Journal of Medicinal Chemistry

Article

Subscriber access provided by NEW YORK MED COLL

Noncovalent Mutant Selective Epidermal Growth Factor Receptor Inhibitors: A Lead Optimization Case History

Robert Andrew Heald, Bryan K Chan, 2. Callie Bryan, Charles Eigenbrot, Christine Yu, Daniel Burdick, Emily J. Hanan, Emily Chan, Gabriele Schaefer, Hank La, Hans Purkey, Jamie Knight, Ivana Yen, Philip Jackson, Krista Bowman, Kyle Mortara, Michael Lainchbury, Lily Shao, Richard Elliott, Eileen Seward, Shiva Malek, Stephen Schmidt, Steve Sideris, Timothy P Heffron, Kuen Yeap, Yuan Chen, and Sam Mann

J. Med. Chem., Just Accepted Manuscript • Publication Date (Web): 10 Oct 2015

Downloaded from http://pubs.acs.org on October 11, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Noncovalent Mutant Selective Epidermal Growth Factor Receptor Inhibitors: A Lead Optimization Case Study

Robert Heald, * ^ΔKrista K. Bowman, [⊥] Marian C. Bryan, [†] Daniel Burdick, [†] Bryan Chan, [†] Emily Chan, [□] Yuan Chen, [§] Saundra Clausen, [◊] Charles Eigenbrot, [‡] Richard Elliott, ^ΔEmily J. Hanan, [†] Philip Jackson, ^Δ Jamie Knight, ^Δ Hank La, [§] Michael Lainchbury, ^Δ Shiva Malek, [◊] Sam Mann, ^Δ Mark Merchant, [□] Kyle Mortara, [⊥] Hans Purkey, [†] Gabriele Schaefer, [#] Stephen Schmidt, [◊] Eileen Seward, ^Δ Steve Sideris, [◊] Lily Shao, [□] Shumei Wang, [†] Kuen Yeap, ^Δ Ivana Yen, [◊] Christine Yu, [‡] Timothy P. Heffron[†]

^AArgenta, Early Discovery Charles River, 7/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom. [†]Departments of Discovery Chemistry, [‡]Structural Biology, [§]Drug Metabolism and Pharmacokinetics, [◊]Biochemical and Cellular Pharmacology, [#]Molecular Oncology,[□] Research Oncology and [‡]Protein Expression Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, United States.

Due to their increased activity against activating mutants, first-generation epidermal growth factor receptor (EGFR) kinase inhibitors have had remarkable success in treating non-small cell lung cancer (NSCLC) patients, but acquired resistance, through a secondary mutation of the gatekeeper residue, means that clinical responses only last for 8-14 months. Addressing this

unmet medical need requires agents which can target both of the most common double mutants: T790M/L858R (TMLR) and T790M/del(746-750) (TMdel). Herein we describe how a noncovalent double-mutant selective lead compound was optimized using a strategy focused on the structure-guided increase in potency without added lipophilicity or reduction of 3dimensional character. Following successive rounds of design and synthesis it was discovered that cis-fluoro substitution on 4-hydroxy and 4-methoxy piperidinyl groups provided synergistic, substantial, and specific potency gain either through direct interaction with the enzyme and/or effects on the proximal ligand oxygen atom. Further development of the fluoro-hydroxy piperidine series resulted in the identification of a pair of diastereomers which showed 50-fold enzyme and cell based selectivity for T790M mutants over wild-type EGFR (wtEGFR) in vitro and pathway knock-down in an in vivo xenograft model.

GRAPHICAL ABSTRACT

Identical wtEGFR (cyan) and T790M/ L858R (gray) binding modes,

>100-fold enzyme and cell selectivity.

INTRODUCTION

Activating mutations of the receptor tyrosine kinase epidermal growth factor receptor (EGFR), most commonly the point mutation L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival¹⁻⁴ leading to oncogene addiction in non-small cell lung cancer (NSCLC) bearing these mutations.⁵ Successful treatment of EGFR-mutated NSCLC with erlotinib or gefitinib⁶⁻¹⁰ is followed in most cases by acquired resistance to the respective TKI (tyrosine-kinase inhibitor).¹¹⁻¹³ In particular, around 60% of patients acquire a secondary mutation of the gatekeeper residue threonine-790 to methionine (T790M).¹²⁻¹⁶ This mutation maintains catalytic function of the enzyme but reduces the activity of inhibitors gefitinib and erlotinib through occlusion of part of the binding site¹⁷ similarly to the T315I gatekeeper residue resistance mutation in Abl following treatment with TKIs in CML.^{12, 13, 18-20} A second mechanism, in which the T790M containing mutants have an increased affinity for ATP, resulting in reduced cellular potency for the ATP-competitive inhibitors has also been discovered.²¹

The predominant strategy employed by medicinal chemists to overcome these resistance mechanisms has been the use of covalent inhibitors which are able to bond with the poorly conserved Cys797 within the EGFR active site, providing both potency and kinase-selectivity. Clinical results with these second and third-generation compounds have been mixed. Clinical efficacy of second-generation EGFR inhibitors containing reactive groups was limited by associated skin rash and gastrointestinal toxicity, possibly because of their potency against wild-type EGFR (wtEGFR).^{22, 23} These results and additional reports of acquired resistance to one such covalent inhibitor via the T790M mutation^{24, 25} led to concerns that drug levels sufficient to inhibit T790M mutant forms of EGFR may not be achieved with these agents. Recent results

(disclosed after the conclusion of this work) for third-generation covalent inhibitors AZD9291 (mereletinib) and CO-1686 (rociletinib), which have been designed to be selective for T790M containing EGFR mutants over wtEGFR, indicate promising efficacy and tolerability with this approach.²⁶⁻³³ However, as with first and second-generation compounds, resistance has emerged: there has been a recent report of C797S mutation or loss of the T790M mutation in cell-free plasma DNA samples from patients who have developed resistance³⁴ and a second separate report of C797S mutation in biopsy samples from a single patient.³⁵ Additionally, studies with third-generation resistant cell lines have shown that the allelic context of the activating gatekeeper and C797S mutations affects the sensitivity to the three generations of inhibitors with no EGFR TKIs alone or in combination able to suppress activity when the mutations are in cis.³⁶ These data suggest that there is a need for drugs which do not rely on covalent reaction with Cys797 for potency or selectivity. The dual ALK/EGFR inhibitor AP26113 (brigatinib) is one of the few noncovalent EGFR T790M selective inhibitors to be resported³⁷ although the primary focus of clinical investigation appears to be in ALK (anaplastic lymphoma kinase) driven lung cancers ³⁸

Our previous publication³⁹ describes the first stage of our work to identify noncovalent mutant-selective inhibitors of the major resistant mutants of EGFR: T790M/L858R (TMLR) and T790M/del(746-750) (TMdel), with high selectivity over wtEGFR. Using structure-based design following an HTS campaign a novel series of pyrimidinyl-pyridines which offer selectivity for inhibition of TMLR and TMdel over wtEGFR and kinases in general were discovered. This selectivity is due to an unusual binding mode (**1**, Figure 1) where the pyrimidine ring sits underneath the mutated Met790 gatekeeper residue. Methionine-aryl interactions are frequently observed in protein structures with the methionine sulfur often found

Page 5 of 60

Journal of Medicinal Chemistry

to be positioned in the same plane as the aryl ring.⁴⁰ Additionally, the binding sites of adenine rings often feature methionine residues with the sulfur above the plane of the aromatic ring at a distance of ~4Å, as exemplified in the complex of catechol-O-methyltransferase with its cofactor S-adenosylmethionine (PDB code 2cl5). The Met790 gatekeeper residue of the TMLR enzyme and pyrimidine ring of 1 are in a similar juxtaposition (Figure 1c). The pyrimidine ring is also held in place through a hydrogen bond with the non-conserved Thr854 residue. This residue, or a corresponding hydrogen bond donor is unusual in combination with a methionine gatekeeper.⁴¹ The methoxy piperidine, which was found to be key to selectivity and stabilization of this binding mode, fills the lipophilic space between Met790 and Lys745 placing the ether oxygen, a weak hydrogen-bond acceptor, within hydrogen-bonding distance with the conserved catalytic lysine (Figure 1). Successful X-ray refinement places the methoxyl oxygen in the preferred equatorial conformation, while the methoxyl methyl carbon is less strongly indicated. The aminopyridine core makes two additional hydrogen-bonding interactions with the hinge, with the pyrimidine CH also within close contact with the carbonyl oxygen of Gln791. Finally, the Nsubstituent on the ring fused to the pyridine (imidazole in the case of 1) fills the lipophilic ribose pocket formed by Val726, Leu844 and Cys797. A cysteine residue in this position in the ribose pocket is unusual in kinases so although the interactions of this group are lipophilic this may still contribute to selectivity.

