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ABSTRACT: We report herein the iridium-catalyzed meta-selective C–H borylation of benzamides by using a newly designed 
2,2’-bipyridine (bpy) ligand bearing an alkylaluminum biphenoxide moiety. We also demonstrate the iridium-catalyzed C3-
selective C–H borylation of pyridine with a 1,10-phenanthroline (Phen) ligand bearing an alkylborane moiety. It is proposed 
that the Lewis acid–base interaction between the Lewis acid moiety and the aminocarbonyl group or the sp2-hybridized 
nitrogen atom accelerates the reaction and controls the site-selectivity.

INTRODUCTION
Transition metal (TM)-catalyzed C–H functionalization is 

one of the most efficient ways to construct C–C and C–
heteroatom bonds and is now becoming a powerful tool for 
complex molecule synthesis.1 To develop practical C–H 
functionalization methods, controlling the site-selectivity 
among similar C–H bonds is one of the key challenges.2 In 
nature, enzymes functionalize certain C–H bonds with excellent 
site-selectivity through precise placing of substrates via non-
covalent interactions.3 Such an interaction4 has inspired the 
development of artificial catalyst systems for site-selective 
C(sp3)–H oxidation reactions, which are based on hydrophobic 
interaction,5 Lewis acid–base interaction,6 or hydrogen-bonding 
interaction.7

The non-covalent interaction strategies were extended to 
iridium-catalyzed arene C–H borylation reactions8 in recent 
years because of the broad utilities of the resulting arylboronic 
esters.8g,9 For example, hydrogen-bonding has been employed 
to control ortho-10 and meta-selective11 C–H borylation 
reactions. And ion-pair interaction has been used to control 
ortho-12 and meta-selective13 C–H borylation very recently.

Lewis acid (LA) catalysts,14 as well as Lewis acid–Lewis base 
(LA–LB) bifunctional catalysts15 have been widely used to 
control reaction selectivities. Recent researches of TM–LA 
bifunctional catalysts,16 which contain TM and LA in one 
catalyst molecule, have shown its potential to control the site-
selectivity of TM-catalyzed C–H functionalizations at the 
remote positions.17 The application of TM–LA bifunctional 
catalysts in site-selective arene C–H borylation, however, was 
limited in a few reports, which included ortho-selective C–H 
borylation of aryl sulfides by an Ir–B catalyst (Figure 1a),18 
meta-selective C–H borylation of arylaldimines by an Ir–B 
catalyst (Figure 1b),19 and para-selective C–H borylation of aryl 
esters by an Ir–K catalyst (Figure 1c).20 Although great 
progresses have been made so far, this strategy is still in its 
infancy, and new TM–LA bimetallic catalyst systems are 
desired for other substrate classes and/or complementary site-
selectivities. 

Figure 1. Site-control of arene C–H borylation reactions using 
TM–LA bimetallic catalysts.

We are interested in the site-control of C–H functionalization 
by cooperative TM/LA catalysis for a decade.21 Recently, we 
have developed the para-selective C–H borylation of 
benzamides and pyridines by cooperative Ir/Al catalysis (Figure 
2).22 We found the aluminum LA catalysts dramatically 
accelerate the reaction by generating an LA–benzamide or –
pyridine adduct. This fact inspired us to design an Ir–LA 
bifunctional catalyst for the meta-selective C–H borylation 
reaction of benzamides and pyridines. Herein, we report a newly 
designed LA-containing N-based bidentate ligands to realize 
these transformations.24 The designed bifunctional catalyst 
includes: (1) A bpy or phenanthroline moiety for ligating Ir; (2) 
A linker which arranges the positions of the metal centers to 
control the site-selectivity25; (3) A Lewis acidic alkylaluminum- 
or alkylboron-based moiety to recognize aminocarbonyl groups 
or sp2-hybridized nitrogen and accelerate the reactions through 
electronic activation of the (hetero)arene substrates (Figure 2).22 
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Figure 2. Design of Ir–LA bifunctional catalysts for meta-selective 
C–H borylation of benzamides.

