

Tetrahedron: Asymmetry 11 (2000) 1193-1198

TETRAHEDRON: ASYMMETRY

New chiral ligands, pyrrolidinyl- and 2-azanorbornylphosphinooxazolidines for palladium-catalyzed asymmetric allylation

Yuko Okuyama, Hiroto Nakano* and Hiroshi Hongo*

Tohoku Pharmaceutical University, Aoba-ku, Sendai 981, Japan

Received 27 December 1999; accepted 31 January 2000

Abstract

Pyrrolidinyl- **2** and 2-azanorbornylphosphinooxazolidines **3**, a new type of optically active ligands, were synthesized easily and their abilities as ligands were examined in Pd-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate. Enantiomeric excesses of up to 96% have been obtained using 1 mol% of $[PdCl(\eta^3-C_3H_5)]_2$ and 2.1 mol% of **2**. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Catalytic asymmetric synthesis has been a challenging subject in organic synthesis. The development of efficient enantioselective catalysts applicable to a wide range of carbon–carbon bond forming reactions represents a pivotal challenge to the synthetic community. Among the ligands, chiral oxazolines have proved to be extremely efficient ligands in some catalytic reactions.¹ Recently, chiral phosphinooxazolidine **1** has been shown to be an effective ligand in Pd-catalyzed asymmetric allylic substitutions² similarly to phosphinooxazolines. To the best of our knowledge, there is only one system **1**. We wish to report the synthesis of two kinds of new chiral ligands, pyrrolidine-based phosphinooxazolidine **2** and 2-azanorbornane-based phosphinooxazolidine **3**, followed by the application to Pd-catalyzed allylic alkylation. This allylation³ has been widely employed as an efficient and convenient tool for carbon–carbon and carbon–heteroatom bond formation in the field of organic synthesis.

^{*} Corresponding authors. E-mail: hnakano@tohoku-pharm.ac.jp

2. Results and discussion

Preparations of the chiral ligands 2 and 3 are described in Scheme 1. The chiral pyrrolidinylphosphinooxazolidine 2 was readily synthesized by the condensation of commercially available (*R*)-pyrrolidinylmethanol 4 with 2-(diphenylphosphino)benzaldehyde 5 in refluxing benzene using a Dean–Stark apparatus. More sterically constrained 2-azanorbornylphosphinooxazolidine 3 was obtained from 6, reported by our group,⁴ with 5 in refluxing toluene. The stereochemistries of the newly created stereogenic center at the 2-position of the 1,3-oxazolidine ring for 2 and 3 were determined by the NOE measurement of ¹H NMR spectra, respectively. Thus, the NOE experiments for 2 and 3 confirmed an interaction between the hydrogen at the 2-position and at the 4position, respectively.

Scheme 1.

In order to examine the effectiveness of the ligands, the enantioselective allylic alkylation of 1,3-diphenyl-2-propenyl acetate **7** with dimethyl malonate was tried in the presence of π -allyl-palladium chloride dimer. The results are summarized in Table 1. The reaction was tried under the BSA standard conditions (entries 1–7). Using 2.5 mol% [PdCl(η^3 -C₃H₅)]₂ and 10 mol% ligands (**2** and **3**), similarly to Jin's report,² good results were not obtained, although both ligands **2** and **3** worked to give the alkylation product **8** (entries 1 and 2). The excellent result (98 and 96% ee) (entry 3)⁵ was achieved by using 1 mol% [PdCl(η^3 -C₃H₅)]₂ and 2.1 mol% ligand **2**. However, 2-azanorbornane-based phosphinooxazolidine **3** was also less effective (53%, 43% ee) under these reaction conditions (entry 4). Furthermore, this reaction was carried out under other reaction conditions using ligand **2** (entries 5–10). The reduction of the temperature to 0 or 10°C decreased the enantiomeric excesses (entries 5 and 6). When THF was used as a solvent, high enantiomeric excess (95% ee) was confirmed similarly to the case of entry 3 (entry 7). The reaction in acetonitrile did not give a good result (entry 8). The conditions using tetrabutylammonium fluoride (TBAF) gave 85 and 87% ee (entry 9). However, reduction of the temperature decreased the enantiomeric excess (73% ee) (entry 10).