Figure 1. Representations of the X-ray structure of **1** complexed with TMLR (PDB code 5C8K). Some residues removed for clarity. a) Chemical structure of **1** and interaction map with TMLR, purple arrows indicate hydrogen bonds; b) overview of **1** in the binding site, the surface shown is colored by electrostatic potential, hydrogen bonds indicated by dashed gray lines; c) close-in image showing the position of the pyrimidine and piperidine rings relative to the mutated gatekeeper residue, inter-atom distances for the methionine gatekeeper sulfur and heavy atoms of the pyrimidine ring and piperidine and shown by dashed purple lines, values in Å.

It is generally accepted that with increasing lipophilicity (LogP) the *risk* of promiscuous binding and toxicity is increased, and metabolic stability and solubility are reduced.^{42,43} Similar relationships have been postulated to exist with reduced 3-dimensional character⁴⁴ and increased

Page 7 of 60

aromatic ring count.⁴⁵ These risk factors were anticipated to be a particular challenge in our optimization program for a number of reasons:

- The EGFR ATP binding-site is surrounded by mostly lipophilic residues, reflected in the highly lipophilic nature of optimized compounds erlotinib and gefitinib (clogP 3.8, 4.3; measured Log D 3.1, 3.6 respectively). In T790M EGFR lipophilicity is increased by substitution of the only H-bonding residue used by quinazoline inhibitors (excluding hinge interactions) T790 with methionine.
- 2. The binding site occupied by our lead compounds is flatter than in the case of anilinoquinazoline EGFR inhibitors where the aryl ring sits out of plane and is orientated towards the gatekeeper pocket (see pdb entry 1M17).
- 3. Achieving cellular potency and selectivity is made more difficult by the low $K_M[ATP]$ of T790M mutant EGFR (TMLR = 1.3 μ M, TMdel = 2.1 μ M⁴⁶), compared to many other kinases. Literature values for $K_M[ATP]$ vary significantly although it is generally accepted that the activating mutations have increased K_M compared to wtEGFR and T790M kinases.

There is much discussion in the medicinal chemistry literature about the correlation of lipophilic ligand efficiency (LLE) with "compound quality" and the use of this and similar metrics in lead optimization programs.⁴⁷⁻⁵⁰ Due to the particular challenges envisaged with the optimization of our series of T790M EGFR inhibitors and centered on the thermodynamic basis for the use of lipophilic efficiency in optimizing enthalpic contributions to potency⁵¹ our strategy was to analyze potency in the context of <u>measured</u> LogD values. This was in order to avoid hydrophobic-effect driven potency increases which may well be non-selective and lead to

ADMET issues. In concert with this we sought to retain, or add to, the 3-dimensional character present in lead compounds. Finally, we made structural changes which removed metabolic soft spots identified in in vitro and in vivo studies focusing on increasing in vitro metabolic stability and lowering unbound in vivo clearance.

RESULTS AND DISCUSSION

The azabenzimidazole sub-series was chosen over other 5,6- and 6,6- systems due to superior physicochemical properties, chiefly solubility. Initially we carried out a survey of the effect of the azabenzimidazole *N*-substituent changes on enzyme affinity (Table 1). The TMLR enzyme assay alone was used primarily for optimization as a very strong correlation was found for TMLR vs TMdel affinity. Generally, the potency of these analogues correlated with lipophilicity, which could be expected based on the lipophilic nature of the ribose pocket. Ligand efficiency was retained in comparison with the unsubstituted analogue **2**. The isopropyl group appeared near-optimal at this stage and was retained in the preparation of further analogues due to the combination of good potency and LE but without excessive lipophilicity (LogD) and the absence of a chiral center.

Table 1. TMLR enzyme potency of azabenzimidazole *N*-substituent analogues. Ent 1 and Ent 2 denote separated single unknown stereoisomers.

1	
2	
3	
4	
5	
6	
7	
8	
9	
1	(
1	
1	2

2					
3 4 5 6 7	compd	R ¹	TMLR LLE/LE ^a	TMLR Ki _{app} (nM)	LogD
8 9 10 11	1	X	4.8/0.36	20	2.9
12 13	2	Н	4.6/0.37	329	1.9
14 15 16 17	3	X	4.3/0.35	201	2.4
18 19 20	4	×	4.8/0.36	87	2.3
21 22 23 24 25	5	7	4.9/0.38	40	2.5
26 27 28 29	6	χ.	4.5/0.36	48	2.8
30 31 32 33 34	7 (racemic)	X	5.1/0.38	14	2.8
35 36 37 38	8 (ent 1)	X	4.8/0.38	17	2.9
39 40 41 42 43	9 (ent 2)	X	4.8/0.38	22	2.9
44 45 46 47 48	10	کر O	5.0/0.32	149	1.8
49 50 51 52 53	11	F F F	4.3/0.34	71	2.8
54 55 56 57	12	×	4.3/0.35	18	3.4
58 59 60					

2					
3 4 5 6 7	13	کر ا	5.0/0.33	76	2.1
3 9 10 11 12	14	F F F	4.9/0.35	27	2.7

^a LLE was calculated using measured LogD; Ligand efficiency, LE = $(\Delta G)/N$ where N is the number of non-hydrogen atoms. Wavy line indicates the point of attachment to the imidazole N. See experimental section for details of assay errors and controls.

Compound 5 was profiled fully and found to be labile in liver microsomes and hepatocytes across species (human and rat liver microsomal Cl_{hep} 15 and 44 mL/min/kg respectively) and also in the absence of co-factor (NADPH) in human liver microsomes (Cl_{hep} 9 mL/min/kg). Incubation of a number of compounds in this series in human liver cytosol in the absence of cofactor (NADPH) showed disappearance of parent and the formation of an oxidative (M+16) metabolite. These data indicated likely involvement of non-CYP mediated oxidation through an enzyme such as aldehyde oxidase (AO) / xanthine oxidase (XO). AO and XO are known to metabolize various heterocycles, mainly at CH next to sp² ring nitrogen atoms.⁵² From the binding mode of this series we anticipated that only the azabenzimidazole 2-position could tolerate substitution with a methyl group without loss of activity. Encouragingly, 15, the 2methyl analogue of 5 (Table 2) showed a modest increase in potency and >10-fold selectivity for inhibition of EGFR auto-phosphorylation in the TMLR-expressing cell line H1975 over the wtEGFR cell line H292. Furthermore, 15 showed no loss of parent on incubation with cytosol as well as improved stability in human hepatocytes. In vivo clearance in rat was in line with that extrapolated from in vitro data⁵³ suggesting that in vivo clearance is mainly driven by hepatic metabolism and that PK for the series could be optimized through analysis of in vitro metabolic stability data. The major metabolites identified following incubation of 15 in human liver

Journal of Medicinal Chemistry

microsomes were demethylation (M1, 26%), hydroxylation plus glucoronidation (M2, 10%) and hydroxylation plus glucoronidation of M1 (M3, 9%). The in vitro potency, ADME and rat PK profile of 15 are shown in Table 2.

