Chemie polyfunktioneller Moleküle. 119 [1]

Tetracarbonyl-dicobalt-tetrahedran-Komplexe mit den Liganden Bis(diphenylphosphanyl)amin, 2-Butin-1,4-diol und tert-Butylphosphaacetylen – Kristallstrukturanalyse des Phosphaalkin-Derivats

Diana Pohl, Jochen Ellermann*, Matthias Moll, Falk A. Knoch und Walter Bauer

Erlangen, Institute für Anorganische und Organische Chemie der Universität

Bei der Redaktion eingegangen am 6. Juni 1995.

Professor Gerhard Thiele zum 60. Geburtstag gewidmet

Inhaltsübersicht. $Co_2(\mu$ -CO)₂(CO)₄(μ -Ph₂P—NH—PPh₂—P,P') · 1/2C₆H₅CH₃ (4 · 1/2 C₆H₅CH₃) reagiert in THF mit 2-Butin-1,4-diol, HOCH₂—C \equiv C—CH₂OH (5), zu dem dunkelroten Tetrahedran-Komplex

 $Co_2(CO)_4(\mu-\eta^2,\eta^2-HOCH_2-C\equiv C-CH_2OH-C^2,C^3)$.

 $(\mu$ -Ph₂P—NH—PPh₂—P,P') · THF (6 · THF). Mit tert.-Butylphosphaacetylen, *t*Bu-C=P (7), bildet 4 den ebenfalls im Zentrum tetraedrisch strukturierten Komplex Co₂(CO)₄ $(\mu$ - η^2, η^2 - tBu—C=P)(μ -Ph₂P—NH—PPh₂—P,P') (8). Die Verbindungen werden an Hand ihrer Massen-, IR-, ³¹P{¹H}-NMR-, ¹³C{¹H}-NMR- und ¹H-NMR-Spektren charakterisiert. Für eine Röntgenstrukturanalyse geeignete Kristalle wurden von 8 aus Dioxan erhalten. Die dunkelroten Kristalle von 8 · 2C₄H₈O₂ kristallisieren in der monoklinen Raumgruppe P2₁/c mit den Gitterkonstanten a = 1404,1(5), b = 1330,0(7), c = 2578,8(10) pm; $\beta = 90,82(3)^{\circ}$ aus.

Chemistry of Polyfunctional Molecules. 119 [1]

Tetracarbonyl-dicobalt-tetrahedrane Complexes with the Ligands Bis(diphenylphosphanyl)amine, 2-Butin-1,4-diol, and tert.-Butylphosphaacetylene – Crystal Structure of the Phosphaalkyne Derivative

Abstract. $Co_2(\mu-CO)_2(CO)_4(\mu-Ph_2P-NH-PPh_2-P,P')$. $1/2C_6H_5CH_3$ (4 · 1/2C_6H_5CH_3) reacts with 2-butine-1,4-diol, $HOCH_2-C\equiv C-CH_2OH$ (5), to the dark-red tetrahedrane complex $Co_2(CO)_4(\mu-\eta^2,\eta^2-HOCH_2-C\equiv C-CH_2OH-C^2,C^3)$. $(\mu-Ph_2P-NH-PPh_2-P,P')$ · THF (6 · THF). With *t*-butylphosphaacetylene, $tBu-C\equiv P$ (7), 4 · THF forms $Co_2(CO)_4$ · $(\mu-\eta^2,\eta^2-tBu-C\equiv P)(\mu-Ph_2P-NH-PPh_2-P,P')$ (8), which also belongs to the tetrahydrane type. The compounds were characterized by their mass, IR, ³¹P['H] NMR, ¹³C['H] NMR, and ¹H NMR spectra. Crystals suitable for X-ray structure analyses have been obtained for **8** from dioxane. The dark red blocks crystallize in the monoclinic P2₁/c space group with the lattice constants a = 1404,1(5), b = 1330,0(7), c = 2578,8(10) pm; $\beta = 90,82(3)^{\circ}$.

Keywords: Cobalt, terahedrane complexes, alkyne, phosphalkyne, bis(diphenylphosphanyl)amine, X-ray structure

1 Einleitung

In den letzten Jahren hat eine neue Verbindungsklasse von Naturprodukten, die sogenannten "Enediyne-Anti-Tumor-Antibiotika" [2-7] große Bedeutung erlangt. Die konjugierten ungesättigten Systeme dieser Verbindungen dienen als Vorstufen für hochreaktive aromatische Diradikale [8]. Solche Diradikale sind in der Lage DNA-Stränge zu spalten und dadurch die Zellzerstörung herbeizuführen. Die synthetische Verwendung von $Co_2(CO)_6$ alkin-Komplexen, wie zum Beispiel der Hexacarbonyldicobalt-stabilisierte Propargyl-Komplex 1, ist in letzter Zeit vermehrt in den Vordergrund getreten und stellt für die Krebsforschung eine neue Möglichkeit zur Darstellung von "Enediyn-Antibiotika" dar [8]. Dabei dient die $Co_2(CO)_6$ -Einheit als Schutzgruppe während z. B. am propargylischen Kohlenstoffatom-3 eine Reihe von Reaktionen [8, 9] durchgeführt werden können. Man erhält somit eine vielseitige Propargylierungsmethode wenn sich ihr eine milde oxidative Demetallierung mit I₂, Fe(NO₃)₃ oder (NH₄)₂[Ce(NO₃)₆] anschließt [8]. Immer mehr Bedeutung erlangen außerdem Umsetzungen von intermediär erzeugtem 1a mit Nukleophilen wie z. B. Hydriden, Alkoholen, primären und sekundären Aminen, Phosphanen und Thioethern [9]. Kaum untersucht ist dagegen das Reaktionsverhalten [10] des mit 1 vergleichbaren 2-Butin-1,4-diol-Komplexes 2.

Kürzlich konnten wir zeigen, daß bei der Umsetzung von 2 mit einem Überschuß an Bis(diphenylphosphanyl)amin (Ph₂P)₂NH, dppa, (3) [11, 12], die Co₂(CO)₆-Schutzgruppe an der (Co--Co)-Bindung gespalten wird und hierbei unter teilweiser Deprotonierung und Oxidation des Liganden 3 der Cobalt(1+)-Komplex

 $[Co^{1+}(CO)_2[Ph_2P\dots N\dots P(O)Ph_2-P^{-}](Ph_2P-NH-PPh_2-P,P')]$ entsteht [13]. Diese Ergebnisse lassen vermuten, daß die Schutzfunktion der Co₂(CO)₆-Guppe gefährdet ist, sobald in der Reaktionsmischung gleichzeitig tertiäre Organophosphane vorhanden sind und Temperaturen oberhalb +50 °C [13] gewählt werden.

Im Rahmen dieser Untersuchungen interessierte nun die Frage, ob Alkine nur CO in $Co_2(CO)_8$ substituieren und dabei die Schutzgruppe $Co_2(CO)_6$ bilden, oder ob sie auch in $Co_2(CO)_6$ dppa (4) [14] CO ersetzen und dabei die neue, möglicherweise stabilere, Schutzgruppe $Co_2(CO)_4$ dppa entsteht.

2 Ergebnisse und Diskussion

Setzt man zu diesem Zweck den Komplex $4 \cdot 1/2C_6H_5CH_3$, der, wie in [14] beschrieben, aus Toluol als Hemisolvat erhältlich ist, mit überschüssigem 2-Butin-1,4-diol (5) in Tetrahydrofuran (THF) bei Raumtemperatur entsprechend Gl.(1) um, so entsteht nach 7 Stunden der Tetracarbonyldicobalta-tetrahydran-Komplex $6 \cdot$ THF.

