Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

7-Sulfonamido-3-benzazepines as potent and selective 5-HT_{2C} receptor agonists: Hit-to-lead optimization

Paul V. Fish*, Alan D. Brown, Edel Evrard, Lee R. Roberts

Discovery Chemistry, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, Kent CT13 9NJ, UK

ARTICLE INFO

Article history: Received 5 February 2009 Revised 18 February 2009 Accepted 18 February 2009 Available online 21 February 2009

Keywords: 3-Benzazepine Sulfonamide 5-HT2C receptor Agonist Hit-to-lead

ABSTRACT

New 7-sulfonamido-3-benzazepines **3** are disclosed as $5-HT_{2C}$ receptor agonists. Appropriate substitution of the amino group (R¹R²N–) gave compounds that were potent $5-HT_{2C}$ agonists with minimal activation of the $5-HT_{2A}$ and $5-HT_{2B}$ receptors. Furthermore, representative examples had excellent in vitro ADME properties and good selectivity over ion channel activity.

© 2009 Elsevier Ltd. All rights reserved.

The neurotransmitter serotonin (5-HT) mediates its effects through at least 14 different receptor subtypes that have been classified into seven major families, $5-HT_{1-7}$.¹ The $5-HT_2$ family has three members 2A, 2B and 2C and unlike $5-HT_{2A}$ and $5-HT_{2B}$ receptors, the expression of $5-HT_{2C}$ receptors appears to be restricted to the central nervous system (CNS).² $5-HT_{2C}$ receptor agonists have become attractive drug targets that have potential use in the treatment of a number of conditions including obesity, schizophrenia, sexual dysfunction, and urinary incontinence.³ For these indications, selectivity over agonism at the $5-HT_{2A}$ and $5-HT_{2B}$ receptors would be a key objective because $5-HT_{2A}$ agonists can potentially be hallucinogenic and have cardiovascular (CV) effects,⁴ whereas $5-HT_{2B}$ agonism has been associated with heart valvulopathy and pulmonary hypertension.⁵

The search for potent and selective $5-HT_{2C}$ agonists has identified lorcaserin (1) (APD-356; Arena) which is in advanced clinical trials for the treatment of obesity⁶ and vabicaserin (2) (SCA-136; Wyeth) as a potential therapy for schizophrenia.⁷ Furthermore, several small molecule $5-HT_{2C}$ agonists have been reported to be in early clinical development.⁸

Corresponding author. Tel.: +44 0 1304 644589; fax: +44 0 1304 651987. *E-mail address:* paul.fish@pfizer.com (P.V. Fish).

0960-894X/\$ - see front matter \circledcirc 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.02.071

We have disclosed several new templates as 5-HT_{2C} receptor agonists^{9–12} and some of these compounds have now progressed to clinical trials. As part of our research efforts to identify potential new 5-HT_{2C} agonist drug candidates, we adopted a strategy of exploring multiple chemical templates in order to increase our chances of having compounds survive to become advanced clinical candidates. In this Letter, we disclose new 7-sulfonamido-3-benzazepines (**3**) as potent and selective 5-HT_{2C} agonists.

There have been few reports of sulfonamido-3-benzazepines (**3**) as $5-HT_{2C}$ receptor agonists and these have been restricted to the patent literature with few examples of specific compounds or disclosures of receptor affinity or selectivity.¹³ Hence, we initiated a hit-to-lead research program to explore the structure–activity relationships (SAR) of **3** with the objective of seeking potent $5-HT_{2C}$ agonists with minimal activity at either the $5-HT_{2A}$ or $5-HT_{2B}$ receptors. Furthermore, target compounds were designed to have drug-like properties consistent with CNS target space.¹⁴ It was also our intention to evaluate sulfones **4** and reversed sulfonamides **5** as these would explore the effect of the linker group and be available from common intermediates.

Target compounds **3** and **4** were prepared using a short synthesis employing 3-benzazepine-7-sulfonyl chlorides 11^{15} as advanced intermediates (Scheme 1). Sulfonamides **3** were prepared by reaction of **11** with the appropriate amine (R^1R^2NH) followed by deprotection of the trifluoroacetyl amide under standard conditions. Sulfones **4** were prepared from **11** by activation to the sulfonyl fluoride and then treatment with a Grignard reagent (R^1MgX).¹⁶ Where the benzazepines **9** were not readily available, the azepine ring was constructed from the phenylacetic acid **6** by

Scheme 1. Synthesis of sulfonamides **3** and sulfones **4**. Reagents: (a) SOCl₂; (b) $H_2NCH_2CH(OMe)_2$; (c) concd HCl; (d) H_2 , Pd/C, AcOH; (e) BH₃.THF; (f) (CF₃CO)₂O; (g) CISO₃H; (h) R¹R²NH; (i) K₂CO₃, MeOH; (j) KF, 18-crown-6 (cat), MeCN; (k) R¹MgX, THF.

acid-catalyzed cyclization of **7** to give **8** followed by sequential reduction of the alkene and then amide.¹⁷ Protection of the azepine N-atom followed by chlorosulfonylation furnished **11**.