	Ph	>>> Ph	Ligar C	nd [PdCl(η^3 -C ₃ H ₂ (CO ₂ Me) ₂ base/BSA	H5)]2 Ph	(s)	1	
		7				8		
Entry	Ligand	Ligand (mol%)	Temp. (°C)	Solvent	Base	Time (h)	Yield ^d (%)	E.e. ^{e,f} (%)
1 ^a	2	10	r.t.	CH ₂ Cl ₂	CH ₃ COOK	6	77	86
2	3	10	r.t.	CH ₂ Cl ₂	CH ₃ COOK	6	54	46
3 ^b	2	2.1	r.t.	CH ₂ Cl ₂	CH ₃ COOK	3	98	96
4	3	2.1	r.t.	CH ₂ Cl ₂	CH ₃ COOK	5	53	43
5	2	2.1	10	CH_2Cl_2	CH ₃ COOK	9	86	83
6	2	2.1	0	CH ₂ Cl ₂	CH ₃ COOK	9	84	71
7	2	2.1	r.t.	THF	CH ₃ COOK	6	90	95
8	2	2.1	r.t.	CH ₃ CN	СН ₃ СООК	3	83	81
9 ^c	2	2.1	r.t.	CH ₃ CN	TBAF	3	85	87
10	2	2.1	10	CH_2Cl_2	TBAF	9	79	73

 Table 1

 Asymmetric Pd-catalyzed allylation of 1,3-diphenyl-2-propenyl acetate

040

MeO₂C₂CO₂Me

a) Molar ratio for entries 1,2 : [PdCl(η^3 -C₃H₅)]₂ (0.025 equiv.), dimethyl malonate (3 equiv.), *N*,*O*-bis- (trimethylsilyl)acetoamide (BSA) (3 equiv.), potassium acetate (0.03 equiv.) . b) Molar ratio for entries 3-8: [PdCl(η^3 -C₃H₅)]₂ (0.01 equiv.), dimethyl malonate (3 equiv.), *N*,*O*-bis(trimethylsilyl)acetoamide (BSA) (3 equiv.), potassium acetate (0.02 equiv.). c) Molar ratio for entries 9-10: [PdCl(η^3 -C₃H₅)]₂ (0.01 equiv.), dimethyl malonate (3 equiv.), *N*,*O*-bis(trimethylsilyl)acetoamide (BSA) (3 equiv.), potassium acetate (0.02 equiv.). c) Molar ratio for entries 9-10: [PdCl(η^3 -C₃H₅)]₂ (0.01 equiv.), dimethyl malonate (3 equiv.), *N*,*O*-bis(trimethylsilyl)acetoamide (BSA) (3 equiv.), tetrabutylammonium fluoride (TBAF) (3 equiv.). d) Isolated yields. e) Determined by HPLC analysis using a DAICEL chiralcel OD-H column. f) S-Configuration based on the specific rotation with literature data, ^{3a,b} [α]_D²³ = 23.57 (c 1.4, CHCl₃)(96% ee)

Unfortunately, better results were not found under these conditions. From the above results, phosphinooxazoline 2 is an excellent ligand in this allylation under the reaction conditions of entry 3.

It is considered that the enantioselective step in Pd-catalyzed allylation is the substitution of π -allyl complexes with nucleophiles and nucleophilic attack occurs predominantly at the allyl terminus from *trans* to the better π -acceptor (P \gg N).⁶ Since the (S)-product was obtained as the major enantiomer, the reaction probably proceeds through an M-type **10** rather than a W-type **9** intermediate.⁶ In addition, the differentiation of chemical yields and enantiomeric excesses for the ligands **2** and **3** may be explained by steric inferences. Thus, the 2-azanorbornane skeleton, which

is more bulky than the pyrrolidine skeleton, obstructs the construction of the π -allyl palladium complex 11 (Scheme 2).

3. Conclusions

We have prepared two kinds of new chiral ligands 2 and 3. These worked as ligands for allylic substitution reactions. In particular 2 was a good and effective ligand and gave an excellent chemical yield and enantiomeric excess. It is expected that 2 and 3 would act as good ligands in other catalytic asymmetric reactions. Further applications and modifications of the ligand 2 are in progress.