Due to the clear metabolic liability of the methoxy piperidine and the probable weak hydrogenbonding ability of the ether oxygen the piperidine substituent was targeted for optimization in the next round of synthesis. A number of simple analogues were prepared, focusing on removing the metabolic soft spot and including potentially stronger hydrogen bond acceptors in approximately the same position as the methoxy group. Data for four close analogues is shown in Table 3.

Table 2. In vitro potency, ADME and PK profile of 15.

TMLR Ki _{app} (nM)	19
wtEGFR Ki _{app} (nM)	875
WT/TMLR Ki _{app}	46
p-EGFR/proliferation H1975 IC ₅₀ /EC ₅₀ (µM)	0.882/ 6.7
p-EGFR H292 IC ₅₀ (µM)	>10
Kinetic solubility (µM)	87
cLogP (measured LogD)	3.7 (2.4)
Microsomal Cl _{hep} m/r/c/d/h ^a (mL/min/kg)	83/40/36/26/14

Hepatocyte Cl _{hep} m/r/c/d/h ^a (mL/min/kg)	77/35/33/21/5
MDCK Papp A:B (x10-6 cm/s)	29
Rat IV (5 mg/kg) Cl _p /Cl _u ^b (mL/min/kg)	40/620
F (10 mg/kg) %	30

^a m: mouse; r: rat, d: dog, c: cynomolgus monkey h: human; ^b Cl_p : plasma clearance, Cl_u :unbound plasma clearance (Cl_p/F_u where F_u is the fraction unbound in plasma). Papp AB: apparent permeability, apical to basolateral; F: oral bioavailability. See experimental section for details of assay errors and controls.

Table 3. In vitro potency, LogD, and human in vitro metabolic stability for simple piperidine analogues.

a a mun d	\mathbf{D}^2	TMLR	al a gD	LagD	птра	HLM/HH Cl _{hep}
compu	ĸ	Kl _{app} (nM)	CLOGP	CLUgi Lugi		(mL/min/kg)
15	OMe	19	3.7	2.4	5.3	14/5
16	ОН	34	3.3	1.8	5.7	3/14
17	SO ₂ Me	64	2.7	1.6	5.6	7/2
18 ^c	CONH ₂	151	2.2	1.7	5.1	8/-

^a LLE was calculated using measured LogD; ^b HLM: human liver microsomes, HH: human hepatocytes; ^c 2-H azabenzimidazole scaffold. See experimental section for details of assay errors and controls.

The hydroxy piperidine analogue **16** was of comparable potency to **15**, and was much more stable in HLM (3 cf. 14 mL/min/kg). However, lower stability was observed in hepatocytes

Journal of Medicinal Chemistry

presumably due to Phase II conjugation of the hydroxyl group of **16**. The piperidine sulfone analogue **17** was ~3-fold less potent but was more stable in both microsomes and hepatocytes. The amide **18** lost >5-fold potency relative to the methyl ether **15**. The LLE values based on measured LogD⁵⁴ indicate that both **16** and **17** represent a marginal improvement in potency/lipophilicity balance. An X-ray structure of **17** in complex with the TMLR enzyme (Figure 2a) showed Lys745 within hydrogen bonding distance of one of the sulfone oxygen atoms, with this group in the more energetically favored equatorial conformation. The hydrogen bond acceptor shifted ~1.4 Å compared to the methoxy piperidine analogue (Figure 2h) and the lysine moves accordingly to accommodate this. The methyl group of the sulfone is also positioned within interacting distance with Phe723 and Val726 (3.0 and 3.1 Å respectively). Perhaps one reason for the lack of potency improvement with this substitution is that one of the sulfone oxygen atoms is redundant making no clear contribution to binding.

6

Figure 2. Representations of the X-ray structures of various piperidine-replacement analogues complexed with TMLR showing close-in images of the pyrimidine 2-substituent and key interacting residues. Hydrogen bonds are indicated by dashed gray lines. a) 17 (PDB code 5C8M). The sulfone is in the more stable equatorial conformation, hydrogen bond shown between Lys745 and one of the oxygen atoms of the sulfone. Phe723 is 3-3.2 Å from the methyl of the sulfone; b) 23 (PDB code 5C8N). The methoxy group is flipped to the axial conformation but is still able to interact with Lys745 through a hydrogen bond, the pendant amino group is able to make a salt bridge with Asp855; c) 24 (PDB code 5CAL). Image shown has the pendant group in the "open" conformation where there is no hydrogen bond with Lys745, the amide NH_2 is within hydrogen-bonding distance with Asn842, one of the methyl groups is positioned 3.7 Å from Phe723; d) hybrid fit of 24 to the X-ray electron density map, electron density shown in green e) 27 (green carbons) (PDB code 5CAN) in comparison with the ligand conformation of 24 (light gray carbons). The amide NH_2 is positioned so as to enable hydrogen bonding with Asn842 in both structures; f) 29 (PDB code 5CAO). The ligand bound conformation is possibly stabilized by an intramolecular hydrogen bond between the sulfone and aminopyrimidine NH; g) (PDB code 5CAP). The O-linked analogue of **29**, where there is no intramolecular hydrogen bond with the sulfone, binds with the sulfone more out of plane but still interacting with Lys745; h) overlay of the X-ray structures of various pyrimidine substituent analogues (17, cyan; 29, green and **30**, gray) showing the conservation in the positioning of the hydrogen bond acceptor and Lys745 in the complexes of these analogues.

4,4-Disubstituted quaternary piperidines **19-23** were designed to provide a steric block to metabolism of the methoxy piperidine or phase-II conjugation of the hydroxyl piperidine. Additionally these analogues also provided a vector for accessing polar interactions in particular

with Asp855 and Asn842. As shown in Table 4, two of these analogues, **21** and **23**, showed retention of potency with increased LLE indicating that the added polar groups, although sub-optimal, were achieving a positive interaction with the protein. Gratifyingly, compounds **21** and **23** also have improved HLM stability relative to compound **15** ($Cl_{hep} = 2$ and 6 respectively compared to 14 mL/min/kg).

Table 4. In vitro potency, LogD, and human in vitro metabolic stability for quaternary piperidine analogues.

compd	\mathbf{R}^2	TMLR Ki _{app} (nM)	cLogP	LogD	LLE ^a	HLM/HH ^b Cl _{hep} (mL/min/kg)
19	CH ₂ N(Me) ₂	492	3.7	1.5	4.8	8/-
20	CH ₂ OMe	77	3.6	2.4	4.7	14/-
21	CH ₂ OH	24	3.0	1.7	5.9	6/10
22	CH ₂ CH ₂ OH	50	3.5	2.0	5.3	9/-
23	CH ₂ CH ₂ NH ₂	28	3.2	0.1	7.5 ^b	2/-

^a LLE was calculated using measured LogD ^b HLM: human liver microsomes, HH: human hepatocytes. See experimental section for details of assay errors and controls.

The X-ray structure of **23** with TMLR (Figure 2b) showed that the basic primary amine is positioned within an appropriate distance to make a salt-bridge with Asp855. There is no potency gain with this interaction possibly due to an increased de-solvation penalty,

Journal of Medicinal Chemistry

displacement of water which usually occupies this position and the fact that Asp855 is already part of a favorable hydrogen-bonding network in the apo enzyme. The X-ray structure also showed that **23** binds with the piperidine methoxy axial, now the preferred conformation due to the larger A-value of the ethyl amino group,⁵⁵ but the hydrogen bond with Lys745 is maintained.

A diverse library of >200 analogs varying the 2-substituent of the pyrimidine was prepared using commercially available primary and secondary amines. The amines were triaged using calculated property filters⁵⁶ in an empirically-driven approach to identify a replacement for the methoxypiperidine moiety which conferred improved metabolic stability and comparable potency. The vast majority of these analogues were substantially less potent than the methoxy piperidine (data not shown) with only one compound showing activity < 30 nM, **24**, Table 5. This analogue was significantly more polar than **15** (LogD lowered by 0.8 units), devoid of an obviously metabolically labile group on the amino pyrimidine, and had improved stability in liver microsomes and hepatocytes.