Diese Reaktion zeigt gegenüber dem früher [13] beschriebenen Verfahren eindeutig, daß die Cobalt-Cobalt-Bindung intakt bleibt, sobald man zunächst bei Raumtemperatur den P-Donator dppa in $Co_2(CO)_8$ einführt

$$Co_{2}(\mu-CO)_{2}(CO)_{4}(\mu-dppa-P,P') \cdot 1/2C_{6}H_{5}CH_{3} + 4 \cdot 1/2C_{6}H_{5}CH_{3}$$

$$HOCH_{2}C \equiv CCH_{2}OH \rightarrow 5$$

$$Co_{2}(CO)_{4}(\mu-dppa-P,P')(\mu-n^{2},n^{2}-HOCH_{5}C \equiv CCH_{5}OH - C^{2},C^{3})$$

$$6 \cdot \text{THF} \qquad \cdot \text{THF} + 2\text{CO} \quad (1)$$

[14] und dann anschließend ebenfalls bei Raumtemperatur, in $4 \cdot 1/2 C_6 H_5 CH_3 CO$ durch 5 substituiert. Daß die Reihenfolge der Zugabe der Reaktanden wichtig ist, und weniger die angewandte Temperatur ergibt auch die analoge Reaktion mit dem tert.-Butyl-phosphaacetylen 7 [15, 16]. Setzt man $4 \cdot 1/2 C_6 H_5 CH_3$ mit 7 entsprechend Gl. (2) in Toluol bei 50 °C um, so bildet sich innerhalb von 5 Stunden der dunkelrote, mikrokristalline Tetracarbonyl-dicobalta-phospha-tetrahedran-Komplex 8, der aus Toluol ohne Kristallsolvens ausfällt.

$$Co_{2}(\mu-CO)_{2}(CO)_{4}(\mu-dppa-P,P') \cdot 1/2 C_{6}H_{5}CH_{3} + 4 \cdot 1/2 C_{6}H_{5}CH_{3} + (CH_{3})_{3}C-C \equiv P \xrightarrow{50 \circ C} 7$$

7
Co_{2}(CO)_{4}(\mu-dppa-P,P'){(\mu-\eta^{2},\eta^{2}-(CH_{3})_{3}C-C \equiv P} + 2CO (2)

8Die Verbindung 6 · THF kristallisiert aus THF/n-Hexan

zwar in schönen dunkelroten, nadeligen Kristallbüscheln aus, jedoch sind diese für eine Röntgenstrukturanalyse nicht geeignet. Röntgenographisch verwertbare Kristalle erhält man dagegen von **8** aus Dioxan/n-Hexan in Form des Solvats $\mathbf{8} \cdot 2C_4H_8O_2$.

Die Kristallstrukturanalyse von $8 \cdot 2$ Dioxan (Abb. 1, Tabelle 1 und 2) zeigt, daß der Phospha-alkin-Ligand 7 side-on an die Cobaltatome gebunden ist. Dadurch entsteht der Co1-Co2-P3-C5-Tetrahedran-Heterocyclus (Abb. 1). Der (P3-C5)-Abstand entspricht mit 169 pm nahezu dem einer (P=C)-Doppelbindung (167 pm [17]). Demgemäß stellt der Tetrahedran-Heterocyclus eigentlich ein Tetrahedren-Ringsystem dar. Die (Co1-Co2)-Bindungslänge folgt mit 249,4 pm den Erwartungen für eine (Co-Co)-Einfachbindung [18], und ist typisch für (Co-Co)-mehrfach überbrückte Komplexe [14, 18]. Bemerkenswert erscheint, daß die (Co2-P3)- und (Co1-P3)-Abstände mit etwa 228 pm etwas größer sind als die (Co1-P1)- und (Co2-P2)-Bindungslängen (etwa aber innerhalb der Schwankungsbreite 220 pm), (217-234 pm [19]) für koordinative (Co-P)-Einfachbindungen liegen. Die (Co1-C5)- und (Co2-C5)-Abstände betragen etwa 199 pm und sind damit genauso lang wie (Co-C)-Brückenbindungslängen in CO-verbrückten Dicobaltcarbonyl-Komplexen [14, 18] oder in Alkin-überbrückten Dicobalthexacarbonyl-Derivaten [20]. Aus der Tatsache, daß im Tetrahedran-Teil des Komplexes 8 · 2 Dioxan alle Bindungen, mit Ausnahme der (P3-C5)-Bindung, nahezu Einfachbindungscharakter haben, folgt, wie theoretisch für Komplexe vom Typ Co₂(CO)₆(μ - η^2 , η^2 -R—C=C—R) abgeleitet [20], daß

Tabelle 1 Kristalldaten und Angaben zur Kristallstrukturbestimmung von Co₂(CO)₄(μ -dppa-P;P'){ μ - η^2 , η^2 -(CH₃)₃C—C \equiv P} · 2C₄H₈O₂ (8 · 2 Dioxan)

Summenformel	$C_{33}H_{30}Co_2NO_4P_3 \cdot 2C_4H_8O_2$
M _r [g/mol]	891,56
Farbe, Zustand	Rote Blöcke
Kristalldimension [mm ³]	0,8×0,6×0,6
Kristallsystem	monoklin
Raumgruppe	$P2_1/c$
a [pm]	1404,1(5)
b [pm]	1330,0(7)
c [pm]	2578,8(10)
β [°]	90,82(3)
Zellvolumen V [nm ³]	4,815(3)
Zahl d. Formeleinheiten/Zelle	4
d _{ber} [g/cm ³]	1,23
μ [mm ⁻¹] Absorptionskoeff.	0,816
Meßtemperatur [K]	200
Diffraktometer	Siemens P4
Strahlung	ΜοΚα
Scan-Technik	w-scan
Winkelbereich [°]	$3,0 < 2\theta < 54,0$
Scan-Geschw. [°/min]	3,0-30,0
Gemessene Reflexe	13179
Unabhängige Reflexe	10552
Beobachtete Reflexe	5838
σ -Kriterium	$F > 4,0\sigma(F)$
Verfeinerte Parameter	478
R1/wR2	0,0871/0,2731
Verwendetes Rechenprogramm	SHELXL 93

Abb. 1 Molekülstruktur von $8 \cdot 2$ Dioxan im Kristall. Das Wasserstoffatom am N1 und die H-Atome an den Phenylringen fehlen. Der Phenylring mit dem C40-Atom und eines der beiden weggelassenen Dioxanmoleküle sind fehlgeordnet

auch in $8 \cdot 2$ Dioxan eine erhebliche "Elektronen-Rückgabe" aus der Dicobalt-Einheit in die Phospha-alkin-Gruppe stattfindet. Der tert.-Butylrest mit seinem zentralen C6-Atom, der im freien Liganden 7 mit der $(P \equiv C)$ -Einheit einen 180°-Winkel bildet [15], weist im 8 · 2 Dioxan gegenüber der (P3—C5)-Bindung nur noch einen 139°-Winkel auf, und ist damit gegenüber der ursprünglichen Linearität um 41° [21] verändert.

Die (P—N)-Bindungslängen weisen mit etwa 169 pm nur einen geringfügigen Doppelbindungsanteil auf und sind charakteristisch für den koordinierten dppa-Liganden [14, 18]. Das gleiche gilt für den (P1—N1—P2)-Winkel, der 122° groß ist.