Reversed sulfonamides **5** were also prepared from benzazepine **9** (Scheme 2). Nitration of **9** with fuming HNO₃ selectively introduced a 7-NO₂ group in good yield.¹⁸ Boc protection of the azepine and hydrogenolysis of the 7-NO₂ group afforded aniline **12**.¹⁹ Reductive amination of **12** with aldehydes under standard conditions gave *sec*-amines **13** and then reaction with sulfonyl chlorides followed by deprotection of the azepine *N*-Boc group gave **5**.

The 5-HT_{2C} agonist activity of target compounds (Table 1) was initially evaluated by measuring the ability to induce a fluorescent based calcium mobilization signal in a FLIPR assay employing recombinant CHO K1 cells expressing the human 5-HT_{2C} receptor.¹²

Scheme 2. Synthesis of reversed sulfonamides **5.** Reagents: (a) fuming HNO₃; (b) (Boc)₂O; (c) H₂, Pd/C; (d) aldehyde, MeOH then NaBH₄; (e) R²SO₂Cl; (f) CF₃CO₂H.

Target compounds were also tested for their ability to inhibit binding of [³H]-meselurgine at the human 5-HT_{2C} receptor utilizing SPA technology and cellular membrane preparations generated from recombinant Swiss 3T3 cells.¹² Agonist activity at the 5-HT_{2B} receptor was measured in recombinant cell-based systems expressing the human receptor.

The secondary sulfonamides **3a–f** were found to be weak 5- HT_{2c} agonists with 5- HT_{2B} activity, and several examples were more active at the 5- HT_{2B} receptor (**3b**) (Table 1). In contrast, tertiary sulfonamides **3g–m**, whether alkyl, benzyl or cyclic amines, had improved 5- HT_{2c} activity and some examples demonstrated minimal 5- HT_{2B} activity. Dihydrobenzofuran **3n** was one of the most potent 5- HT_{2C} agonists from this set and had no significant 5- HT_{2B} activity (<10% @ 10 µM). As part of our next iteration of analogue synthesis, we elected to explore further this motif by scaffold hopping from the dihydrobenzofuran to aryloxy amines **II-X** (Fig. 1). These targets were designed to be more chemically enabled and promote a rapid exploration of the SAR of the amine ring size and aryl ring substitution.

Azetidines **30–q**, pyrrolidines **3r,s** and piperidines **3t–w** all furnished examples of potent $5-HT_{2c}$ agonists with minimal $5-HT_{2B}$ activity. The aryloxy group was clearly making an important contribution to both these SARs (e.g. **3r** vs **3k** and **3v** vs **3l**).

Introduction of a second or third substituent on the aryl ring of the benzazepine 3x-aa proved detrimental within this very limited set of R^3 groups (e.g. 3v vs 3y vs 3aa). Further investigation of this SAR, where R^3 was from a broader set of substituents, would represent a suitable position for potential optimization of 3.

An analysis of 5-HT_{2C} activity of **3** aligned by R^1R^2N - clusters for all the compounds (n = 169) was performed with scatter plots which assisted in the identification of SAR trends and preferred compounds (Fig. 2). For example, it proved difficult to divorce 5-HT_{2C} and 5-HT_{2B} activity with aniline derivatives (**3**: $R^1 = Ar$) whereas compounds containing azetidines and pyrrolidines furnished many potent 5-HT_{2C} agonists with minimal activity at 5-HT_{2B}.

Aryl sulfones **4** were potent $5-HT_{2C}$ agonists which also demonstrated significant $5-HT_{2B}$ agonist activity and were not pursued. Reversed sulfonamides **5** failed to show any significant $5-HT_{2C}$ activity which highlighted the importance of the sulfonamide of **3** in picking up specific favourable interactions and/or presenting the amino substituents in a favourable trajectory.