 Table 5. In vitro potency, LogD, and human in vitro metabolic stability for library analogue 24

 and related compounds.

ACS Paragon Plus Environment

compd	R ³	TMLR Kiapp (nM)	wtEGFR Kiapp (nM)	cLogP	LogD	LLE ^a	HLM/HH ^b Cl _{hep} (mL/min/kg)
24	Me	22	390	2.4	1.5	6.2	5/3
25	Me	658	>2500	3.0	1.9	4.3	7/-
26	Н	196	>440	2.1	1.6	5.1	4/-
27	Me	124	681	2.3	1.6	5.3	4/5
28	Me	196	>1500	3.3	2.2	4.5	5/<1
29	Me	38	1820	2.0	1.4	6.0	5/6
30	Me	52	2100	2.1	1.6	5.9	4/1
31	Me	323	>2500	2.8	2.0	4.5	5/2

^aLLE calculated using measured LogD ^b HLM: human liver microsomes, HH: human hepatocytes. See experimental section for details of assay errors and controls.

The bound conformation of **24** as determined by X-ray showed the N-linked side chain in an "extended" conformation (Figure 2c), but an alternate fit to the electron density showed a "closed" conformation (Figure 2d). In the extended conformation the amide NH₂ is able to hydrogen bond with Asn842 and the carbonyl appears redundant. In the closed conformation the amide carbonyl is positioned within hydrogen-bonding distance with Lys745 and the amide NH₂ makes no discernable interaction. It is likely that the closed conformation of **24** is the preferred small molecule conformation due to an intramolecular hydrogen bond between the carbonyl and NH and the Thorpe-Ingold effect, but both bound conformations may contribute to potency. The S- and O- linked compounds **25** and **26** are likely to exist in the extended ligand conformation in solution due to the absence of a strong intramolecular H-bond and the propensity for O- and S- linked side chains to sit out of plane with the pyrimidine core. Both analogues are less potent than **24** suggesting that the closed conformation predominates in this compound and provides greater potency. Supporting this, docking of **24** in the receptor from its

Journal of Medicinal Chemistry

own X-ray using GLIDE provides a closed binding conformation as the highest scoring result. Competition between the two binding conformations was further illuminated following the serendipitous synthesis (see synthesis section below for details) of 27. This compound is only 3fold less potent than the ring open analogue and cannot adopt the closed binding conformation, but less selective. The X-ray structure (Fig. 2e) showed that the pyrrolidine amide binds analogously to 24 in the open conformation, making a hydrogen bond with Asn859 but not Lys745, in this case in a low energy small molecule conformation. Compound 27 also retained good in vitro stability in human liver microsomes and hepatocytes. As 24 suffered from chemical stability issues (hydrolysis of the amide to acid under acidic conditions, hypothesised to proceed via a cyclic intermediate formed through reaction on the pyrimidine) alkene-linked and methyl sulfone analogues were prepared. The alkenyl analogue 28 shows reduced potency, potentially due to disruption of the ideal bound conformation- the intramolecular hydrogen bond is lost and allylic strain will favor positioning of the amide in the conformation shown in the table. Consistent with the removal of metabolic soft spots and low LogD, 28 shows good in vitro metabolic stability. The sulfone analogue 29 and ether-linked variant 30 both show reasonable potency, good in vitro metabolic stability and low LogD. X-ray structures of the two compounds are shown in Figures 2f and 2g. In both cases one of the sulfone oxygen atoms is able to make a hydrogen bond with Lys745 although the conformation of the linkers is quite different, reflecting the difference in lowest energy ligand conformation. Interestingly, while having equivalent TMLR potency, sulfones 29 and 30 are also in a different position than in the piperidine sulfone analogue 17 (Figure 2h).

Although none of the structurally-diverse methoxy piperidine replacements shown above increased potency, the methoxy piperidine metabolic soft spot was successfully removed with

retention of potency and selectivity over wtEGFR. When tested against a panel of 220 kinases at 1 μ M compounds 17, 29, and 30 retained selectivity compared with 2 whilst 27 was considerably more promiscuous (see Supporting Info Table S1 page S2). The reduced TMLR/wt and kinase selectivity of 27 could possibly be due to the change in interactions within the binding site.

aamnd	RLM ^a Cl _{hep}	RLM ^a Cl _{hep} RH ^b Cl _{hep}		Rat $\operatorname{Cl}_{p}^{c}(\operatorname{Cl}_{u})^{d}$	Calc.	
compu	(mL/min/kg)	(mL/min/kg)	(mg/kg)	(mL/min/kg)	pKa ^e	
17	26	24	0.5	165 (934)	3.6	
24	16	10	0.5	250 (909)	3.5	
29	22	21	1.0	158 (707)	3.4	
30	19	9	0.5	53 (156)	0.8	
31	10	9	0.5	50 (200)	1.3	

Table 6. In vitro and in vivo rat clearance for a selection of analogues.

^a RLM: Rat liver microsomes; ^b RH: rat hepatocytes; ^c Cl_p : plasma clearance; ^d Cl_u : unbound plasma clearance ($Cl_u = Cl_p/F_u$ where F_u is the fraction unbound in plasma); ^e Calculated using ACD Percepta ® (GALAS) using a 2-substituted pyrimidine sub-structure. See experimental section for details of assay errors and controls.

However, in vivo rat PK of five diverse analogues with improved microsomal and hepatocyte stability showed high clearance for those which retained TMLR potency (Table 6), with total clearance in excess of liver blood flow for 17, 24 and 29. Chemical instability due to amide hydrolysis was noted for 24 but the apparent extra-hepatic clearance of 17 and 29 is not so easily explained. Both total and unbound plasma clearance were lower for analogues 30 and 31 which have reduced TMLR potency. It was noted that 30 and 31 have significantly lower calculated pKa of the pyrimidine nitrogen indicative of reduced electron density. The empirical observation that increased in vivo metabolic stability correlates with reduced electron density on the pyrimidine seems logical as the reduced electron density of the heterocycle could slow ring

Journal of Medicinal Chemistry

oxidation as well as glucuronidation of the hinge-binding NH. This trend was shown to some extent in the hepatocyte stability data where **30** and **31** are more stable than **17** and **29**. Based on these findings, principally the in vivo data, fluoro piperidine analogues were conceived in order to retain the potency of the methoxy or hydroxyl piperidine but reduce electron density on the pyrimidine in order to improve metabolic stability.⁵⁷ It has been proposed that equatorial 3-fluoro and 3,3-difluoro substitutions have the greatest effect on piperidine pKa,⁵⁸ and thus, presumably, pyrimidine electron density in the case of our TMLR inhibitors.

Table 7. In vitro potency and physicochemical properties of fluoropiperidine analogues. All analogues are racemic, relative stereochemistry shown.

N、	H N
	Ĭ´] N _{≪∕} N
N / ,≻N	∠ ^N ∖
R°	
	R ^₄ ∕O

36 37 38 39 40 41 42 42	compd	R3	R ⁴	R ⁵	R ⁶	TMLR Ki _{app} (nM)	wtEGFR Ki _{app} (nM)	LogD	LLE ^a	H1975 p- EGFR IC ₅₀ (Prolif.) (µM)	H292 p-EGFR IC ₅₀ (Prolif.) (µM)	Rat Cl _p ^b (Cl _u) ^c (mL/min/kg)
4 3 44 45	2	Me	Me	Η	Η	20	1200	2.3	5.4	0.88 (7.0)		
46 47	32	CH ₂ OH	Me	Η	Η	19	400	2.3	5.4	2.36 (6.5)		
48 49	33	Me	Me	F	Η	2.7	1080	2.3	6.3	0.25 (0.56)	>10	
50 51	34	CH ₂ OH	Me	F	Η	4.3	150	2.1	6.3	0.29 (0.88)	>10	107 (584)
52 53	35	Me	Η	F	Η	13	910	1.5	6.3	1.0 (1.6)		90 (545)
54 55	36	CH ₂ OH	Η	F	Η	16	>0.53	1.6	6.2	2.53 (>10)	>10	151 (382)
56 57 58	37	CH ₂ OH	Me	F	F	7.4	249	2.8	5.3	1.0 (2.38)	>10	
50												

2												
3 4	38	Me	Η	F	F	9.5	>403	2.6	5.4	1.04 (1.7)	>10	
5— 6 7	39	Me	Me	Н	F	44	1840	2.5	4.8			
/ <u>-</u> 8 9_	40	CH ₂ OH	Me	Η	F	57	540	2.1	5.1			

^aLLE calculated using measured LogD; ^b Cl_p : plasma clearance; ^c Cl_u : unbound plasma clearance ($Cl_u = Cl_p/F_u$ where F_u is the fraction unbound in plasma). See experimental section for details of assay errors and controls.