Tabelle 2Ausgewählte Bindungslängen [pm] und -winkel [°]von 8 · 2Dioxan; Standardabweichungen in Klammern

Co(1)—C(2)	181,0(7)	C(1)—O(1)	116,2(9)
Co(1) - C(1)	180,5(8)	C(2) - O(2)	112,3(8)
Co(1)—C(5)	198,0(6)	C(3)O(3)	113,6(9)
Co(1) - P(1)	220,0(2)	C(4)—O(4)	115,6(9)
Co(1) - P(3)	228,9(2)	P(1) - N(1)	169,4(5)
Co(1)—Co(2)	249,4(1)	P(2) - N(1)	169,3(5)
Co(2) - C(4)	176,1(7)	P(3)C(5)	169,4(7)
Co(2) - C(3)	181,4(9)	C(5)C(6)	152,7(9)
Co(2) - C(5)	200,5(6)	C(6)C(8)	151,7(11)
Co(2)—P(2)	220,6(2)	C(6)C(7)	154,9(11)
Co(2)—P(3)	227,5(2)	C(6)C(9)	155,7(12)
	,		
C(2)-Co(1)-C(1)	103,9(3)	C(5)—Co(1)—Co(2)	51,7(2)
C(2)-Co(1)-C(5)	103,9(3)	P(1)-Co(1)-Co(2)	93,74(6)
C(1)-Co(1)-C(5)	102,5(3)	P(3)-Co(1)-Co(2)	56,62(5)
C(2)—Co(1)—P(1)	99,2(2)	C(4)Co(2)C(3)	101,0(4)
C(1)—Co(1)—P(1)	102,0(2)	C(4) - Co(2) - C(5)	103,3(3)
C(5)—Co(1)—P(1)	140,9(2)	C(3)—Co(2)—C(5)	105,2(3)
C(2)—Co(1)—P(3)	92,3(3)	C(4)—Co(2)—P(2)	100,2(3)
C(1)-Co(1)-P(3)	147,9(2)	C(3)-Co(2)-P(2)	103,1(2)
C(5)—Co(1)—P(3)	46,1(2)	C(5) - Co(2) - P(2)	138,6(2)
P(1)-Co(1)-P(3)	102,47(7)	C(4)Co(2)-P(3)	101,0(3)
C(2)—Co(1)—Co(2)	148,4(2)	C(3)—Co(2)—P(3)	147,4(2)
C(1)-Co(1)-Co(2)	101,4(2)	C(5)—Co(2)—P(3)	46,1(2)
P(2)Co(2)P(3)	96,28(7)	C(6) - C(5) - P(3)	138,5(5)
C(4)-Co(2)-Co(1)	153,1(3)	C(6) - C(5) - Co(1)	132,2(4)
C(3)Co(2)Co(1)	94,0(2)	P(3) - C(5) - Co(1)	76,6(3)
C(5)—Co(2)—Co(1)	50,8(2)	C(6) - C(5) - Co(2)	132,2(5)
P(2)-Co(2)-Co(1)	97,94(6)	P(3)C(5)-Co(2)	75,4(2)
P(3)Co(2)Co(1)	57,13(5)	Co(1) - C(5) - Co(2)	77,5(2)
N(1) - P(1) - Co(1)	113,1(2)	C(5)C(6)C(8)	109,3(6)
N(1)—P(2)—Co(2)	110,3(2)	C(5)—C(6)—C(7)	108,2(6)
C(5)—P(3)—Co(2)	58,5(2)	C(8)C(6)-C(7)	110,3(7)
C(5)—P(3)—Co(1)	57,3(2)	C(5)C(6)C(9)	112,0(6)
Co(2)—P(3)—Co(1)	66,25(6)	C(8)C(6)C(9)	109,1(7)
P(2) - N(1) - P(1)	122,3(3)	C(7)—C(6)—C(9)	107,9(7)
Co(1)—C(1)—O(1)	177,8(7)	Co(1)-C(2)-O(2)	179,2(7)
Co(2)—C(3)—O(3)	177,7(7)	Co(2)—C(4)—O(4)	179,5(9)

Überraschend an $8 \cdot 2$ Dioxan ist, daß der C40-Phenylring und eines der beiden Dioxan Moleküle fehlgeordnet sind. Stabile und röntgenographisch gut charakterisierbare Komplexe erhält man wahrscheinlich erst dann, wenn man das P3-Atom noch zusätzlich, z. B. an einen Metallpentacarbonyl-Rest, koordiniert [21]. Offensichtlich wird dann die Lücke, die der abgewinkelte tert.-Butylrest auf der "P3-Seite" des Moleküls hinterläßt, besser ausgefüllt. In diesem Zusammenhang erscheint es bemerkenswert, daß $\text{Co}_2(\text{CO})_6(t\text{BuCP})$ bisher nur als rotes, lichtempfindliches, lediglich durch IR- und Massenspektrum charakterisiertes, Öl erhalten wurde [22].

Das Massenspektrum von $6 \cdot$ THF zeigt nach Verlust des Kristalltetrahydrofurans den Molekülpeak des monomeren Komplexes. Bei 8 beobachtet man als massenhöchste Einheit sowohl im FD- als auch im EI-Massenspektrum das um 3 Masseneinheiten erhöhte monomere Molekülion (s. Exp. Teil). Es ist anzunehmen, daß die hochreaktive Verbindung 8 unter den massenspektrometrischen Bedingungen sekundär H₂ anlagert und hierbei das Sekundär-Molekülion

 $M^* = Co_2(CO)_4(\mu - Ph_2P - NH_2 - PPh_2^+) \{(CH_3)_3C - C \equiv PH_2\}$

bildet, das dann im EI-Massenspektrum eine zu erwartende Fragmentierung zeigt. Bemerkenswert erscheint in diesem Zusammenhang, daß kein Bruchstückion mit der monomeren (m/e = 100) oder dimeren (m/e = 200) Masse der (tBu—CP)-Einheit beobachtet wird [23-25].

Die **IR-Spektren** von $6 \cdot$ THF, **8** und $8 \cdot 2$ Dioxan sind in Tabelle 3 vergleichend gegenübergestellt. Nach dem Aussondern der zahlreichen lagekonstanten Schwingungsbanden der P(C₆H₅)₂-Gruppen [26-28] lassen sich die übrigen Absorptionen, insbesondere durch Vergleich mit den IR-Banden von 2 [13] gut und weitestgehend zweifelsfrei zuordnen.

Aus dem Auftreten von lediglich zwei breiten Banden schwacher bis mittlerer Intensität bei etwa 3400 und 3130 cm^{-1} folgt, für 6 · THF, daß alle OH- und NH-Gruppen in Wasserstoffbrücken-Bindungen gebunden sind. Da in $2 \cdot H_2O$ die beiden (CH₂OH)-Gruppen und das Solvatwasser im Festzustand ein kompliziertes dreidimensionales Wasserstoffbrückensystem aufbauen [20], ist mit einem ähnlich komplizierten H-Brückensystem auch für das THF-haltige 6 zu rechnen. Bemerkenswert erscheint, daß die $v(C \equiv C)$ -Absorption des freien 2-Butin-1,4-diols 5 von 2212 cm^{-1} auf 1578 cm^{-1} im Komplex $\mathbf{6} \cdot \text{THF}$ erniedrigt wird. Daraus läßt sich nach Siebert [29] für die (CC)-Bindung des Tetrahedranteils von 6 · THF ein Bindungsgrad von 1,8 abschätzen. Dieser Wert entspricht auch röntgenographischen Befunden für Komplexe des Typs $Co_2(CO)_6(\mu-\eta^2,\eta^2-R-C\equiv C-R)$ [20], die Bindungslängen von etwa einer (C=C)-Doppelbindung ergeben [30]. Dementsprechend werden die Bindungsverhältnisse im Tetrahedranteil von 6 · THF am besten durch die beiden Resonanzformen 6a und 6b beschrieben (Abb. 2). Dabei kommt der mesomeren Form 6a das größere Gewicht zu.