Selected compounds were then screened in high throughput in vitro ADME and safety screens as a wider assessment of their properties: metabolic stability in human liver microsomes (HLM), transit performance across MDCK-mdr1 cells to assess membrane permeability,²⁰ and binding to the potassium hERG channel as a measure of ion channel activity (Table 2). In general, sulfonamides **3** had good metabolic stability consistent with low predicted clearance, good membrane permeability with low affinity for P-gp efflux transporters, and moderate affinity for the potassium hERG channel.

Pharmacological evaluation for activity at the 5-HT_{2A} receptor was measured in a FLIPR assay employing Swiss 3T3 cells expressing the recombinant human 5-HT_{2A} receptor, and in vitro tissue preparations with femoral artery.²¹ Screening of **3v** in the recombinant assay gave a significant response with an EC₅₀ 32 nM and E_{max} 70%. However, our experience has taught us that this was a highly expressed/coupled cell-line which over estimates 5-HT_{2A} activity and that the tissue preparation assay was a better predictor of in vivo outcomes.^{22,23} Evaluation of **3v** in the canine femoral artery gave a minimal response of <10% at 0.54 μ M, and we concluded that **3v** has no significant 5-HT_{2A} activity.

Compound **3v** was then evaluated in additional ADME and pharmacology screens as a representative example from this series. Sulfonamide **3v** had weak inhibition of CYP450 enzymes 1A2,

Table 1

5-HT_{2C} and 5-HT_{2B} activity for compounds $\mathbf{3-5}^{a,b,c}$

Compound	R ¹	R ²	R ³	5-HT _{2C}		5-HT _{2C}	5-HT _{2B}	
				EC ₅₀ (nM)	E _{max} (%)	$\overline{K_{i}(nM)}$	EC ₅₀ (nM)	E _{max} (%)
Secondary								
3a	nPr	Н	Н	959	59	531	197	30
3b	Ph	Н	Н	697	38	382	69	50
3c	2-F-Ph	Н	Н	197	47	133	75	41
3d	2-Cl-Ph	Н	Н	857	38	156	478	16
3e	$CH_2(2-Cl-Ph)$	Н	Н	46	48	30	802	19
3f	CH ₂ cPr	Н	Н	631	47	235	103	47
Tertiary								
3g	Me	Me	Н	47	74	87	125	57
3h	Ph	Me	Н	-	23% ^d	1200	478	46
3i	CH ₂ Ph	Me	Н	94	40	10	>9940	_
3j	CH ₂ cPr	Me	Н	71	88	7	17	50
3k	Pyrro	lidine	Н	50	86	51	357	68
31	Piper	ridine	Н	84	66	9	34	89
3m	Morp	holine	Н	186	55	196	NT	_
3n		I	Н	41	74	58	>9940	-
Azetidines								
30	1	I	Н	31	76	NT	>9940	_
3р	I	II	Н	12	82	NT	>9940	_
3q	I	V	Н	28	66	NT	>9940	-
Pyrrolidines								
3r		V	Н	14	73	NT	>9940	_
3s	١	Л	Н	31	47	NT	>9940	-
Piperidines								
3t	v	'II	Н	508	59	NT	>9940	-
3u	v	III	Н	115	52	15	>9940	-
3v	I	Х	Н	31	66	13	>9940	-
3w	2	x	Н	273	71	NT	>9940	-
Aryl substitution								
3x	CH ₂ Ph	Me	6-OMe	-	<10% ^d	NT	NT	-
Зу	I	X	6-OMe	-	<10% ^u	NT	NT	-
3z	CH ₂ Ph	Me	6,9-(OMe) ₂	170	50	NT	>9940	-
Заа	I	x	6,9-(OMe) ₂	365	57	NT	NT	-
Sulfones	-							
4a	Ph	-	Н	9	71	6	18	61
4b	2-F-Ph	-	Н	7	70	NT	18	66
4c	3-F-Ph	-	Н	9	81	NT	33	67
4d	4-F-Ph	-	Н	80	47	NT	15	60
Reversed sulfonam	nides				t oo d			
5a	Н	2-F-Ph	Н	-	18%"	NT	NT	-
5b	Me	2-F-Ph	Н	-	10% ^u	NT	NT	—
5c	Н	$CH_2(4-F-Ph)$	Н	-	10% ^u	NT	NT	-
5d	Me	$CH_2(4-F-Ph)$	Н	-	20% ^u	NT	NT	-

^a See Ref. 12 for complete details of assay conditions. ^b Values (EC₅₀, E_{max} , K_i) are geometric means of 2–4 experiments. Differences of <2-fold should not be considered significant. ^c NT denotes not tested.

 d % activation at 10 μ M.

