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Rhodium-Catalyzed Asymmetric Intramolecular Hydroamination

of Allenes

Dino Berthold, Arne G. A. Geissler, Sabrina Giofré and Bernhard Breit*

Abstract: The rhodium-catalyzed asymmetric intramolecular
hydroamination of sulfonyl amides with terminal allenes is reported.
It provides selective access to 5- and 6-membered N-heterocycles,
scaffolds found in a large range of different bioactive compounds.
Moreover, gram scale reactions, as well as the application of
suitable product transformations to natural products and key

intermediates thereof are demonstrated.

Nitrogen-containing heterocycles are core scaffolds in many
bioactive and functional molecules. In particular, pyrrolidines and
piperidines bearing an a-chiral carbon center are important
structural motives in natural products (Peripentadenine and
Peripentonines), pharmaceuticals (Tacrolimus) and as chiral
ligands (Sparteine) (Scheme 1).1"

'
(\/N\H/W MeO, .
N o R
O ey
o

Peripentadenine
Peripentonine B, C

H
e9’S
N
(-)-Sparteine

Tacrolimus

Scheme 1. Bioactive and functional compounds posses
heterocyclic scaffold.

For this reason, several asymmetric methods, like allyli
substitution,”  allylic oxidation® and
substitution/addition' have been discl
these branched, a-chiral N-heterocy,
these approaches come along with [imi
requirement of stoichiometric amounts of a
oxidant, thus rendering
unattractive. Thus, a more at
transition metal
hydroamination/cycliz

inning in 1998,
troduced sulfonyl amides as
Pd-catalyzed intramolecular
1 More recently, Toste,

ie, Albert-Ludwigs-Universitat Freiburg
Breisgau (Germany)
i-freiburg.de

Email: bernhard.brei

Supporting information for this article is given via a link at the end of
the document.

Widenhoefer and Liu
Brgnstedt acids for
amines to internal
limited to rather sp
Throughout th
rhodium-catalyged

plexes and chiral
n of amides and

ely, these reactions are
17.8]

ported on a series of
nantioselective coupling
alkynes!"" with various

catalyst might to realize an intramolecular,
enantioselective hydroamination of alkynes or allenes (Scheme

R

H «  Pd.dopf, AcOH N
. . N
YN P m

n=12 racemic

R!
|

Au, BIPHEP ligands, AgX

N
R3 N/RS
Y R'=Ts, Cbz, Mes; R?=H, Me, Ph; 24— [y

R®  R3zH;X=CIO,, BF,, (BINOL)PO,” g2

n=1-2
previous workl102, 10e]
(e} Rh, DPEphos, acid Y syn: Rh, dppf, acid (e}
)J\ syn or anti selective X~ >NHTs anti: Pd, dppf, acid
g e X=0,Y =C(0) N X =CH,, Y =CO i
=0,Y= R . =CH,, Y=
R/'\/s\/ R = Ar, aliphatic X 'R=Araliphatic R Z
This work:
2 R‘
R Rh, L*, TFA/PPTS . R
Rl N ,vw/g N
X b R® X N\~ R®
O, R! =Ts, Ns, Mbs; Y—)
h Re

R® X =CH,, CO, etc.; Y = O, NPMP, etc.;
R2=H, Me; R® = H, Me
n=1-2

enantioselective

Scheme 2. Strategies for the synthesis of chiral, a-vinylated N-heterocycles.
Ns = p-NO,-CsH4-SO,; Mbs = p-MeO-CgH4-SO,.

We herein disclose the development of a rhodium-catalyzed
intramolecular and enantioselective hydroamination of allenyl
sulfonyl amides, providing the desired N-heterocyclic products
without structural limitations.!"?

Initial reactivity assays were carried out using N-(hexa-4,5-
dien-1-yl)tosylamide (1a) in the presence of [{Rh(cod)Cl};] (2.0
mol%), dppf (L1) (5.0 mol%) and PPTS (10 mol%) in DCE at
60 °C (Table 1, entry 1). To our delight, we already obtained the
allylated pyrrolidine 2a in a promising yield of 58%. This result
encouraged us to screen numerous chiral bidentate ligands.""?
We were pleased to find that JosPOphos ligand J688-1 (L2)
furnished the desired product in a low yield (28%) but in a
promising enantioselectivity (77% ee) (entry 2).
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Table 1. Rhodium-catalyzed intramolecular, enantioselective addition of
tosylamides to allenes.™

[{Rh(cod)Cl},] (2.0 mol%) O, - P(tBu),
ligand (5.0 mol%) T R Fe I
TSHN\/\’)(*‘& additive (10 mol%) (_NJ/\ H @ -
solvent (0.4 m), 60 °C, 18 h n R = Ph: J688-1 (L2)
n=1:1a n=1:2a R= 3,5—DiMe-_Ph: L3
n=2:1b n=2:2b E : ::\:/IZSO'?F}:hLIfS
Entry n Ligand Additive Solvent ;Z!g ee [%]“
1 1 L1 PPTS DCE 58% rac
2 1 L2 PPTS DCE 28% 77%
3 1 L3 PPTS DCE 27% 78%
4 1 L4 PPTS DCE 35% 77%
5 1 L5 PPTS DCE 47% 88%
6™ 1 L5 TFA DCE 63% 91%
7t 1 L5 TFA CH,Cl, 91%
gl 2 L5 TFA CH,Cl, 42%
gtf 2 L5 PPTS DCE 89%

[a] Reactions were performed in 0.4 mmol scales. [b] Yield of isolated
[c] The ee was determined by HPLC analysis using a chiral stationary phase.
[d] 10 mol% of TFA were used. [e] Concentration was 0.2 M. [f] Re, was
performed with 10 mol% of PPTS at a concentration of 0.2 M at 808"
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Scheme 3. Scope of intramolecular hydroamination of allenes. [a]
[{Rh(cod)Cl},] (2.0 mol%), L5 (5.0 mol%), TFA (10 mol%), CH,Cl, (0.2 wm),
60 °C, 12 h; [b] [{Rh(cod)CI},] (2.0 mol%), L5 (5.0 mol%), PPTS (10 mol%),
DCE (0.2 m), 80 °C, 12 h. Ns = p-NO,-C¢H4-SO,; Mbs = p-MeO-CsH;-SO,.