On profiling the fluoro piperidine analogues (data shown in Table 7) it was immediately clear that, aside from any potential impact on PK, both 3,3-di-fluoro (37 and 38) and cis mono-fluoro (33-36) substitution provided a significant increase in potency against TMLR but not wtEGFR in the biochemical, p-EGFR auoto-phosphorylation and cell proliferation assays. Profiling against panel of 220 kinases at 1 µM confirmed that cis-fluoro substitution only increased potency against TMLR with no change in the inhibition of other kinases compared to the des-fluoro analogue: compound 33 inhibited 25 kinases 40-80% and 10 kinases >80% with the same pattern of inhibition as 2 (see Supporting Information page S2). Conversely, trans mono-fluoro (39 and 40) substitution reduced potency. Synthesis of unsubsituted and 3-fluoropiperidine analogues showed that fluorine substitution alone had no effect on potency (data not shown) further demonstrating the synergy of the cis OMe/OH and F substituents. Further analysis revealed that the cis-mono fluoro substitution increased potency without an increase in measured LogD whereas the increase in potency of the di-fluoro analogues was almost certainly lipophilicitydriven. This is illustrated in a plot of pKi vs LogD (Figure 3) where both pairs of cis-mono fluoro piperidine analogues are differentiated.

Figure 3. TMLR pKi vs measured LogD for hydroxyl and methoxy fluoro piperidine analogues. Lines of equal LLE, calculated using measured LogD, shown. Points annotated with compound numbers. Increased LLE is only seen for cis-monofluoro analogues. Green: cis-monofluoro; blue: des-fluoro; yellow: gem-difluoro; orange: trans-monofluoro.

An X-ray structure obtained from soaking diastereomeric mixture **33** with TMLR preferentially yielded crystals of the 3R-4S enantiomer (Figure 4). In this structure the fluorine was in an axial conformation and within a short distance of the methionine gatekeeper as well as Lys745, possibly positively interacting with either or both of these residues due to the ability of fluorine to form polar, hydrophobic or multipolar interactions.⁵⁹ It has been shown that this amphiphilic character can be correlated to the ¹⁹F NMR chemical shift due to the influence of the local environment of fluorine on the character of the C-F bond.⁶⁰ ¹⁹F NMR shows a large dispersion, >300 ppm, depending on the number of oxygen, sulfur, nitrogen and other halogen atoms in the α , β , and γ positions. High shielding (shift > -160 ppm) has been shown to strongly correlate with proximity to NH side-chains in PDB structures.⁶⁰ The hydrogen bond formed by fluorine may well be very weak⁶¹ but it has been postulated that CHF is a better hydrogen bonding group than CF₂.^{62 19}F NMR for the piperidinyl pyrimidines (see Supporting Info page S91) showed that for the hydroxyl piperidines the cis-fluorine is more shielded (electron rich) than the trans-fluorine (¹⁹F δ -200 and -188 ppm respectively). It has been discovered that when

within 3 Å of an oxygen atom in a low energy conformation, fluorine substitution for hydrogen can lead to a lowering, or no increase, in LogD despite the addition of a lipophilic atom.⁶³ Indeed it is the case that there is no significant change in LogD between direct pairs 2 and 33, 32 and 34. The increased shielding observed in the ¹⁹F NMR of the cis-fluoro piperidine is also possible confirmation of the O-F "interaction". Although this effect is not fully understood it has been proposed that fluorine-induced polarization of the proximal oxygen atom could lead to stronger H-bonds involving this atom.⁶⁴ In cis-fluoro hydroxy and methoxy piperidines on our scaffold this polarization would increase the hydrogen bond acceptor ability of the ether/hydroxyl oxygen, strengthening the energy of interaction with Lys745. In trans-fluoro hydroxyl and methoxy piperidines the F...O distance is also <3 Å but the fluorine is positioned equatorially and unable to make optimal lipophilic contacts. Fluorine substitution can also affect piperidine conformation. When positioned on a piperidine ring fluorine prefers to be in the axial conformation,⁶⁵ but this conformational preference has only been studied in the case of protonated piperidines where there can be an H-F hydrogen bond. For un-protonated piperidines steric factors (A 1,3-strain) would still favor the equatorial conformation, albeit marginally. An additional conformational factor is the gauche effect- the orbital interaction between the σ C–H bond and the σ^* C–F bond, hyperconjugation- which is maximized when the C-H and C-F bonds are anti-periplanar. Further discussion of the influence of fluoro substitution is presented below.

Page 25 of 60

Figure 4. Representation of the X-ray structure of **33** (PDB code 5CAQ) showing the interactions of the fluoro methoxy piperidine with key residues Met790 and Lys745. Inter-atom distances indicated by dashed purple lines with values in Å. The fluorine is positioned axially and within 3.5 Å of Met790 and 2.9 Å of the NH of Lys745. The F-O distance is 2.8 Å. **33** was soaked as mixture of enantiomers, the 3R, 4S enantiomer crystallizing preferentially.

Compared to the des-fluoro analogue **15**, no change of rat in vivo clearance was seen with the cis-fluoro hydroxy or fluoro methoxy analogues (**34**: 1 mg/kg IV Cl_p (Cl_u) 107 (584) mL/min/kg; **35**: 5 mg/kg IV Cl (Cl_u) 90 (545) mL/min/kg; **36**: 0.5 mg/kg IV Cl_p (Cl_u) 151 (382) mL/min/kg). Even if the hypothesis of the correlation of lower pyrimidine pKa and electron density were true, the fluorines in **34**, **35** and **36** are axial and so may have a negligible electron withdrawing effect (see above). In the absence of data for compounds in Table 7 it would be assumed that metabolism of **34** is driven by de-methylation, and **35-36** driven by Phase II conjugation, and perhaps this is the case, but in vitro stability data for **34**, **35** and **36** still under-predicted in vivo clearance.⁶⁶ The trans analogues, where the fluorine would be equatorial, were not profiled and

for difluoro compounds the increase in lipophilicity would probably counteract any benefit from reduced electron density.