Figure 1. Design of aryloxy cyclic sulfonamides **II-X** derived from dihydrobenzo-furan **3n**.

2C9, 3A4 (<50% @ 3 μ M) although **3v** did show moderate inhibition of CYP2D6 (69% @ 3 μ M). Sulfonamide **3v** had modest ion channel activity as measured by binding to representative sodium (site 2: K_i 2400 nM) and calcium (L-type, diltiazem: K_i 1200 nM) channels. Compound **3v** was also screened for off-target pharmacology against a panel of 110 receptors, enzymes and ion channels (CEREP, BioprintTM) and was found to have binding affinity for the human 5-HT_{1B}, 5-HT₆ and dopamine D3 receptors. Hence, further optimisation of sulfonamides such as **3v** would need to reduce these activities.

In summary, new 7-sulfonamido-3-benzazepines **3** are disclosed as 5-HT_{2C} receptor agonists. Appropriate substitution of the amino group (R^1R^2N -) gave compounds that were potent 5- HT_{2C} agonists with minimal activation of the 5- HT_{2A} and 5- HT_{2B} receptors. Furthermore, representative examples had excellent in vitro ADME properties and good selectivity over ion channel activity. The next phase of this lead optimization program will be to reduce unwanted off-target pharmacology by further modification of structural features whilst maintaining appropriate physicochemical properties for CNS penetration.

Table 2

Measured distribution coefficients (Log D_{7.4}), ADME properties and ion channel affinities for examples of ${\bf 3}$ and ${\bf 4}^a$

Compound	Log D _{7.4}	HLM Cl _i (µL/min/mg)	$\begin{array}{l} \text{MDCK-mdr1 AB/BA} \\ (P_{app} \times 10^{-6} \ cms^{-1}) \end{array}$	hERG <i>K</i> _i (nM)
Bi	1.0	NT	29/33	NT
3n	1.0	NT	18/34	2990
30	1.1	NT	NT	3410
3р	1.7	9	12/20	3690
3q	1.6	<8	NT	2090
Br	1.3	36	15/34	3430
Bs	1.3	34	NT	5240
3v	2.0	17	15/26	2900
l a	0.5	<8	21/25	>7200

^a NT denotes not tested.

Acknowledgements

We thank Gordon McMurray, Nick Edmunds (Discovery Biology) and the Primary Pharmacology Group for screening data, and Peter Bungay (PDM) for additional studies.

References and notes

- 1. Alexander, S. P. H.; Mathie, A.; Peters, J. A. Brit. J. Pharm. 2006, 147, S6.
- 2. Nilsson, B. M. J. Med. Chem. 2006, 49, 4023.
- (a) Dutton, A. C.; Barnes, N. M. Drug Discovery Today 2006, 3, 577; (b) Smith, B. M.; Thomsen, W. J.; Grottick, A. J. Expert Opin. Invest. Drugs 2006, 15, 257; (c) Wacker, D. A.; Miller, K. J. Curr. Opin. Drug Dis. Dev. 2008, 11, 438.
- (a) Nichols, D. E. Pharmacol. Ther. 2004, 101, 131; (b) Villalon, C. M.; Centurion, D. Naunyn-Schmiedeberg's Arch. Pharmacol. 2007, 376, 45.
- 5. Roth, B. L. N. Eng. J. Med. 2007, 356, 6.
- (a) Wang, Y.; Serradell, N.; Bolos, J. Drugs Future 2007, 32, 766; (b) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Dosa, P. I.; Covel, J. A.; Ren, A.; Webb, R. R.; Beeley, N. R. A.; Martin, M.; Morgan, M.; Espitia, S.; Saldana, H. R.; Bjenning, C.; Whelan, K. T.; Grottick, A. J.; Menzaghi, F.; Thomsen, W. J. J. Med. Chem. 2008, 51, 305; (c) Thomsen, W. J.; Grottick, A. J.; Menzaghi, F.; Reyes-Saldana, H.; Espitia, S.; Yuskin, D.; Whelan, K.; Martin, M.; Morgan, M.; Chen, W.; Al-Sham, H.; Smith, B.; Chalmers, D.; Behan, D. J. Pharm. Exp. Ther. 2008, 325, 577.
- Ramamoorthy, P. S.; Beyer, C.; Brennan, J.; Dunlop, J.; Gove, S.; Grauer, S.; Harrison, B. L.; Lin, Q.; Malberg, J.; Marquis, K.; Mazandarani, H.; Piesla, M.; Pulicicchio, C.; Rosenzwieg-Lipson, S.; Sabb, A.-M.; Schechter, L.; Stack, G.;

Figure 2. Scatter plots of 5-HT_{2C} activity aligned by amine clusters (R^1R^2N -) for **3**. (a) Data for all compounds prepared. (b) Only 5HT_{2C} agonists (EC₅₀ \leq 200 nM) with no significant 5-HT_{2B} agonist activity (E_{max} < 10% @ 10 μ M).