With these results in hand, we sought to examine the scope
of 6-membered N-heterocycles. Beside piperidine 2b, we also
obtained the tetrahydroisoquinoline 2m and tetrahydroquinoline
2n in good yields and very good enantioselectivities. Both
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substrates might serve as valuable building blocks for natural o e

product synthesis."® As an example for substitution of the alkyl H O/\/
. . . N¥,

chain by a heteroatom, 1,4-benzoxazine 20 was prepared in o

good vyields and a slightly lower enantioselectivity. Finally, we

(+)-coniceine HCI

obtained the synthetically valuable carbamate 2p and urethane (54%, 3 steps)
2q in very good yields along with high enantioselectivities.!*2 Id) ST

Inspired by these synthetic possibilities, this new I oH 3 @AOH
intramolecular allylation was applied to the syntheses of different W ) ‘

natural products and key intermediates. By using both ‘@2’?“’3@?2,2‘;'
substrates for pyrrolidine 1a and piperidine 1b in the previously
described rhodium-catalyzed coupling, we could synthesize ent-

2a and 2b in gram quantities in a straightforward fashion.
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125¢g B190 o 06 MeOH/THF (2.5:1, 0.1 3 h; 2. Boc,O (1.2 eq), K.CO; (2.0 eg), CH.Cl,

5.00 mmol (0.3 M), rtgd2 h, 79% (2 s b) 1. Grubbs Il (10 mol%), 2-butene (167 eq),

Ts neat, 4 ; 2. Pd/IC (10 w.%, 10 mol%), H, (1 atm),
THN SN B @A\ MeOH (0.2 m), ), naphthalene (5.0 eq), THF (0.1 m), —
78 °C, 2 h, 98%. c) 1. O, CH.CR; (1:1, 0.1 m), =78 °C; then NaBH, (3.0
1'31;’% T 2920/ w eq), —78 °C - rt, 2 h, 96%, 91% ee; 2. Na (6.0 eq), naphthalene (5.0 eq), THF
5.00 mmol o

%), L6 (5.0, %), CO/H, (1:1, 20 bar), toluene (0.25 m), 80 °C, 72 h, 84%,
ee; 2. Na#.0 eq), naphthalene (5.0 eq), THF (0.1 m), -78 °C, 2 h, then |,
q), PPh; (3.0 eq), imidazole (3.0 eq), CH,Cl, (0.05 M), 0 °C - rt, 6 h, 59%.
BBN (1.1 eq), THF (0.5 m), 0 °C - rt, 4 h; then NaOH sol. (2.0 m), H,0,,
, 2 h, 85%, 90% ee; 2. CrO; (2.2 eq), H,SO, (4.2 eq), acetone/H,O
,0°C-rt, 2 h, 91%. 6-DPPon = 6-diphenylphosphinopyridin-2-

1 m), -78 Olh‘ 92%. d) 1. [Rh(CO),acac] (0.50 mol%), 6-DPPon (5.0

Scheme 4. Gram-scale catalysis. Reagents and conditions: a) [{Rh(cod)CI},]
(2.0 mol%), ent-L5 (5.0 mol%), TFA (10 mol%), CH,Cl, (0.2 m), 60 °C, 18 h; :

81%, 90% ee. b) [{Rh(cod)Cl},] (2.0 mol%), L5 (5.0 mol%), PPTS (10 mol%), e) 1)
DCE (0.2 m), 80 °C, 18 h; 71%, 91% ee.

To explore the synthetic utility of allylated 5- and 6-
membered N-heterocycles, we subjected ent-2a a

) ) In summary, we have accomplished an enantioselective,
various transformations. On one hand, we demon

intramolecular addition of sulfonyl amides to allenes in an atom
t manner by using a rhodium/JosPOphos catalyst system.
ral a-vinyl-substituted pyrrolidines and piperidines were
ined in high yields and high stereoselectivities tolerating a
oad range of sulfonyl amides and differently substituted
llenes. Moreover, several N-heterocycles including a lactam
were accessed in high vyields alongside with high
enantioselectivities. Furthermore, we presented synthetic
possibilities for either deprotection and introduction of an
orthogonal protection group, or, alternatively, the elaboration of
the allylic moiety enabling the straightforward synthesis of
alkaloid natural products and intermediates thereof. Further
studies on extending this strategic approach of intramolecular
allylation of allenes and alkynes with different pronucleophiles,
as well as their application in target-oriented synthesis, are
ongoing in our laboratories.

amine by cleaving it under reductive conditions
a Boc protection group. Piperidine 3 represents,
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The rhodium-catalyzed asymmetric intramolecular hydroamination of sulfonyl
amides with terminal allenes is described furnishing enantioselective access to 5-
and 6-membered N-heterocycles, scaffolds found in a wide variety of bioactive
molecules. Moreover, gram scale reactions, as well as the application of suitable
product transformation to natural products or key intermediates there
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