Ähnlich liegen die Verhältnisse bei 8. Aus der Kristallstrukturanalyse von $8 \cdot 2$ Dioxan folgt für die (P3—C5)-Bindung eine Bindungslänge die nur etwas länger als eine (P=C)-Doppelbindung ist [17], aber deutlich kürzer als die einer (P—C)-Einfachbindung (183 pm [17, 31]) gefunden wird. Dementsprechend sollte *t*BuC=P (7), das im freien Zustand eine intensive IR-aktive ν (P=C)-Bande bei 1533 cm⁻¹ aufweist [15], im komplexierten Zustand eine ähnlich starke IR-Bande um 1000 cm⁻¹ geben

Abb. 2 Resonanzstrukturen von 6

[32, 33]. Tatsächlich finden sich aber für 8 bzw. 8 · 2 Dioxan im Bereich von 1000 [v(P=C)] bis 700 cm⁻¹ [v(P-C)] nur IR-Banden, die zweifelsfrei dem Liganden dppa und dem Solvat Dioxan zugeordnet werden können. Im Vergleich mit $\mathbf{6} \cdot \text{THF}$ zeigen $\mathbf{8}$ und $\mathbf{8} \cdot 2$ Dioxan, lediglich oberhalb 1000 cm⁻¹, und zwar zwischen 1250 und 1290 cm⁻¹ neue und intensive IR-Banden. In diesem Bereich sind neben der meist schwachen bis mittleren δ (NH)-Bande des dppa [14, 26] noch die ρ (CH₃)-Absorptionen des tert.-Butylrestes zu erwarten. Da sie mit den (C-C)-Valenzschwingungen mischen geben sie Banden bei relativ hohen Wellenzahlen $(1250 - 1130 \text{ cm}^{-1})$ [34]. Im vorliegenden Fall werden sie offensichtlich durch die intensive Absorption bei etwa 1260 cm^{-1} zu noch höheren Wellenzahlen $(1270 - 1290 \text{ cm}^{-1})$ abgestoßen. Auf Grund der mittelstarken Intensität lag die Vermutung nahe, daß in der 1260er Bande des festen 8 zwei Absorptionen zusammenfallen. Tatsächlich liefert das IR-CH₂Cl₂-Lösungsspektrum von 8 zwei Banden bei 1264 und 1258 cm⁻¹. Von diesen wird die Absorption bei niedrigen Wellenzahlen versuchsweise der v(P=C) des Tetrahedrangerüstes zugeordnet. Von den Resonanzformen 8a, b hat auch hier die Form a, wie die Röntgenstrukturanalyse beweist, das größere Gewicht.

Abb. 3 Resonanzstrukturen von 8

Aus dem Auftreten von jeweils 4 CO-Valenzschwingungsbanden in den Lösungs-IR-Spektren von 6 und 8 folgt, daß 6 höchstens C_{2v} , aber vermutlich wie 8, bestenfalls C_s -Molekülsymmetrie besitzt. Die Lage der ν (CO)-Banden entspricht denen ähnlich zusammengesetzter Phospha- und Arsaalkin-Komplexen vom Typ (R—C=E)Co₂(CO)₄(PPh₃)₂ (9) (R = Me, Ph; E = P, As) [35], jedoch zeigen diese nur 2 IR-aktive ν (CO)-Banden.

Zuordnung	6 · THF	8	8	8 · 2 Dioxan
2401411416	in KBr ^a)	in KBr	in CH ₂ Cl ₂ ^b)	in KBr
$v(OH \cdot \cdot O)$	3440 s-m, br			
0.000	3325 s Sch	2270 c Sab		
v(NH)		33/08 501 3341 m sf	3322 s	
		3332.s-m. Sch	55226	
$v(NH \cdot \cdot O)$	3132 s-m, br			3174 s-m, br
v(CH)Ph	3076 s	3074 s		3070 s
	3053 s	3053 s-m	3052 s-m	3059 s
		3005 s		
$\nu(CH_3)$ bzw.	2970 s	2958 s-m	2984 s-m	2958 m
$\nu(CH_2)$	2946 s	2941 s-m	2964 s-m	2940 s-m
	2929 s	2916s	2942 s	2913 s-m
	2872s	2891 s	2896s	2888 S-m 2853 m
w(CO)	2840 s 2050 s m	28308	28008	2655111
V(CO)	2033 S-111 2023 Set	2018 st	2026 m-st	2017 st
	1990 sst	1985 sst	1997 sst	1990 sst
	1979 st. Sch	1965 550	1997 000	
	1967 st, Sch	1 965 sst	1971 m-st	1963 sst
	1947 st	1937 st	1954 s-m, Sch	1947 m-st
v(C=C)				
Tetrahedran	1578 s-m, br			
v(CC) k, Ph	1570s, sf	1587 s		1586 s, sf
v(CC) l, Ph	1560s, sf	1570 ss	1573 ss	1571 s, sf
V(CC) m, Pn	1482 s-m	1482 s-m	1482 s	1482 s-m
oas(CII3)		14/2S-m 1452 c	14/2 SS	14/2 s-m
δ(CH ₂)	1458 s	14558	145488	14328-m unter 1452
v(CC) n. Ph	1430 s	1433 m-st	1435 m	1432 $1434 m_{-st}$
$\delta s(CH_3)$		1382 s	1384 s	1382 ss
γ(CH ₂)	1368 s-m		10015	1364 s
$\delta s(CH_3)$		1350 s-m	1355 s	1353 s-m
$\nu(CC)$ o, Ph	1311 s-m	1329 ss	1328 ss	1330Sch 1
δ (CH) e, Ph	1277 s Sch	1304 s	1305 s	1301 s-m
$\rho(CH_3)$		1276 m	1272 m	1289s-m, br
$\gamma(CH_2)$				
$\delta(NH)$ und	1245 a Sal	10(0	1268 s-m °)	
$v(\mathbf{P}=\mathbf{C})$	1243 \$ Sch -	1260 m	1264 m-st	unter 1289
$\tau(CH_2)$	1227 ss Sch		1258 m-st ^o)	1253 m-st
δ (CH) a, Ph	1180 s-m	1184 s-m	1185 s	1197
δ (CH) c, Ph	1159s	1158s	110.75	1158 s
$\nu(CCH_2)/$	1132 ss			1119 m-st
$\rho(CH_2)$				
v(C - O - C)				1098 m-st
Dioxan	1007			
P - Pn sens. q	1096 m	1094 m-st		1081 m
$v(C_{})$, $v(C_{})$, $v(C_{})$	106/s-m	1069 m-st		1066 m
bzw. Diovan	1050 S-M			1046 s-m
$\delta(CH)$ b. Ph	1027 s-m	1025 6		4020 -
y ring Ph u	1001 m	0023 S		1028 \$
v(CO)	2001 III	2203		צעע S
Diol	986 m			
y(CH) j, Ph	970s-m Sch	980 ss		978 ss
y(CH) i, Ph		910s Sch		919s

Tabelle 3 Charakteristische IR-Banden [cm⁻¹] von 6 · THF, 8 und 8 · 2 Dioxan

Zuordnung	6 · THF in KBr ^a)	8 in KBr	8 in CH ₂ Cl ₂ ^b)	8 · 2 Dioxan in KBr	
ν (PN)/ γ (HNP ₂) ρ (CH ₂) Dioxan	911 m-st	901 m-st		907 m-st 887 m	
γ(CH) g, Ph ν(PN) γ(CH) f, Ph	852 s Sch 799 m 742 m-st	845 s 792 m-st 744 m-st 726 m st		872 st 849 s 800 m 740 m-st	
φ(CC) v, Ph δ(COH)	697 st 674 s-m	696 st		699 st	
$\delta(\text{CCC})$ s, Ph $\delta(\text{CC}_3)$ <i>t</i> Bu	615 s	618 ss 594 m		612 m 592 m	
δ (CoCO) und P—Ph sens. y	540 st 522 st 494 st	537 st 516 m-st		536 st 516 m-st	
v(CoC) bzw. $v(CoC_2)$	494 st 482 m	482 m-st 447 s		508 Sch 492 m 447 s	
	422 s 414 s	425 s 408 s-m		422 s 409 s	

 Tabelle 3 (Fortsetzung)

Abkürzungen: sst = sehr stark, st = stark, m = mittel, s = schwach, ss = sehr schwach, Sch = Schulter, br = breit, sf = scharf. ^a) $\mathbf{6} \cdot \text{THF}$ gelöst in CH₂Cl₂: 2028 m, 1997 sst, 1970 m-st, 1953 s-m Sch [ν (CO)].