Zhang, J. Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26–30th, 2006, MEDI-021.

- For recent reviews of 5-HT_{2C}agonists, see: (a) Bishop, M. J.; Nilsson, B. M. Expert Opin. Ther. Patents 2003, 13, 1691; (b) Lacivita, E.; Leopoldo, M. Curr. Top. Med. Chem. 2006, 6, 1927; c Ref. 2.
- Siuciak, J. A.; Chapin, D. S.; McCarthy, S. A.; Guanowsky, V.; Brown, J.; Chiang, P.; Marala, R.; Patterson, T.; Seymour, P. A.; Swick, A.; Iredale, P. A. Neuropharmacology 2007, 52, 279.
- 10. Chen, H.; Coffey, S. B.; Lefker, B. A.; Liu, K., WO patent 103511, 2006.
- Allerton, C.; Andrews, M.; Blagg, J.; Brown, A. D.; Fish, P. V.; Green, M.; Liu, K. 14th SCI-RSC Medicinal Chemistry Symposium; September 23–26th, 2007; Cambridge, UK.
- Andrews, M.; Blagg, J.; Brennan, P.; Fish, P. V.; Roberts, L.; Storer, R. I.; Whitlock, G. A., WO patent 117169, 2008.
- a Bondinell, W. E.; Ormsbee III, H. S., US patent 4659706, 1987.; b Maeno, K.; Shimada, I.; Kondoh, Y.; Kadu, H.; Sugasawa, K.; Wanibuchi, F., WO patent 074746, 2002.; c Smith, B.; Gilson III, C.; Schultz, J.; Estrada, S., WO patent 042491, 2005.
- 14. Hitchcock, S. A.; Pennington, L. D. J. Med. Chem. 2006, 49, 1.
- 15. Danilewicz, J.C.; Ellis, D.; Kobylecki, R. J., WO patent 9513274, 1995.
- Cooper, D. G.; Forbes, I. T.; Garzya, V.; Gribble, A. D.; Lightfoot, A. P.; Payne, A. H.; Walker, G., WO patent 014578, 2005.

- 17. See: Bondinell, W. E.; Ormsbee III, H. S., EP patent 285287, 1988.
- 18. Pecherer, B.; Sunbury, R. C.; Brossi, A. J. Heterocycl. Chem. 1971, 8, 779.
- 19. Cross, P. E.; Arrowsmith, J. E., EP patent 284384, 1988.
- Transit performance in the MDCK-mdr1 cell line is commonly used as a model to estimate CNS penetration, see: Mahar Doan, K. M.; Humphreys, J. E.; Webster, L. O.; Wring, S. A.; Shampine, L. J.; Serabjit-Singh, C. J.; Adkison, K. K.; Polli, J. W. J. Pharm. Exp. Ther. 2002, 303, 1029.
- Davey, D.; Davidson, M.; af Forselles, K.; McMurray, G. Characterisation of the 5-HT₂ receptors in the canine femoral artery. *Proceedings of the British Pharmacological Society* **2006**, *4*, 2, 095P; available at http:// www.pa2online.org.
- Fantegrossi, W. E.; Reissig, C. J.; Katz, E. B.; Yarosh, H. L.; Rice, K. C.; Winter, J. C. Pharmacol. Biochem. Behav. 2008, 88, 358. and references therein.
- 23. Several compounds from different chemical series have been evaluated to assess the correlation of performance in our cell-based screen with established in vitro and in vivo models of 5-HT_{2A} agonist activity. For example, compound **14** (structure not shown) gave a response in the recombinant assay (EC₅₀ 68 nM; E_{max} 82%) but a much weaker response in the canine femoral artery (EC₅₀ 3400 nM; E_{max} 51%). Evaluation of **14** in the rat head-twitch model (Ref. 22) at 10 mg/kg (po, *n* = 8) gave no response and **14** had no significant effect on blood pressure or heart rate during a CV assessment in an anaesthetized dog model up to 0.5 mg/kg (iv infusion over 60 min, *n* = 4).