RESULTS AND DISCUSSION
In the beginning, we designed L1, which has a 2-

hydroxyphenyl linker with a diisobutylaluminum LA moiety, as 
a ligand for the Ir-catalyzed C–H borylation of benzamides. The 
borylation reaction of 1a using dtbpy as a ligand gave a mixture 
of meta- (2a) and para-borylation (5a) products including m,m’-
double borylation (3a) in an almost statistic ratio, suggesting 
that the aminocarbonyl group served as an electronically neutral 
substituent (entry 1 of Table 1).26 On the other hand, L1 
dramatically increased the meta-selectivity (entry 2) though a 
small amount of ortho-borylation product was also noted. L2 
which has a longer and more flexible linker gave lower meta-
selectivity than L1 (entry 3). L3 bearing a 3-hydroxyphenyl 
linker gave a much lower yield without any enhancement of 
selectivity (entry 4). Finally, L4–AlOct was designed because 
we thought the rigid aluminum-biphenoxide moiety would limit 
the flexibility of the Al center and block the ortho-borylation. 
To our delight, the combination of an Ir pre-catalyst and L4–
AlOct controlled the C–H borylation exclusively at the meta-
position with good reactivity (entry 5). The reaction using a 
larger amount (0.30 mmol) of the borylating agent gave higher 
yields (entry 6).

By using L4-AlOct as a ligand, we applied our method to 
ortho-mono-substituted benzamides. Generally, the reaction 
proceeded at the C5 position. N,N-Diethyl-2-methylbenzamide 
(1b) gave good yield and selectivity at 60 °C. 2-Phenyl-
substituted benzamide 1c gave good selectivity notably without 
any borylation at the phenyl substituent. The catalyst-control 
overrode the observed electronically induced site-selectivity by 
a methoxy group, which accelerates the borylation at its meta-
position,26 to give 2d with good selectivity. 2-Halogenated 
substrates 1e and 1f also gave good selectivity when hexane was 
used as a solvent. The low reactivity and/or selectivity of these 
reactions in THF/hexane could be ascribed to competitive 
coordination of THF to Al. Electron-withdrawing substituents 
like CF3 and OCF3 (1g and 1h) were also tolerated and gave 
good yields and selectivities using hexane as a solvent. The 
reaction of dicarbonyl substrate 1i exclusively proceeded at the 
position meta to the aminocarbonyl group.

For meta-substituted benzamides, 3-fluoro-substituted 
benzamide 1j, which gave a mixture of isomers under 
conventional conditions, was borylated at the C5 position 
exclusively by our method. Picolinamide 1k gave C4-borylation 
product with good selectivity. The reaction of 1l proceeded at 
the more steric hindered C5 position selectively probably 
because of a more favored electronic property at the C(5)–H 

bond than the C(4)–H. Our method could also be applied to 
arylphosphonate 1m, which afforded a meta-C–H borylation 
product with good yield and selectivity. Notably the hydrogen-
bonding strategy was not effective to control the site-selectivity 
for 1m.11a Sunifiram(1n), which is an experimental antiamnesic 
drug, was tested as a substrate. Our catalyst successfully 
achieved the meta-C–H borylation with moderate yield and high 
selectivity.  Other functionalized arenes like arylketones, 
benzoates and sulfonamides were not tolerated under these 
conditions probably due presumably to their weaker Lewis 
basicity (see Supporting Information). We indeed failed to 
observe the interaction between L4–AlOct and 1a in NMR 
experiments. We suggest that the alkylaluminum biphenoxide is 
a weak LA but it could accelerate the reaction by stabilizing the 
transition state of the meta-C–H activation.

Table 1. Ligand Optimization

selectivitya yield (%)aentr
y ligand

meta:ortho:para 2a 3a 4a 5a

1b dtbpy 52:0:48 36 13 –– 23

2b L1 69:6:25 11 –– 1 2

3b L2 59:3:38 18 1 1 6

4b L3 50:10:40 5 –– 1 2

5 L4–AlOct >99:0:0 36 3 –– ––

6c L4–AlOct >99:0:0 46 49 –– ––
a Estimated by GC analysis of the reaction mixtures using n-
dodecane as an internal standard. Selectivity was calculated as 
following: meta:ortho:para = [(2a+3a)/2]:(4a/2):5a. b 4.0 
mol% HB(pin) was used. c B2(pin)2 (0.30 mmol) was used 
under standard conditions.