Due to the TMLR-specific increase in potency without added lipophilicity, the methoxy and hydroxyl cis mono-fluoro piperidine substituents were combined with small changes to the azabenzimidazole 1- and 2- substituents focusing on modifications which would block metabolism of the 2-methyl group and increase lipophilic interactions in the ribose pocket without introducing further metabolic soft spots. Thus, combinations were made with the trifluor-isopropyl group (as in 14) together with methyl, hydroxymethyl and 2-hydroxyethyl groups at the azabenzimidazole 2-position. The rational for making these changes was that the hydroxymethyl 2-substituent was the active metabolite of the 2-methyl compounds and steric bulk was added both to block oxidation and glucuronidation of the hydroxyl compounds. Additionally, the change to trifluor-isopropyl in 14 is LLE neutral- potency and LogD are increased to the same extent. The most potent combination analogues prepared, 41 and 42 (profiled initially as mixtures of diastereomers, cis OH/F and OMe/F) are shown in Table 8. All possible stereoisomers of 41 and 42 were prepared but none was more potent (data not shown). Compared to earlier direct analogues (42 with 36; 41 with 34) a ~ 10 -fold increase in cellular potency and 3.5 to 6.5 -fold increase in affinity is apparent, improvements which come without any significant increase in measured LogD (~0.2 units), whereas cLogP is increased ~0.6 units. The increase in potency against TMLR was shown to be accompanied by retention of kinase selectivity: when profiled against a panel of 308 kinases at 1 µM compounds 42a and 42b (the individual diastereomers of 42) showed >80% inhibition of only 14 individual kinases (see Supporting Information table S2 page S3). The analogues 41 and 42 were also tested against the isolated TMdel enzyme and in a TMdel expressing cell line: erlotinib-resistant PC9 cells (PC9

Journal of Medicinal Chemistry

(ER)). These cells are grown in the presence of a high concentration of erlotinib in order to cause and maintain the T790M resistance mutation. Potency in the biochemical assay against the TMdel enzyme is significantly weaker than TMLR, a trend which was not evident in earlier analogues.³⁹ However, cell potency, which is obviously more important, is actually better against PC9(ER) than H1975. Increased proliferation potency in the PC9(ER) cells could be due to greater sensitivity to inhibition of the EGFR pathway, but this should not affect pEGFR EC₅₀. The low cell drop-off from TMdel Ki to PC9(ER) pEGFR EC₅₀, given the low K_M[ATP] of this enzyme, is curious and is perhaps related to the protein construct used in the biochemical assay.

Table 8. Profiles of fluoro-hydroxy and fluoro-methoxy combination analogues.

(Piperidine stereochemistry relative, other stereochemistry absolute)

	41 ($R^4 = Me$)	42 ($R^4 = H$)
TMLR Ki _{app} (nM)	1.1	2.5
TMdel Ki _{app} (nM)	7.0	6.0
wt EGFR Ki _{app} (nM)	122	313
LogD	2.2	1.8
pEGFR H1975 IC50 (nM)	21	261
H1975 prolif. EC ₅₀ (nM)	112	900
pEGFR PC9(ER) IC50 (nM)	27	81
PC9(ER) prolif. EC ₅₀ (nM)	90	170
pEGFR H292 IC50 (nM)	>10,000	>10,000

>10,000
11/73/18/19
/13/68/4/19
71 (348)
0.71, 3.5
29 ^d

^a m: mouse; r: rat, d: dog, c: cynomolgus monkey h: human; ^b Cl_p : plasma clearance, Cl_u : unbound plasma clearance (Cl_p/F_u where F_u is the fraction unbound in plasma); ^c formulated in 10% DMSO/10% Cremophor EL in saline; ^d formulated in 10% ethanol/60% PEG100/30% SQ water. See experimental section for details of assay errors and controls.

Compared with published covalent and noncovalent TMLR inhibitors, compounds **41** and **42** show substantially increased selectivity in cell p-EGFR and proliferation assays (see Supporting Information Table S5 page S11). Compound **41** is more potent than AP26113, AZD9291 and WZ4002 in the p-EGFR assay, but ~10-fold less potent than the covalent analogues in proliferation assays reflecting the different mechanism of action.

The individual diastereoisomers making up **41** were prepared and profiled and found to have essentially identical in vitro potency (see Supporting Information Table S4 page S11). X-ray structures with TMLR showed that the fluorine of **41a** (3R, 4S) is in the same position as with earlier analogue **33** but in the diastereoisomer **41b** (3S, 4R) (Figure 5a and 5b) the position is transposed. Here the fluorine is still within close proximity of the piperidine ether oxygen but not the catalytic lysine or the sulfur of Met790. Instead, the fluorine is within 3.3 Å of Val726 and 3.6 Å of the carbon atom of the methyl of Met790, possibly making lipophilic contacts with these residues. These structures also revealed the interactions of the azabenzimidazole 1- and 2-substituents. The hydroxyl group at the azabenzimidazole 2-position is able to make a water-

Journal of Medicinal Chemistry

mediated interaction with Asp800 and the backbone NH of Cys797. One of the fluorines of the trifluoromethyl has the appropriate vector and distance relative to the base of the carbonyl of Leu718 to make a positive interaction⁶⁷ and the trifluoromethyl group itself fills the lipophilic ribose pocket. Additionally, the trifluoromethyl is within contact distance (3.2 Å) of the piperidine, potentially making the bound conformation of the molecule more favorable. A structure of **41a** in wtEGFR was also obtained (Figure 6). Despite the >100-fold lower potency against the wt enzyme, the binding mode and position of all residues (except the gatekeeper) is essentially identical indicating that the potency difference arises from the difference in interactions with the gatekeeper residues.

For the diastereomeric mixture **42**¹⁹F NMR shifts of -72 ppm (CF₃) and -198 ppm (CHF) are seen consistent with a de-shielded CF₃ fluorine environment and a shielded piperidine CHF, correlated in the literature with hydrophobic/multipolar and polar interactions respectively. However, the hypothesis that the observed potency increase is due to hydrogen bonding of the fluorine does not fit well with the rest of the data. The X-ray data, the equivalent potency of the two diastereomeric pairs **41a/41b** and **42a/42b** (vide infra) and the *specific* increase in TMLR potency over wtEGFR suggests that fluoro substitution increases potency by enhancing the hydrogen-bonding capability of the ether oxygen and, more importantly, making lipophilic contacts with the methionine gatekeeper and other neighboring lipophilic residues.

Figure 5. Representations of X-ray structure of **41b** in complex with TMLR (PDB accession code 5CAU). Inter-atom distances shown by purple dashed lines, values in Å; hydrogen bonds shown by gray dashed lines, some residues removed for clarity. a) Interactions of the 3S, 4R piperidine with neighboring residues Met790, Lys745 and Val726; b) image showing the multipolar interaction of the CF₃ group with the base of the carbonyl of Leu718 and the close distance (3.5 Å) with the piperidine ring.

Figure 6. Representation of the X-ray structure of **41a** in TMLR and wtEGFR (PDB codes 5CAV and 5CAS). The TMLR structure and ligand are shown in green, wtEGFR and ligand in light gray.

Journal of Medicinal Chemistry

The in vitro metabolic stability in rat liver microsomes and hepatocytes of the hydroxyl analogue **42** was superior to the methoxy analogue **41** but in vivo both compounds have moderate to high clearance and near identical unbound clearance, with **42** appearing as the major identified metabolite of **41** (see Table 8). Despite lower potency, the hydroxyl analogue **42** was progressed preferentially due to higher human hepatocyte stability, increased solubility and the removal of complication of an active metabolite with the methoxy analogue (i.e. **41**). Since the in vitro liver microsome metabolic stability data is in line with in vivo clearance observed in dog and cynomolgus monkey, (see Supporting Information page S10), low to moderate clearance of **42** in human was predicted based on IVIVC. Similar results were obtained using allometric scaling.⁶⁸ Due to the identical profiles of individual isomers (see Supporting Information pages S5 and S10) the 1:1 diastereomeric mixture **42** was profiled in vivo using the H1975 xenograft model.

Oral administration of 300 mg/kg daily for 3 days was sufficient to suppress EGFR phosphorylation (>90% inhibition)⁶⁹ as well as phosphorylation of the downstream targets ERK (>90% inhibition) and AKT (>65% inhibition) for 8 hours (Fig. 7). The in vivo EC₅₀ for inhibition of pERK and pAKT was estimated at ~0.3 μ M and ~0.5 μ M free respectively which is in line with in vitro data. Due to supra-proportional exposure between 100 and 300 mg/kg, when **42** was administered at 100 mg/kg daily much weaker pathway suppression was evident. Nevertheless potent inhibition of receptor phosphorylation, ERK and AKT was achieved at early time points (Fig 7).

