H, $J = 7.2$); 4.22 (s, 1 H); 7.24 (s, 5 H); 7.38 (s, 5 H)
4e	M- A	^a 0.83 (t. 3H, $J = 7.2$); 4.46 (s. 1H)
	M-B	^a 0.81 (t, 3 H, $J = 7.1$); 3.39 (d, H ^a , $J = 5.8$); 3.50 (d, H ^b , $J = 5.8$); 3.83 (q, 2 H, $J = 7.1$); 4.48 (s, 1 H); 7.20 · 7.43 (m, 15 H)

- ^a Recorded at 250 MHz on a Brucker WM spectrometer.
- b Recorded at 100 MHz on a JEOL-JNM-PS-100 spectrometer.
- Values from the spectrum of the mixture of the two isomers.

For compounds **2g**, **2i**, **3e**, and **4d** it can be shown by NOE experiments that the configuration at C-4, C-5 is always cis. Two isomers are obtained, generally non-stereoselectively, due to the chiral center originating from the Reformatsky reagent. In all cases where diastereoisomers of this kind are obtained, the isomer with the higher R_f value is designated as A, the one with the lower R_f value as B (TLC on silica gel, eluent ether/hexane: $\frac{50}{50}$ for **2g**, **h**; $\frac{60}{40}$ for **2i**, **4h**, **d**, **e**; $\frac{80}{20}$ for **3e**).

For the compounds obtained with zinc-reagents prepared from acetic acid derivatives, the configuration at C-4 can be resolved on the basis of the diastereotopicity of the methylene protons adjacent to C-4. The magnetic behavior of these methylene protons depends on the relative positions of the CH₂ group and the cyclopropane ring. For similar compounds with unambiguously established configurations, marked magnetic nonequivalence is observed for the CH₂ protons in *endo*-position to the cyclopropane ring. ^{1,7} We thus assign the *cis*-configuration to **2a**, **b**, **c** and the *trans* configuration to **2d**. This assignment was confirmed for **2b** (see above).

¹H-NMR data were insufficient to assign the configurations of **2e**, **f**, **h**, **3c**, **d**, and **4a**, **b**, **c**, **e**. For this reason we designate the respective two isomers M (major) and m (minor).

The isomer ratios were estimated from the ¹H-NMR spectra using the integration curves refering to the signals underlined in the Table. In most cases, formation of the chiral centre at C-4 proceeds with good stereoselectivity.

All reactions are carried out under nitrogen. The intermediate Reformatsky reagents are prepared as reported in the literature: esters and amides in THF/Et₂O (1:4),⁵ nitriles in THF.⁴ Compounds I are prepared according to Ref.⁸.

4-Substituted 1-Ethoxycarbonyl-2-oxo-3-oxabicyclo[3.1.0]hexanes (2, 3, 4); General Procedures:

Method A, Two-Step Procedure: To a stirred solution of the Reformatsky reagent (10 mmol) in the respective solvent (7.5 mL) cooled to $-10\,^{\circ}\mathrm{C}$ is added dropwise a solution of the 2-acyleyclopropane-1,1-dicarboxylic ester 1 (7 mmol) in THF (5 mL). The cooling bath is then removed and the mixture stirred at room temperature for 5 h. The mixture is then hydrolyzed with ice-cold H₂O (25 mL) containing conc. HCl/H₂O (1 mL) and extracted with Et₂O (3×20 mL). The organic layer is washed with H₂O (10 mL), dried (Na₂SO₄), and evaporated under reduced pressure.

Method B, One-Step Procedure: A mixture of zinc turnings (0.65 g, 1 mmol), the α-bromophenylacetic acid derivative (10 mmol), the 2-acylcyclopropane-1,1-dicarboxylic ester 1 (8 mmol), and a few crystals of mercury(II) chloride (15 mg) in THF (10 mL) is stirred at room temperature for 5 h. Work-up is as in Method A.

The crude products obtained by Methods A or B are purified by vacuum distillation or recrystallization. The isomers are separated by fractional recrystallization (2i, 3b, e, 4b, d, e) or recrystallization combined with preparative TLC (2g, h, 4a; silica gel, cluent Et₂O/hexane, 50: 50 for 2g and 2h; 60: 40 for 4a).

Received: 28 January 1987; revised: 25 June 1987

- (1) Mladenova, M., Gaudemar-Bardone, F., Goasdoué, N., Gaudemar, M. Synthesis 1986, 937.
- (2) Curé, J., Gaudemar, M. Bull. Soc. Chim. Fr. 1968, 3244.
- (3) Curé, J., Gaudemar, M. Bull. Soc. Chim. Fr. 1973, 2418.
- (4) Goasdoué, N., Gaudemar, M. J. Organomet. Chem. 1972, 39, 17.
- (5) Gaudemar, M. Tetrahedron Lett. 1983, 24, 2749.
- (6) Mladenova, M., Blagoev, B., Kurtev, B. C. R. Acad. Sci., Ser. C 1971, 273, 766.
- (7) Parlier, A., Rudler, H., Platzer, N., Fontanille, M., Soum, A. J. Organomet. Chem. 1985, 287, C 8.
- (8) Gaudemar-Bardone, F., Gaudemar, M. Bull. Soc. Chim. Fr. 1973, 3476.