To confirm the importance of the substrate–Al interaction for 
the observed high meta-selectivity and reactivity, we conducted 
the following experiments. The ligand L4 and L4-MOM, which 
lack the Al moiety, gave a mixture of isomers as products 
without selectivity (Table 3, entry 1 vs. entries 2 and 3). Unlike 
the directed Ir–Al bifunctional catalyst (entry 1), the 
combination of Ir–L1-MOM catalyst and Al(nOct)3 as LA 
increased the ortho-selectivity with much lower yield (entry 4). 
This result showed that the Al moiety located at an appropriate 
distance to the Ir center is crucial for the high site-selectivity as 
well as reactivity. Replacing the Al with K20,27 resulted in lower 
selectivities and yields (entry 5). Finally, L4–AlOct showed the 
highest catalytic activity compared with other conditions, which 
indicated the acceleration effect of the Al LA catalyst (see 
Supporting Information).
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Table 2. Scope of meta-Selective C–H Borylationa

2b,b 97% (>99:1) 
(at 60 °C)

2c, 77% (98:2) 2d,c 98% (94:6)d; 
(68%, 22:78)e

X =
Clc: 2e, 99% (97:3) 
(at 50 °C); (96%, 
40:60)e

Brc: 2f, 89% 
(>99:1) (at 80 °C); 
(93%, 37:63)e

2g,c 97% (>99:1); 
(92%, 58:42)e

2h,c,f 65% (90:10)

2i, 98% (95:5); 
(94%, 72:28)e

2j, 88% (>99:1); 
(56%, 56:44)e

2k, 83% (85:15); 
(59%, 57:43)e

2l, 95% (97:3); 
(>99%, 64:36)e

2m, 84% (87:13)d; 
(87%, 18:82)

2n, R = H, 24%; 
B(pin), 22% 
(93:7)g; (>99%, 
56:44)h

a Reactions were performed with an arene substrate (0.20 mmol), B2(pin)2 (0.20 mmol), [Ir(cod)(OMe)]2 (1.0 mol%), and L4-AlOct (2.0 
mol%) in THF (0.50 mL) and hexane (2.5 mL) at 30 C for 18 h. Yields were calculated by crude 1H NMR with 1,3,5-trimethoxybenzene 
as an internal standard. Isolated yields shown in Supporting Information are generally lower than the NMR yields due to loss and/or partial 
protodeboration of the products during purification. b Reaction run at 60 °C. c Reaction run using hexane (3.0 mL) as a solvent. d Selectivity 
was estimated based on 1H NMR analysis of a crude product. e Reaction was performed under standard condition using dtbpy as ligand. 
Yields and selectivities were calculated by crude 1H NMR with 1,3,5-trimethoxybenzene as an internal standard.  f Reaction run at 50 °C.
g Reactions were performed with an arene substrate (1.0 mmol), B2(pin)2 (1.5 mmol), [Ir(cod)(OMe)]2 (1.0 mol%), and L4-AlOct (2.0 
mol%) in THF (13 mL) at 60 C for 18 h. isolated yield. Selectivity was based on 1H NMR. h Reactions were performed with an arene 
substrate (0.20 mmol), B2(pin)2 (0.30 mmol), [Ir(cod)(OMe)]2 (1.0 mol%), and dtbpy (2.0 mol%) in THF (2.5 mL) at 60 C for 18 h. Yield 
and selectivity were based on 1H NMR with 1,3,5-trimethoxybenzene as an internal standard.

We then turned our attention to the C3-selective borylation of 
pyridine. Substituted pyridines play an important role in 
pharmaceuticals, natural products and functional materials. 
Among various methods for their syntheses, direct 
functionalization of a preformed pyridine core has an advantage 
in terms of step- and atom-economy.28 C2-29 and C4-selective30 
functionalization of pyridines has been studied extensively. 
However, C3-selective functionalization of pyridines remains 
challenging.  

C3-Selective C–H functionalization of pyridine has been 
achieved by the aid of directed C–H metalation of pyridines.31 
Only a few ideal catalyst-controlled C3-selective C–H function-
alization of pyridine have been developed. Yu and co-workers 
reported Pd-catalyzed olefination32 and arylation.33 Itami and 
co-workers reported Pd-catalyzed oxidative cross-coupling of 
pyridines with heteroarenes.29m Shi and Li reported Ir-catalyzed 
carbonyl addition.34 Oestreich reported Ru-catalyzed C5-
selective silylation of 2-arylpyridine.35 Oro reported NHC–
Ir(III)-catalyzed C5-selective silylation of 2- 
arylpyridine.36Although these reactions show good yield and 
site-selectivity, they suffer from a limited scope of pyridine 
substrates and lack versatility. 