Figure 7. Compound **42** was administered orally (PO) to H1975 tumor-bearing mice once a day for 3 days with either 100 mg/kg or 300 mg/kg respectively. Tumors were collected at indicated times (post last dose) and phosphorylation of EGFR, ERK and AKT was determined using commercially available MSD assays. Lines on the free concentration plot show the in vitro H1975 p-EGFR IC₅₀ and IC₉₀. Error bars represent mean \pm SD. Plasma concentrations of **42** were measured using a liquid chromatography-tandem mass spectrometry assay and free concentration was calculated using Fu of 0.207.

These data demonstrate that a noncovalent reversible T790M double-mutant selective compound has the potential to provide a substantial benefit to patients harboring erlotinib or gefitinib resistant tumors. However, given the clinical efficacy without wtEGFR inhibition associated side-effects seen with 3rd generation covalent compounds the clinical use of highly-selective, reversible T790M double mutant EGFR inhibitors should be supported by further preclinical evidence. For example: demonstration that increased wt/TMLR selectivity window

translates into improved therapeutic index, examination of resistance mechanisms and potency against tumors expressing the C797S mutation.

CONCLUSION

We have shown how a strategy focusing on the optimization of potency in the context of measured LogD whilst mitigating metabolic stability issues identified in vitro and in vivo has been applied to the optimization of a reversible, T790M selective, lead compound. This focused optimization strategy helped avoid pitfalls of low solubility and reduced selectivity often encountered in lead optimization. The progress from optimization of the first HTS hit to early lead **1** (described in our previous paper) to breakthrough compound **33** to optimized compound **42** can be traced through consistent increases in LLE (HTS hit: 2.6; **33**: 6.3; **42**: 7.1).

The key transformation- cis-fluoro substitution on the 4-hydroxy and methoxy piperidine- led to a surprisingly specific increase in TMLR biochemical and cellular potency without any increase in LogD. The reasons for this increase in potency are probably multifactorial but the data are most consistent the axial fluorine interacting with the methionine gatekeeper and other neighboring residues. Further optimization through modification of the azabenzimidazole substituent led to compounds with low nM enzyme potency, again with minimal LogD increase, >100-fold selectivity for the T790M mutants and cell potency in the low μ M range. Following this, a diastereomeric pair of compounds showed oral single agent activity in vivo suppressing the EGFR pathway >90% in a TMLR-driven H1975 xenograft model.

As well as demonstrating the potential future utility of reversible noncovalent T790M-selective inhibitors in treating erlotinib and gefitinib resistant cancer patients, this work highlights a number of aspects of medicinal chemistry doctrine: the structural similarity of leads and

optimized compounds, the utility of fluorine in the optimization of small molecule drugs, and the judicious application of compound quality metrics as an aid to interpretation of SAR.

SYNTHESIS

The preparation of *N*-substituted aza-benzimidazole analogues 1-10, 12-15, 18, 26 and 32 was carried out as outlined in Scheme 1. Regiospecific S_NAr , followed by reduction and cyclisation with trimethyl orthoformate, afforded azabenzimidazole template 46. A final Buchwald-Hartwig coupling furnished targets 1-4, 6-7, 10, 12-14 and 18. Chiral resolution of racemate 7 afforded ent-8 and ent-9. For example 5, Table 1, the RHS unit was installed on intermediate 44 via Buchwald-Hartwig coupling, followed by reduction and subsequent cyclisation to generate the final target (sequence 49-54-5). Variation of R³ was facilitated by condensation of 54 with the appropriate orthoester derivative (15 and 32).

Scheme 1: Synthetic route for azabenzimidazole *N*-substituent analogues **1-10**, **12-15**, **18**, **26** and **32**. R groups as defined in Tables 1, 2, 3, 5 and 7 unless stated.^{*a*}

(c)

(j)

 $R^1 = H$

46

(e)

48/50/51

R1 = SEM 47

(d)

(f)

(g)

 R^1

ŇΗ

NH₂

С

Ν

45

(b)

(a)

(i)

H₂N

HN.

 \mathbf{R}^{1}

120 °C, 2 h (6%); (iv) For **26** - 2,2-dimethylpropane-1,3-diol **51**, XantPhos Pd₂(dba)₃.CHCl₃ Cs₂CO₃, 1,4-dioxane, 100 °C, 1 h (55%); (f) **52**, PDC, DMF, rt, 24 h (19%); (g) **53**, CDI, NH4OH, DMF, rt, 18 h (20%); (h) 44e, 2-(4-methoxypiperidin-1-yl)pyrimidin-4-ylamine 48. XPhos, Pd₂(dba)₃, Cs₂CO₃, 1,4-dioxane, 100 °C, 3 h (72%); (i) **49e**, H₂, Pd/C (10% w/w), EtOAc/MeOH, rt, 18 h (92%); (j) 54e, (MeO)₃CH, HCO₂H, 100 °C, 1 h (27%); (k) (i) For $R^3 =$ Me 15 – 54: MeC(OEt)₃, HCO₂H, μ W, 220 °C, 5.5 h (90%); (ii) For R³ = CH₂OH 32: (i) 54, 2-chloro-1,1,1-trimethoxyethane, p-TSA, 100 °C, 1 h (86%); (ii) 55e, KOAc, DMF, 100 °C, 45 min (52%); (1) Chiral resolution of 7, ChiralPak IA column (20 mm x 250 mm), 10% EtOH, 10% TBME and 0.5% DEA in heptane (isocratic), flow rate 18 ml/min (8, ent. 1 84%, >99% ee; 9, ent. 2 78%, 93% ee).

In order to fully probe the SAR, and facilitate diversification at the pyrimidine 2-substituent, late stage intermediates **64/65** were targeted as outlined in Scheme 2. Bromination of **56**, followed by regiospecific S_NAr displacement, reduction and cyclisation with the requisite orthoester/acid chloride derivative gave **60-62**. A final Buchwald-Hartwig coupling with 2-chloropyrimidin-4-ylamine afforded key intermediates **64/65**. For **62**, wherein $R = CH_2OH$, this intermediate was further derivatised to the corresponding THP protected analogue **63** prior to coupling. Direct S_NAr displacement of the chloride in **64/65** with appropriately functionalised primary/secondary amines, primary alcohols or Pd-mediated couplings with the requisite vinyl boronate were then effected to afford target compounds **16-17**, **19-24**, **27-31** and **33-40** as outlined in Scheme 3. Alternatively, as revealed in Scheme 2, the intact pyrimidinyl unit could be installed directly via a Pd-catalysed arylation and this was the strategy adopted for compounds **11** (Table 1) and **25**.

Scheme 2: Synthetic route to key intermediate 64/65, trifluoroethyl derivative 11 and acyclic analogue 25. R groups as defined in Tables 1, 2, 3, 5 and 7.^{*a*}

^{*a*}(a) **56**, POBr₃, CH₃CN, 80 °C, 2 h (41%); (b) **57**, ^{*i*}PrNH₂, THF, rt, 1 h (quant.); **57**, CF₃CH₂NH₂, THF, rt, 18 h, then 35 °C, 18 h (79%); (c) **59e**, **58**, Fe, EtOH/AcOH, 80 °C, 4 h (R¹ = ^{*i*}Pr (94%)); **59h**, **58**, Fe, EtOH/AcOH, rt, 18 h (R¹ = CF₃CH₂ (94%)); (d) For **60h**, **59h**, (MeO)₃CH, HCO₂H, 110 °C, 18 h (54%); For **61e** - (i) **59e**, (EtO)₃CMe, AcOH, 80 °C, 24 h (88%), (ii) K₂CO₃, DMF, 100 °C, 24 h (47%); For **62e** - (i) **59e**, MeCO₂CH₂COCl, Et₃N, DCM, 0 °C, 1 h (67%), (ii) K₂CO₃, DMF, 120 °C, 24 h (57%); (e) **62e**, 3,4-dihydro-2H-pyran, p-TSA, THF, 60 °C, 12 h (51%); (f) For **64** - **61e**, 2-chloropyrimidin-4-ylamine, XantPhos, Pd₂(dba)₃, CHCl₃, Cs₂CO₃, 1,4-dioxane, 100 °C, 4 h (26%); For **65** - **63e**, 2-chloropyrimidin-4-ylamine, XantPhos, Pd₂(dba)₃, Cs₂CO₃, 1,4-dioxane, 100 °C, 1 h (91%) (g) **61e**, 3-(4-aminopyrimidin-2-ylsulfanyl)-2,2-dimethylpropionic acid ethyl ester **66**, CuI, *trans-N,N*⁻dimethylcyclohexane-1,2-diamine, Cs₂CO₃, 1,4-dioxane, 90 °C 1.5 h (30%); (h) **67**, LiOH, THF/H₂O, rt, 4 h then, 50 °C, 20 h then, μW, 100 °C, 4 h (quant.); (i) **68**, NH₄Cl, HATU, DMAP (cat.), DIPEA, DMF, rt, 3 h (46% over 2 steps); (j) **60h**, 2-(4-methoxypiperidin-1-yl)pyrimidin-4-ylamine **48**, XPhos, Pd₂(dba)₃, Cs₂CO₃, 120 °C, 18 h (22%).