^b) **8** gelöst in Toluol: 3301 s [ν (NH)], 2026 st, 1998 sst, 1973 st, 1958 m [ν (CO)], 1253 st [möglicherweise ν (P=C) des koord. *t*BuCP]. ^c) Nicht völlig kompensiertes Lösungsmittel CH₂Cl₂.

Es ist daher anzunehmen, daß die Komplexe 9 eine höhere Symmetrie besitzen und möglicherweise die PPh₃-Liganden in trans-Stellung enthalten. Das Vorliegen von THF in $6 \cdot$ THF folgt aus der charakteristischen (C--O-C)-Bande bei etwa 1050 cm⁻¹ [36, 37].

Die ³¹P{¹H}-NMR-Spektren von $6 \cdot$ THF und 8 weisen jeweils ein charakteristisches, breites Singulett [13, 14, 18] für den koordinierten Liganden dppa (3) zwischen $(\delta = 92 \text{ und } 95 \text{ ppm auf. Für } \mathbf{8} \text{ beobachtet man ein zu-}$ sätzliches, weniger breites Singulett bei $\delta = -92,5$ ppm. Es tritt im Vergleich zu ersterem Signal mit halber Intensität auf und wird dementsprechend dem koordinierten $tBu-C \equiv P$ (7) zugeordnet. Außerdem ist diese Hochfeldlage typisch für 7 in einer Tetrahedran-Bindung [38]. Die Signalverbreiterungen werden durch das Reinelement ⁵⁹Co mit dem Kernspin I = 7/2 und dem Quadrupolmoment des Stickstoffs (¹⁴N, I = 1; 99,6%) verursacht. Die für das koordinierte 7 festgestellte geringere Signalbreite deutet auf eine gegenüber 3 weniger feste Bindung an das Cobalt hin. In Übereinstimmung damit sind auch die (Co1-P3)- und (Co2-P3)-Abstände um etwa 8 pm größer als die (Co1-P1)- und die (Co2-P2)-Abstände (Tabelle 2). Temperaturabhängige ³¹P{¹H}-NMR-Messungen zwischen 100 und -95 °C geben keinerlei Hinweise auf dynamische Vorgänge in 8, d. h. der breite Singulettcharakter der ³¹P-Resonanzen bleibt in diesem Temperaturbereich weitgehend erhalten. Kopplungen zwischen den einzelnen ³¹P-Kernen von 8 wurden, möglicherweise wegen der Linienbreite, nicht beobachtet. Die Kopplungskonstanten müßten gegebenenfalls unterhalb 30 Hz liegen.

Das ¹³C¹H-NMR-Spektrum des in CDCl₃ gelösten $6 \cdot \text{THF}$ (s. Exp. Teil) zeigt entsprechend der Gleichwertigkeit aller 4CO-Gruppen (Abb. 2) für diese nur ein verbreitertes Singulett bei $\delta = 204,85$ ppm. Das Signal der (C≡C)-Gruppe, das für das freie 2-Butin-1,4-diol (5) bei $\delta = 84.32$ ppm (weitere Angaben s. Exp. Teil) gefunden wird, beobachtet man für $6 \cdot \text{THF}$ tieffeldverschoben als Singulett bei $\delta = 96.55$ ppm. Auch die ¹³C-Resonanz der (CH₂OH)-Gruppen weist gegenüber 5 eine Tieffeldverschiebung von etwa 12 ppm auf. Die ¹³C-Signale der Pgebundenen Phenylringe sind zwar einfach, aber nicht nach den Regeln 1. Ordnung interpretierbar. Sie werden meist als virtuelle Tripletts [39] beobachtet. Wie aus Abb. 3 ersichtlich, befinden sich in 8 2CO-Gruppen in cis-Stellung zum Alkin-Phosphor, während die anderen beiden Kohlenmonoxid-Liganden eine cis-Position zum Alkin-Kohlenstoff einnehmen. Demgemäß findet man im ¹³C-NMR-Spektrum von 8 zwei breite ¹³CO-Signale im Intensitätsverhältnis von 1:1 bei $\delta = 208,2$ und 203,5 ppm. Der Alkin-Kohlenstoff des koordinierten 7 liefert zwar ein durch Cobalt (I = 7/2) verbreitertes, aber nach den Regeln 1. Ordnung zu erwartendes Dublett von Tripletts bei $\delta = 178,75$ ppm. Gegenüber den freien Liganden 7 [15] ist das Signal etwas hochfeldverschoben, entspricht aber, ebenso wie die 1J(31P13C)-Kopplungskonstante von etwa 122 Hz, den Erwartungen [35]. Die ²J(³¹P¹³C)-Kopplungskonstante durch das koordinierte

dppa beträgt 17,6 Hz. Im *tert*-Butyl-Teil ist die durch den Alkin-Phosphor verursachte ²J(³¹P¹³C)-Kopplung bekanntermaßen [40] kleiner als die ³J(³¹P¹³C)-Kopplung (s. Exp. Teil). Die C-ipso-, C-ortho-, C-meta- und C-para-Signale der Phenylringe entsprechen in ihrem Aussehen weitgehend denen, wie sie für den dppa-Teil von $(Co^{+1})_2(\mu$ -CO)(CO)₄(μ -dppa⁻)(μ -PPh₂⁻) (10) [14] beobachtet und durch Simulation bestätigt wurden. Die Zuordnung der ¹³C-Signale von **8** wurden durch DEPT-Messungen abgesichert.

Das ¹H-NMR-Spektrum des in CDCl₃ gelösten 6 · THF führt teilweise zu Überlappungen bei den Signalen der (CH₂OH)-Gruppen und des Solvat-THF's (s. Exp. Teil), aufgrund derer sich die Zuordnung schwierig gestaltet. Geht man zu [D₆]-Dimethylsulfoxid als Lösungsmittel über, so treten keine Überlappungen mehr auf. Dabei weisen Linienform und Aufspaltungsmuster der Wasserstoffresonanzen des koordinierten 2-Butin-1,4-diol (5) (Abb. 4a - d) einige interessante Aspekte auf. Die beiden Phosphoratome des dppa (3) bilden mit H-Atomen des koordinierten 5 ein AA'A" A" BB'XX'-Spinsystem $(A = A' = A'' = A''' = CH_2; B = B' = OH;$ X = X' = P). Aufgrund der Integration (in Abb. 4a - dnicht eingezeichnet) ist das Multiplett bei $\delta = 4,44$ ppm den CH₂-Wasserstoffatomen (Abb. 4a) und das Triplett bei $\delta = 5,03$ ppm den OH-Protonen zuzuordnen. ⁵J(³¹P¹H)-Kopplungen sind im allgemeinen sehr klein [41] und werden bei normaler Aufnahmetechnik eines ¹H-NMR-Spektrums (Abb. 4a) nicht beobachtet. Dementsprechend findet man für das (OH)-Triplett keine zusätzlichen Kopplungen mit den Phosphoratomen des dppa. In Übereinstimmung damit hat eine ³¹P-Entkopplung (Abb. 4d) auch keinen Einfluß auf die Signalform des (OH)-Tripletts. Lediglich das CH2-Signal wird zum Dublett vereinfacht: Ohne ³¹P-Kopplung bilden die Protonen der OH-Gruppen den B-teil eines A2B-Systems $(A_2 = CH_2)$. Die Kopplungskonstante ³J(¹H¹H) beträgt 5,8 Hz. Unter den Bedingungen der ³¹P-Entkopplung bilden die CH₂OH-Gruppen isolierte Spinsysteme ohne Wechselwirkung.