4. Experimental

4.1. General

IR spectra were measured with a Perkin–Elmer 1725X spectrophotometer. ¹H NMR spectra were recorded on a JEOL JNM-GSX 270 and a JEOL JNM-LA 400 spectrometer with TMS as an internal standard. MS were taken on Hitachi RMG-6MG and JEOL-JNM-DX 303 spectrometers. Optical rotations were measured with a JASCO-DIP-370 digital polarimeter. Thin layer chromatography was performed with Merck F-254 silica gel plates. Preparative thin layer chromatography was carried out on Merck PSC-Fertirplatten Kieselgel 60 F254 plates.

4.2. (2R,5R)-1-Aza-2-(2-diphenylphosphino)phenyl-3-oxa-4,4-diphenylbicyclo[3.3.0]octane 2

(R)-(+)- α , α -Diphenyl-2-pyrrolidinemethanol **4** (100 mg, 0.4 mmol), 2-(diphenylphosphino)benzaldehyde **5** (128 mg, 0.44 mmol), *p*-toluenesulfonic acid monohydrate (30 mg, 0.16 mmol) and benzene (8 ml) were placed in a flask equipped with a Dean–Stark trap. The mixture was refluxed overnight. The solvent was evaporated under reduced pressure and the residue was purified by preparative TLC (hexane:ether = 6:1) to give pure **2** (112 mg) in 54% yield. Mp 52–54°C, $[\alpha]_D^{23} = +95.0$ (c 1.0, CHCl₃). IR (film) cm⁻¹: 746, 697. ¹H NMR (CDCl₃) δ 7.62 (m, 1H), 7.11–7.38 (m, 22H), 6.88 (m, 1H), 6.36 (d, J = 6.3 Hz, 1H), 4.31 (t, J = 7.0 Hz, 1H), 2.93 (m, 1H), 2.75 (m, 1H), 1.43–1.70 (m, 4H). ¹³C NMR (CDCl₃) δ 137.18, 133.99, 133.81, 133.70, 133.52, 133.28, 128.83, 128.26, 128.21, 128.15, 128.10, 128.00, 127.77, 127.69, 127.63, 127.50, 126.47, 126.39, 126.18, 126.04, 94.78, 94.45, 73.34, 50.52, 27.82, 24.43. Anal. calcd for C₃₆H₃₂NOP: C, 82.26; H, 6.14; N, 2.66. Found: C, 81.98; H, 6.10; N, 2.46. MS *m/z*: 525 (M⁺).

4.3. (1R,3S,6S,7S)-2-*Aza*-3-(2-*diphenylphosphino*)phenyl-4-oxa-5,5-*diphenyltricyclo*[5.2.1.0^{2,6}]-*decane* **3**

Compound **6** (200 mg, 0.72 mmol), 2-(diphenylphosphino)benzaldehyde **5** (240 mg, 0.81 mmol) and toluene (20 ml) were placed in a flask equipped with a Dean–Stark trap. The mixture was refluxed for 48 h. The solvent was evaporated under reduced pressure and the residue was purified by preparative TLC (hexane:ether = 5:1) to give pure **3** (230 mg) in 65% yield. Mp 230–232°C, $[\alpha]_D^{23} = -45.3$ (c 1.7, CHCl₃). IR (film) cm⁻¹: 748, 697. ¹H NMR (CDCl₃) δ 8.14 (m, 1H), 7.05–7.69 (m, 23H), 6.06 (d, J = 5.3 Hz, 1H), 4.11 (s, 1H), 2.56 (s, 1H), 1.89 (br s, 1H), 1.51 (d, J = 9.5 Hz), 1.16–1.26 (m, 2H), 0.82 (m, 1H), 0.65 (m, 1H), 0.53 (d, J = 9.5 Hz, 1H). ¹³C NMR (CDCl₃) δ 138.40, 138.32, 137.62, 137.55, 135.88, 135.65, 134.90, 134.89, 134.43, 134.23, 133.43, 133.24, 129.06, 128.86, 128.52, 128.50, 128.43, 128.01, 127.99, 127.94, 127.60, 125.90, 125.85, 115.95, 112.12, 81.41, 81.58, 60.39, 53.01, 51.54, 51.51, 27.92, 23.75. Anal. calcd for C₃₈H₃₄NOP: C, 82.73; H, 6.21; N, 2.54. Found: C, 82.84; H, 6.18; N, 2.45. MS *m/z*: 551 (M⁺).