Pyridylboronic esters have served as useful building blocks 
in natural product synthesis.37 Nevertheless, the C–H borylation 
of pyridine often suffers from poor site-selectivity,38 when 
sterically less biased, and lower reactivity compared with 
arenes.38a,b Although we have developed the C4-selective 

borylation of pyridines recently by cooperative Ir/Al catalysis,22 
a C3-selective variant has been elusive.

Table 3. Control Experiments to Study the Mechanism

selectivitya yield (%)aentr
y ligand additive

(2a+3a)/4a/5a 2a 3a

1 L4–AlOct –– >99:0:0 36 3

2 L4 –– 56:0:44 14 ––

3 L4–MOM –– 63:3:34 23 <1

4 L4–MOM AlOct3 7:89:4 9 ––

5 L4–Kb –– 82:0:18 6 ––
a Estimated by GC analysis of the reaction mixtures using n-
dodecane as an internal standard. b L4-K was synthesized by 
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mixing L4 with the same amount of KOtBu in THF at rt for 10 min 
and used as a solution.

At the onset, we studied the Ir-catalyzed borylation reaction 
of 2-picoline. The reactions using conventional ligands such as  
dtbpy or TMPhen gave a mixture of 4- and 5-boryl-2-picolines 
(Table 4, entries 1 and 2). We thus examined L4-AlOct but poor 
yield and site-selectivity resulted (entry 3). Al-tethered 
phenanthroline ligand L5 gave a mixture in slightly higher yield 
(entry 4). We reasoned that the low conversion and site-
selectivity with Al-tethered ligands might be ascribed to the 
weak Lewis acidity and thus prepared L6, the B-based LA 
moiety of which was introduced through hydroboration in situ. 
Gratifyingly, L6 dramatically increased the C5-selectivity to 
76% with a good yield (entry 5). Modification of the ligand by 
introducing BCy2 as a LA unit further increased the selectivity 
to 97% (entry 6). L8 bearing a BCy2-substituted 2-propylphenyl 
side chain gave lower C5-selectivity compared with L7 (entry 
7). After a series of further screenings of reaction solvents and 
additives (see Supporting Information), we found that the 
combination of [Ir(cod)(OMe)]2, L7, HB(pin) in a 1,4-dioxane 
solvent gave the highest C5-selectivity as well as yield (entry 
8).

By using L7 as a ligand, we investigated other pyridine 
derivatives (Table 5). Pyridine gave a mixture of C3-borylation 
and C3,C5-diborylation products with excellent overall C3-
selectivity (7b). 2-Ethylpyridine 6c also gave excellent site-
selectivity and high yield. While compatibility of Lewis basic 
functionality with the LA co-catalysis was concerned, oxygen 
and nitrogen-containing substituents as well as carbonyl, ether, 
and amine functionalities were all tolerated to give the 
respective functionalized pyridylboronates (7d–7i). 2-
Benzylpyridine (6j) gave C5-borylated product selectively by 
using L7 without any borylation on the benzyl group. ortho-
Silyl group was also tolerated (7k). Our catalyst could also 
borylate nicotine at the C5 position with a reaction rate much 
faster than with dtpby (7l).  Our method, however, failed to 
control the site-selectivity of C2-halogen-, methoxy- or 

carbonyl-substituted pyridines possibly because the competitive 
non-selective undirected reaction pathway (see Supporting 
Information).

Table 4. Ligand Optimization

entry ligand solvent 7a/8aa yield 
(%)a

1 dtbpy hexane 27:73 71
2 TMPhen hexane 42:58 88

3 L4-AlOct 1,4-
dioxane 35:65 8

4 L5 1,4-
dioxane 46:54 29

5 L6 hexane 76:24 83
6 L7 hexane 97:3 55
7 L8 hexane 71:29 82

8b L7 1,4-
dioxane 98:2 >99

a Estimated by GC analysis of the reaction mixtures using n-
dodecane as an internal standard. b Reaction run in the presence 
of 4.0 mol% HB(pin) at rt for 2 h.