Wird das normale ¹H-NMR-Spektrum (Abb. 4a) mit einer Auflösungsverbesserung durch Multiplikation des FID mit einer Gauß-Filterfunktion prozessiert (Abb. 4b), so erscheint das CH₂-Signal bei $\delta = 4,45$ ppm als scheinbar einfaches "Dublett von Tripletts". Der Dublettcharakter wird verursacht durch die Kopplung mit dem H-Atom B der OH-Gruppe, während die Triplettaufspaltung ihren Ursprung in einer Kopplung mit den P-Atomen X,X' des dppa hat. In dem "Dublett von Tripletts" ist also eine ⁴J(³¹P¹H)-Kopplung von etwa 3 Hz [41] enthalten. Entkoppelt man schließlich selektiv die (OH)-Wasserstoffe (Abb. 4c), so beobachtet man für die CH₂-Gruppen den AA'A" A"'-Teil eines AA'A" A"' XX'-Spinsystems. Die Integration über die ¹H-Signale des Komplexes 8 (s. Exp. Teil) beweist neben dem ³¹P-NMR-Spektrum, daß in ihm die Liganden dppa und $tBuC \equiv P$ im Molverhältnis von 1:1 enthalten sind.

Abb. 4 Signale des koordinierten 2-Butin-1,4-diols in 6 a) 2-Butin-1,4-diol-Teil des normalen ¹H-NMR-Spektrums von 6 b) 2-Butin-1,4-diol-Teil mit Auflösungsvergrößerung bei Anwendung des Filters Gauß-window GF 0,5; BF - 1,5 c) 2-Butin-1,4-diol-Teil mit selektiver ¹H-Entkopplung für den OH-Triplett-Teil

d) 2-Butin-1,4-diol-Teil mit ³¹P-Entkopplung

Die Struktur des NH-Signals bei $\delta = 3,59$ als Triplett von Dubletts kann mit der symmetrischen Tetrahedranstruktur (Abb. 1) gut in Einklang gebracht werden.

Magnetische Messungen ergaben für 8 Diamagnetismus, d. h. die in den verschiedenen NMR-Spektren beobachteten Linienverbreiterungen sind *nicht* auf paramagnetische Verunreinigungen zurückzuführen.

3 Experimenteller Teil

Alle Umsetzungen wurden unter Stickstoff in wasserfreien, N_2 -gesättigten Lösungsmitteln durchgeführt. Die Verbindung

4 · 1/2C₆H₅CH₃ wird analog dem in Lit. [14] beschriebenen Komplex $Co_2(\mu$ -CO)₂(CO)₄(μ -dppa) · 1/2 C₆H₆, jedoch in Toluol dargestellt. 2-Butin-1,4-diol (5) wurde von Merck-Schuchardt käuflich erworben und ohne weitere Reinigung eingesetzt. $tBu-C \equiv P$ wird nach Lit. [15, 16] dargestellt. Elementaranalysen: Modelle 1106 (C, H, N) und 1108 (C, H, N, S) der Fa. Erba Science. - NMR-Spektren: 5-mm-Röhrchen, JEOL JNM-GX-270-FT-NMR Spektrometer; Meßfrequenzen: 270 (¹H-NMR), 67,94 (¹³C-NMR), 109,4 MHz (³¹P-NMR); JEOL-Alpha-500 FT-Spektrometer; 500,0 MHz (¹H). Die δ -Werte sind durch D-Lock auf das Lösungsmittel bezogen und wurden auf TMS umgerechnet, mit positiven δ -Werten bei tiefem Feld. - ³¹P-NMR: 85% Phosphorsäure als externer Standard. - IR: Perkin-Elmer 1620 FT-IR-Spektrometer. - Magnetische Messungen: Johnson Mathey Magnetic Susceptibility Balance. - Schmelzpunkte: (unkorrigiert, in abgeschmolzenen Kapillaren ermittelt): Elektrothermal IA 6304. – Massenspektren: Varian MAT 212, Ionisation durch Felddesorption bzw. Elektronenstoß.

μ - $(\eta^2, \eta^2$ -2-Butin-1,4-diol- C^2, C^3)-tetracarbonyl- μ -[bis(diphenyl-phosphanyl)amin(P, P')]-dicobalt(Co—Co)-Tetrahydrofuran

(1/1) (6 · THF): 1,041 g (1,45 mmol) $4 \cdot C_6H_5CH_3$ werden in 50 ml THF gelöst und mit 0,2 g (2,32 mmol) festes 2-Butin-1,4-diol (5) versetzt. Nach kurzer Zeit verfärbt sich die Lösung von orange nach dunkelrot und gleichzeitig beobachtet man eine lebhafte CO-Entwicklung. Nach ca. 7stündigem Rühren bei Raumtemp, wird die Reaktionslösung zur Hälfte eingeengt, über Filterflocken abfiltriert, und mit 30 ml n-Hexan überschichtet. Innerhalb von 3 Tagen kristallisieren feine tiefrote Nadeln von 6 · THF aus, die abfiltriert mit 30 ml n-Hexan gewaschen und 7 Stunden im Hochvakuum getrocknet werden. Die Verbindung 6 · THF ist gut löslich in CH₂Cl₂, THF und Aceton dagegen unlöslich in aliphatischen Kohlenwasserstoffen. Ausbeute: 0,874 g (1,13 mmol), 78% ; Schmp. (Zers.): >167 °C. Elementaranalyse: $C_{36}H_{35}Co_2NO_7P_2$ (773,52) C 55,73 (ber. 55,90); H 4,67 (4,56); N 0,92 (1,81)%. 'H-NMR (CDCl₃, 18,9 °C, 269,60 MHz): δ (ppm) = 7,4 (s, br, 20 H, C₆H₅), 4,65 (s, br, 4H, CH₂OH), 3,73 (s, br, 6H, CH₂-O--CH₂, THF und CH2OH), 2,55 (s, br, 1H, NH), 1,85 (s, 4H, CH2-CH2, THF); $- {}^{1}H {}^{31}P$ -NMR ((CD₃)₂SO, 21,5 °C, 500,0 MHz): δ (ppm) = 7,50 (s, 8H, H-o, C₆H₅), 7,40 (s, 12H, H-m u. H-p, C_6H_5), 5,03 (t, 2H, OH, ${}^{3}J({}^{1}H{}^{1}H) = 5,8$ Hz; bei selektiver ${}^{1}H{}^{-1}$ Entkopplung: s), 4,44 (m, 4H, CH₂OH; bei selektiver ³¹P-Entkopplung: d: ${}^{3}J({}^{1}H{}^{1}H) = 5,8$ Hz); mit Auflösungsvergrößerung und Gaußwindow GF 0,5, BF - 1,5 und 'H-gekoppelt: ",,dt": $-{}^{31}P{}^{1}H$ -NMR (CDCl₃, 22,0 °C, 109,4 MHz): $\delta(ppm) =$ 93,0 (s, br, dppa); (C₄D₈O, 22,0 °C, 109,4 MHz): 94,5 (s, br); (80,0 °C): 94,2 (s, br); (100,0 °C): 94,0 (s, br). - ¹³C{¹H}-NMR $(CDCl_3, 19,6 \circ C, 67,70 \text{ MHz}): \delta(ppm) = 204,85 \text{ (s, br, 4C, })$ CO), 140,85 (virt. t, 4C, C-i, C_6H_5 , $J(^{31}P^{13}C) = 23,7$ Hz), 131,0 (t, 8C, C-o, C_6H_5 , $J(^{31}P^{13}C) = 8,8$ Hz), 130,65 (s, 4C, C-p, C_6H_5 , 129,2 (t, 8C, C-m, C_6H_5 , $J({}^{31}P^{13}C) = 4,4$ Hz), 96,55 (s, 2C, Alkin-Co-koord.), 68,64 (s, 2C, C-O-C, THF), 65,38 (s, br, 2C, -CH₂OH), 26,28 (s, 2C, C-C, THF). - MS (FD, CH₂Cl₂, Quellentemp. 180 °C): m/e = 701 (M⁺, ohne THF). Spektrometrische Daten von HO--CH2--C≡C---CH2--OH (5) zu Vergleichszwecken: $-^{1}$ H-NMR ((CD₃)₂SO, 22,0 °C, 269.60 MHz); $\delta(\text{ppm}) = 5.23$ (s, 2H, OH), 4,20 (s, 4H, CH₂); $-{}^{13}C[{}^{11}H]-NMR$ ((CD₃)₂SO, 22,3 °C, 67,70 MHz): $\delta(ppm) =$ 84,32 (s, 2C, C=C), 49,47 (s, 2C, CH₂).