4.4. General procedure [method A (entries 1-8), method B (entries 9-10)] for the Pd-catalyzed allylic substitutions of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate using 2 and 3 as chiral ligands

Method A: a mixture of ligand 2 (entries 1-2: 0.04 mmol; entries 3-8: 0.008 mmol) and $[PdCl(\eta^3-C_3H_5)]_2$ (entries 1–2: 0.01 mmol; entries 3–8: 0.004 mmol) in dry solvent (1 ml) indicated in Table 1 was stirred at room temperature for 1 h and the resulting yellow solution was added to a mixture of acetate 7 (0.4 mmol) and base [entries 1–8: potassium acetate (entries 1–2: 0.012 mmol; entries 3–8: 0.008 mmol)] in dry solvent (1 ml) using a syringe followed by the addition of dimethyl malonate (1.2 mmol) and BSA (1.2 mmol). Method B: a mixture of ligand 2 (0.008 mmol) and $[PdCl(\eta^3-C_3H_5)]_2$ (0.004 mmol) in dry solvent (1 ml) was stirred at room temperature for 1 h and the resulting yellow solution was added to a solution of acetate 7 (0.4 mmol) in dry solvent (1 ml) using a syringe followed by the addition of a mixture of dimethyl malonate (1.2 mmol), TBAF (1.2 mmol) and BSA (1.2 mmol). The reactions of methods A and B were carried out at ambient temperature and the reaction mixtures were diluted with ether and were quenched with satd NH₄Cl. The organic layer was washed with brine and dried over MgSO₄. The solvent was evaporated under reduced pressure and the residue was purified by preparative TLC (hexane:ether = 5:1) to give a pure product 8. The enantiomeric excess was determined by HPLC (Chiralcel OD-H, 0.5 ml/min, hexane:2-propanol=98:2). The absolute configuration was determined by specific rotation.^{3a,b}

References

- (a) Steinhagen, H.; Reggelin, M.; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 2108–2110. (b) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. Tetrahedron Lett. 1998, 39, 4343–4346. (c) Pretot, R.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1998, 37, 323–325. (d) Meyers, A. I.; Price, A. J. Org. Chem. 1998, 63, 412–413. (e) Kolotuchin, S. V.; Meyers, A. I. J. Org. Chem. 1999, 64, 7921–7928.
- 2. Jin, M.-J.; Jung, J.-A.; Kim, S.-H. Tetrahedron Lett. 1999, 40, 5197-5198.
- For a recent paper: (a) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566–568. (b) Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769–1772. (c) Togni, A.; Venanzi, L. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 497–526. (d) Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395–422. (e) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1–4. (f) Saitoh, A.; Misawa, M.; Morimoto, T. Synlett 1999, 4, 483–485. (g) Lee, S.-G.; Lee, S. H.; Song, C. E.; Chung, B. Y. Tetrahedron: Asymmetry 1999, 10, 1795–1802.
- (a) Nakano, H.; Kumagai, N.; Kabuto, C.; Matsuzaki, H.; Hongo, H. *Tetrahedron: Asymmetry* 1995, 6, 1233–1236.
 (b) Nakano, H.; Kumagai, N.; Matsuzaki, H.; Kabuto, C.; Hongo, H. *Tetrahedron: Asymmetry* 1997, 8, 1391–1401.
 (c) Nakano, H.; Iwasa, K.; Hongo, H. *Heterocycles* 1997, 44, 435–442.
 (d) Nakano, H.; Iwasa, K.; Hongo, H. *Heterocycles* 1997, 44, 435–442.
- 5. Zhang, W.; Yoneda, Y.; Kida, T.; Nakatsuji, Y.; Ikeda, I. Tetrahedron: Asymmetry 1998, 9, 3371-3380.
- 6. (a) Akermark, B.; Hansson, S.; Krakenberger, B.; Vitagliano, A.; Zetterberg, K. Organometallics 1984, 3, 679–682.
 (b) Sprinz, J.; Kiefer, M.; Helmchen, G.; Resselin, M. Tetrahedron Lett. 1994, 35, 1523–1526. (c) Allen, J. V.; Williams, J. M. J. J. Chem. Soc., Perkin Trans. 1 1994, 2065–2072. (d) Dawson, G. I.; Williams, J. M. J. Tetrahedron: Asymmetry 1995, 6, 2535–2546. (e) Anderson, J. C.; James, D. S.; Mathias, J. P. Tetrahedron: Asymmetry 1998, 9, 753–756.