Table 5. Scope of C5(C3)-selective C–H Borylation of Pyridinesa

7a, 89% (97:3) 7b,b R = H, 60%; 
B(pin), 16% (94:6)

7c, 96% (97:3) 7d, 98% (96:4) 7e, 99% (94:6) 7f, 97% (93:7)

7g, 99% (94:6) 7h, 92% (95:5) 7i, 99% (94:6) 7j, 99% (92:8); 
(87%, 27:73) d,e

7k, 99% (73:27) 7l, 99% (>99:1); 
(1%)d,e

7m,c R = H, 26%; 
B(pin), 24% 
(>99:1)

7n, >99% (60:40); 
(>99%, 2:98)d,e

7o, 99% (76:24); 
(48%, 46:54)d,e

7p, 62% (>99:1)f 7q, 83% (71:29)e; (95%, 26:74)d,e
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For 4-substituted pyridines, the reaction of 4-picoline (6m) 
took place with excellent C3-selectivity, while no reaction 
proceeded when dtbpy was used as a ligand. This result 
demonstrated a significant rate-acceleration induced by our 
bifunctional Ir–B catalysis. Our catalyst could also direct the 
borylation of 6n at the C6 position, while dtpby showed C7-
selectivity. The method could be used to functionalize the 
pyridine-based polydentate ligands selectively at the C5 
positions (7o and 7p). The novel C5-selective C–H borylation 
reaction has been used to the late-stage functionalization of 
brompheniramine 7q, which is an antihistamine drug. In sharp 
contrast to the conventional dtbpy ligand (95%, C5:C4 = 26:74), 
L7 showed the C5-selectivity (83%, C5:C4 = 71:29).

Table 6. Control Experiments to Study the Mechanism

entry ligand additive 7a/8aa yield 
(%)a

standard L7 –– 98:2 >99
1 L9 –– 50:50 49
2 L7 DMAP (2.0 mol%) 47:53 77
3b L7 –– 94:6 92
4c L7 –– 93:7 91
5 L7 BEt3 (0.20 mmol) 84:16 82
6 L9 9 (2.0 mol%) 36:64 98

a Estimated by GC analysis of the reaction mixtures using n-
dodecane as an internal standard. b Reaction run using 1.0 mL 
of 1,4-dioxane. c Reaction run at 60 °C.

We performed the following control experiments to confirm 
the designed directed pathway and the importance of Lewis 
acid-base interaction (Table 6). We revealed the following 
points: (1) Lewis acid-base interaction was essential for the site-
selectivity because ligand L9, which was similar to L7 in terms 
of its bulkiness but lacking the B moiety, gave a mixture of 
isomers as products (entry 1). The presence of a strong Lewis 
base such as DMAP hampered the LA function that 
dramatically decrease the site-selectivity and reactivity (entry 2 
and Supporting Information); (2) Non-selective undirected 
reaction might compete with the desired site-selective pathway 
since increased concentration (entry 3) and/or increased 

reaction temperature (entry 4), as well as Et3B as an additional 
LA reagent (entry 5), which could accelerate the undirected 
process, all decreased the site-selectivity; (3) The directed 
reaction was important for selectivity control because the 
combined use of L9 and 9 did not improve the site-selectivity 
(entry 6). Finally, the interaction between pyridine or 3-
borylpyridine with L7 was confirmed by 1H NMR analysis (see 
Supporting Information). We observed ligand exchange on the 
B moiety of L7, which was more rapid than a 1H NMR time-
scale, suggesting that the turnover of LA catalysis was not the 
rate-determine step of the reaction.

CONCLUSIONS
In summary, we have developed a new Ir–LA bifunctional 

catalyst for the meta-selective C–H borylation of benzamides 
and pyridines. The well-positioned Al or B recognizes the Lewis 
basic aminocarbonyl or sp2-hybridized nitrogen to likely place 
the Ir catalyst center close to the reacting C3-position. Our 
method shows good tolerance toward a range of functional 
groups including Lewis basic ones without loss of site-
selectivity. The unprecedented ligand design demonstrates the 
potential of the Lewis acid–base interaction as a powerful tool 
to control the site-selectivities of catalytic C–H 
functionalization reactions at the remote positions, which is 
potentially useful in other transition metal-catalyzed C–H 
functionalizations.
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