μ - $(\eta^2, \eta^2$ -tert.-Butyl-phospha-acetylen-*C*,*P*)-tetracarbonyl- μ -[bis(diphenylphosphanyl)amin(*P*,*P'*)]-dicobalt (Co--Co) (8):

1,746 g (2,43 mmol) $4 \cdot 1/2 C_6 H_3 CH_3$ werden in 110 ml Toluol unter Rühren im warmen Wasserbad gelöst. Zu der orangen Lösung tropft man langsam 0,88 ml (38% Lösung in Hexamethyldisiloxan) 7 und erwärmt anschließend das Reaktionsgemisch auf 50 °C. Innerhalb weniger Minuten tritt eine Farbvertiefung nach Dunkelrot, unter gleichzeitiger heftiger CO-Entwicklung auf. Nach 5 Stunden engt man die Lösung unter vermindertem Druck auf 20 ml ein und überschichtet sie mit 70 ml n-Hexan. Es fällt ein dunkelrotes, feinverteiltes, mikrokristallines 8 aus, das abfiltriert mit wenig kaltem n-Hexan gewaschen und 8 Stunden im Vakuum getrocknet wird. Die Verbindung 8 ist sehr gut löslich in Toluol, THF, Aceton, CH₂Cl₂, EtOH und MeOH und gut löslich in aliphatischen Kohlenwasserstoffen und Et₂O. Dadurch wird die Züchtung von Kristallen erheblich erschwert. Ausbeute: 1,41 g (1,97 mmol) 81,2% ; Schmp. 190 °C. Elementaranalyse: C₃₃H₃₀Co₂NO₄P₃ (715,4) C 55,36 (ber. 55,41); H 4,15 (4,23); N 1,31 (1,96). - ¹H-NMR (CDCl₃, 18,5 °C, 269,60 MHz): δ (ppm) = 7,45 – 7,30 (m, 20 H, C₆H₅), 3,59 (td, 1 H, NH, ${}^{2}J({}^{3i}P^{i}H) = 4,0$ Hz, ${}^{4}J({}^{3i}P^{i}H) = 1,2$ Hz), 1,35 (s, 9H, CH₃). - ³¹P[¹H]-NMR (CDCl₃, 22,0°C, 109,25 MHz): δ (ppm) = 92,25 (s, br, 2P, dppa), -92,50 (s, br, 1 P, tBuCP); (C₄D₈O, -40 °C, 109,4 MHz): $\delta = 92,0$ (s, br, 2P, dppa), -92,4 (s, br, 1P, tBuCP); $(-70,0 \degree C)$: 92,1 (s, br, 2P, dppa), -93,35 (s, br, 1P, tBuCP); (-95,0°C): 92,1 (s, br, 2P, dppa), -93.8 (s, br, 1P, tBuCP); (-10° C): 92,15 (s, br, 2P, dppa), -92.05 (s, br, 1 P, tBuCP); (+50.0 °C): 92.5 (s, br, 2 P, dppa), -90.2 (s, br, 1 P, tBuCP); (+60,0 °C): 92,4 (s, br, 2 P, dppa); -89,8 (s, br, 1P, tBuCP) (+22,0°C): 92,4 (s, br, 2P, dppa), -90,8 (s, br, 1P, tBuCP). - ¹³C(¹H)-NMR (CDCl₃, 25,1 °C, 67,70 MHz): δ (ppm) = 208,2 (s, br, 2C, CO), 203,5 (s, br, 2C, CO), 178,75 (dt, 1C, P=C, ${}^{1}J({}^{31}P{}^{13}C)$ [d] = 121,8 Hz, (d, 1C, C-i, $^{2}J(^{31}P^{13}C)$ [t] = 17,6 Hz), 141,35 C_6H_5 , C-i, $J(^{31}P^{13}C) = 4,5 Hz),$ 141,10 (d, 2C, C_6H_5 , $J(^{31}P^{13}C) = 7.6$ Hz), 140,70 1C, C-i, C_6H_5 , (d, $J(^{31}P^{13}C) = 9,1 Hz),$ 131,35 (t, 2C, C-o. C_6H_5 , $J(^{31}P^{13}C) = 4,5 Hz),$ +131,252C, C-0, C_6H_5 , (t, $J(^{31}P^{13}C) = 4,5 Hz),$ C6H5, 131,02 (t, 4C, С-о, $J(^{31}P^{13}C) = 6.1$ Hz), 130,6 (s, 4C, C-p, C₆H₅), 129,25 (t, 4C, C-m, C_6H_5 , $J({}^{31}P^{13}C) = 4,5 Hz$), 128,98 (t, 4C, C-m, C_6H_5 , $J({}^{31}P{}^{13}C) = 4,5 Hz$, 43,30 (d, 1 C, $C(CH_3)_3$, ${}^{2}J({}^{31}P{}^{13}C) = 3,9 Hz$), 36.75 (d, 3C, $C(CH_3)_3$, ${}^{3}J({}^{31}P{}^{13}C) = 4.5$ Hz). - MS (FD, CH₂Cl₂, Emitterhochspannung : 5,5 kV, Quellentemp.: 180 °C): $[M^+ + 3H = M^* = [Co_2(CO)_4(\mu - PPh_2 - NH_2 - NH_2$ m/e = 718 PPh_2^+ $(\mu - \eta^2, \eta^2 - (CH_3)_3 C - C \equiv PH_2)]^+$, (Sekundärion, das durch H2-Anlagerung aus dem reaktiven Molekülion entsteht). -(EI, Einlaßtemp., 200 °C, Quellentemp. 180 °C) : m/e = 718 $[M^*]$, 690 (M*-CO), 633 $[M^*-CO, -C(CH_3)_3]$, 605 $[M^*-2CO, -C(CH_3)_3], 547 [M^*-4CO, -H_2, -C(CH_3)_3],$ 504 $[Co_2(Ph_2P--NH_2-PPh_2^+)]$, 426 $[Co_2(Ph_2P--NH=PPh^+)]$, 350 $[Co_2(Ph_2P-N\equiv PH_2^+)]$, 303 (Co_2PPh_2) , 244 $(CoPPh_2)$, 183 [A], 143 [(CH₃)₃C—C \equiv P—C \equiv P⁺], 59 (Co).

Bei der Röntgenstrukturanalyse von $8 \cdot 2$ Dioxan wurden die Nichtwasserstoffatome anisotrop verfeinert. Die Lagen der Wasserstoffatome wurden der Differenz-Fouriersynthese entnommen und bei der Verfeinerung festgehalten; Wasserstoffatome mit gemeinsamen isotropen Temperaturfaktoren. Ausgewählte Bindungslängen und -winkel sind der Tabelle 2 zu entnehmen. Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344-Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer CSD-404060, der Autoren und des Zeitschriftenzitats angefordert werden.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft, der Hoechst AG und dem Fonds der Chemischen Industrie unterstützt. Frau Dipl.-Chem. S. Kummer danken wir für die Überlassung einer tBuCP-Probe. Herrn Prof. Dr. D. Sellmann sei an dieser Stelle für die Förderung bei der Durchführung der Röntgenstrukturanalyse gedankt.

Literatur

- [1] 118. Mitteilung: J. Ellermann, P. Gabold, C. Schelle, F. A. Knoch, M. Moll, W. Bauer, Z. anorg. allg. Chem. 621 (1995) 1832
- [2] H. Waldmann, Nachr. Chem. Tech. Lab. 39 (1991) 211
- [3] K. C. Nikolaou, W. M. Dai, Angew. Chem. 103 (1991)
 1453; Angew. Chem. Int. Ed. Engl. 30 (1991) 1387
- [4] M. D. Lee, G. A. Ellestad, D. B. Borders, Acc. Chem. Res. 24 (1991) 235
- [5] I. H. Goldberg, Acc. Chem. Res. 24 (1991) 191
- [6] K. C. Nicolaou, A. L. Smith, Acc. Chem. Res. 25 (1992) 497
- [7] T. Skyrdstrup, H. Audrain, G. Ulibarri, D. S. Gierson, Recent Progress in the Chemical Synthesis of Antibiotics, G. Lucas Ed.; Springer-Verlag 1993, Vol. 2, S. 213-292
- [8] M. E. Maier, Kontakte (Darmstadt) 2 (1994) 3 und die dort zit. Lit.
- [9] S. C. Bennett, A. Gelling, M. J. Went, J. Organomet. Chem. 439 (1992) 189 und die dort zit. Lit.
- [10] S. C. Bennett, M. A. Phipps, M. J. Went, J. Chem. Soc. Chem. Commun. 1994, 225
- [11] H. Nöth, L. Meinel, Z. anorg. allg. Chem. 349 (1967) 225
- [12] J. Ellermann, W. H. Gruber, Z. Naturforsch. 28b (1973) 310
- [13] D. Pohl, J. Ellermann, F. A. Knoch, M. Moll, J. Organomet. Chem. 495 (1995) C6
- [14] D. Pohl, J. Ellermann, F. A. Knoch, M. Moll, W. Bauer, J. Organomet. Chem. 481 (1994) 259 und die dort zit. Lit.
- [15] G. Becker, G. Gresser, W. Uhl, Z. Naturforsch. 36b (1981) 16
- [16] W. Rösch, U. Hess, M. Regitz, Chem. Ber. 120 (1987) 1645
- [17] Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 91.-100. Auflage, S. 133, Walter de Gruyter-Verlag, Berlin, New York 1985
- [18] D. Pohl, J. Ellermann, F. A. Knoch, M. Moll, W. Bauer, Chem. Ber. 127 (1994) 2167 und die dort zit. Lit.
- [19] J. Ellermann, J. Sutter, F. A. Knoch, M. Moll, Angew. Chem. 105 (1993) 763; Angew. Chem. Int. Ed. Engl. 32 (1993) 700
- [20] F. Baert, A. Guelzim, P. Coppens, Acta Crystallogr. B40 (1984) 590
- [21] J. C. T. R. Burckett-St.Laurent, P. B. Hitchcock, H. W. Kroto, M. F. Meidine, J. F. Nixon, J. Organomet. Chem. 238 (1982) C82

- [22] J. C. T. R. Burckett-St.Laurent, P. B. Hitchcock, H. W. Kroto, J. F. Nixon, J. Chem., Soc. Chem. Commun. 1981, 1141
- [23] P. Binger, R. Milczarek, R. Mynott, M. Regitz, W. Rösch, Angew. Chem. 98 (1986) 645; Angew. Chem. Int. Ed. Engl. 25 (1986) 644
- [24] P. Binger, R. Milczarek, R. Mynott, C. Krüger, Y. Tsay, E. Raabe, M. Regitz, Chem. Ber. 121 (1988) 637
- [25] R. M. Matos, J. F. Nixon, J. Okuda, Inorg. Chim. Acta, 222 (1994) 13
- [26] J. Ellermann, M. Lietz, Z. Naturforsch. 35b (1980) 64
- [27] E. Maslowsky Jr., Vibrational Spectra of Organome-Metallic Compounds, S. 399, Verlag John Wiley and Sons, New York, London, Sydney, Toronto (1977)
- [28] D. H. Whiffen, J. Chem. Soc. 1956, 1350
- [29] H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, S. 36, in: Anorganische Allgemeine Chemie in Einzeldarstellungen Bd. VII, Springer-Verlag Berlin, Heidelberg, New York, 1966
- [30] H. A. Staab, Einführung in die theoretische organische Chemie, 2. Aufl., S. 194, Verlag Chemie, Weinheim/Bergstr. 1960
- [31] J. Ellermann, J. Sutter, F. A. Knoch, M. Moll, W. Bauer, Z. Naturforsch. 49b (1994) 1763
- [32] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsspektroskopie, Eine Einführung, S. 47, Georg Thieme Verlag Stuttgart, New York 1982
- [33] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsfrequenzen I, Hauptgruppenelemente, S. 211, Georg Thieme Verlag, Stuttgart, New York 1981
- [34] N. B. Colthup, L. H. Daly, S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, S. 227, Academic Press, New York, London 1975
- [35] D. Seyferth, J. S. Merola, R. S. Henderson, Organometallics 1 (1982) 859
- [36] E. Lindner, R. Speidel, R. Fawzi, W. Hiller, Chem. Ber. 123 (1990) 2255
- [37] J. Ellermann, M. Moll, N. Will, Z. anorg. allg. Chem. 574 (1989) 41
- [38] St. Berger, S. Braun, H. O. Kalinowski, NMR-Spektroskopie von Nichtmetallen, Band 3, ³¹P-NMR-Spektroskopie, S. 103, G. Thieme Verlag, Stuttgart, New York, (1993)
- [39] L. Ernst, ¹³C-NMR-Spektroskopie, UTB 1061, S. 86, Dr. Dietrich Steinkopff-Verlag, Darmstadt (1980)
- [40] A. H. Cowley, S. W. Hall, C. M. Nunn, J. M. Power, J. Chem. Soc., Chem. Commun. 1988, 753
- [41] Loc. cit. [38], S. 133

Anschr. d. Verf .:

Prof. Dr. Jochen Ellermann, Dr. Diana Pohl, Dr. Matthias Moll, Dr. Falk A. Knoch Institut für Anorganische Chemie der Universität Egerlandstr. 1 D-91058 Erlangen

Dr. Dr. habil. Walter Bauer Institut für Organische Chemie der Universität Erlangen Henkestr. 42 D-91054 Erlangen