Scheme 3: Synthetic route to piperidine and related analogues 16-17, 19-24, 27-31 and 33-40. R groups as defined in Tables 3, 4, 5 and 7. Analogues 33-40 are racemic, relative stereochemistry as defined in Table 3.^{*a*}

^{*a*}(a) **64**, **69a** ($R^1 = OH$)/**69b** ($R^1 = SO_2Me$), Et₃N, IPA, μ W, 150 °C, 0.5-0.75 h (29-80%); (b) **64**, **70a** ($R^1 = CH_2NMe_2$)/**70b** ($R^1 = CH_2OMe$)/**70c** ($R^1 = CH_2OH$)/**70d** ($R^1 = CH_2CH_2OH$)/**70e** ($R^1 = CH_2CH_2N_3$), Et₃N, IPA, μ W, 150 °C, 1 h (14-72%); (c) For **71** to **23**, H₂, Pd/C, IMS, rt, 16 h (68%); (d) (i) For **74 - 64**, **72**, Pd(dppf)Cl₂.DCM, 2M Na₂CO₃, DME, 100 °C, 16 h (42%); (ii) For **31 - 64**, **73**, Pd(dppf)Cl₂.DCM, 2M Na₂CO₃, DME, 100 °C, 64 h (79%); (e) (i) **74**, LiOH.H₂O, dioxane, μ W, 100 °C, 1 h (quant.); (f) **75**, NH₄Cl, HATU, DMAP, DIPEA, DMF, rt, 1 h (33%); (g) (i) **76** (a $R^4 = Me$, $R^5 = F$, $R^6 = H$; b $R^4 = H$, $R^5 = F$, $R^6 = H$; c $R^4 = Me$, $R^5 = F$, $R^6 = F$; $R^6 = F$, $R^6 = F$, R

°C, 30-60 min. (33, 35, 38, 39, 42-70%); (ii) 1.25 M HCl in MeOH, rt, 1 h (34, 36, 37, 40, 36-

60% over 2 steps); (h) 64, 77, K₂CO₃, IPA, μ W, 250 °C, 4.5 h (52%); (i) 78 or 79 or 80, DIPEA, IPA, μ W, 150 °C, 1-10 h (50%-Quant.); For 81 to 24 - (j) 81, 6M HCl, μ W, 120 °C, 1 h (97%); (k) 82, NH₄Cl, HATU, ⁱPr₂NEt, DMF, rt, 2.5 h (41%); for 83 to 27 - (j) 83, 3M HCl, μ W, 110 °C, 1 h (92% over 2 steps from 64); (k) 84, NH₄Cl, HATU, ⁱPr₂NEt, DMF, rt, 1.5 h (70%). Fluoropiperidine analogues 41 and 42 were identified and initially profiled as a mixture of diastereoisomers (cis-rel-OMe/F and OH/F respectively). The azabenzimidazole intermediate 86 was prepared from (S)-45I via cyclisation with the corresponding imidate generated *in situ* from (R)-lactamide/Meerwein's salt followed by protection of the secondary alcohol. A subsequent Buchwald-Hartwig coupling with (±)-87/(±)-88, followed by THP deprotection, afforded cis-rel-41 and 42. The individual diastereoisomers 41a/b and 42a/b were in turn prepared by performing the latter coupling with the appropriate homochiral piperidinyl-pyrimidine unit.

Scheme 4: Synthetic route to fluoropiperidine analogues^{*a*}

^a(a) (i) (R)-Lactamide, $Et_3O^+BF_4^-$, THF, rt, 2.0 h; (ii) (S)-451, EtOH, 75 °C, 3 h (65% over 2 steps); (iii) 3,4-dihydro-2H-pyran, p-TSA, THF, 65 °C, 16 h (87%); (b) (i) For 89 -**86**, (\pm) -cis-2-(3-fluoro-4-methoxypiperidin-1-yl)pyrimidin-4-ylamine **87**, XPhos, Pd₂(dba)₃, Cs_2CO_3 , 1,4-dioxane, 100 °C, 4 h (70%); (ii) For **90 - 86**, (±)-cis-1-(4-aminopyrimidin-2-yl)-3fluoropiperidin-4-ol 88, XPhos, Pd₂(dba)₃, Cs₂CO₃, 110 °C, 5 h (49%); (iii) For 89a (-)-2-((3R,4S)-3-fluoro-4-methoxypiperidin-1-yl)pyrimidin-4-ylamine 87a, 86. XPhos. Pd₂(dba)₃.CHCl₃, Cs₂CO₃, 1,4-dioxane, 100 °C, 1.5 h (53%); (iv) For **89b** - **86**, (+)-2-((3S,4R)-3fluoro-4-methoxypiperidin-1-yl)pyrimidin-4-ylamine 87b, XPhos, Pd₂(dba)₃.CHCl₃, Cs₂CO₃, 1,4-dioxane, 100 °C, 1.5 h (48%); (v) For **90a - 86**, (-)-(3R,4S)-1-(4-aminopyrimidin-2-yl)-3fluoropiperidin-4-ol 88a, XPhos, Pd₂(dba)₃.CHCl₃, Cs₂CO₃, 1,4-dioxane, 100 °C, 1 h (55%); (vi) For **90b** - **86**, (+)-(3S,4R)-1-(4-aminopyrimidin-2-yl)-3-fluoropiperidin-4-ol **88b**, XPhos, Pd₂(dba)₃.CHCl₃, Cs₂CO₃, 1,4-dioxane, 100 °C, 1 h (44%); (c) For 41a/b, 42, 42a/b - 89a/b, 90, **90a/b**, 1.25 M HCl in MeOH, rt, 1-2 h (32-64%); for **41 - 89**, 4M HCl in dioxane, rt, 12 h (73%).

ASSOCIATED CONTENT

Supporting information

Kinase profiling data for compounds **2**, **29**, **30**, **17**, **27**, **33**, **42a** and **42b**; tabulated kinase panel and full profiles of compounds **42a** and **42b**; crystallographic data collection and refinement

statistics; molecular modeling methods; in vivo xenograft pharmacodynamic studies materials and methods; experimental details for solubility experiments; experimental details for the preparation of all compounds; experimental conditions for LC-MS analyses; fluorine NMR spectra; NMR spectra for key compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

ACCESSION CODES

TMLR/1: 5C8K; TMLR/17: 5C8M; TMLR/23: 5C8N; TMLR/24: 5CAL; TMLR/27: 5CAN; TMLR/29: 5CAO; TMLR/30: 5CAP; TMLR/33: 5CAQ; wtEGFR/41a: 5CAV; TMLR/41a: 5CAS; TMLR/41b: 5CAU.

AUTHOR INFORMATION

Corresponding Author

*E-mail: Robert.Heald@crl.com; Phone: +441279 645645

Notes

The authors declare no competing financial interest.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT

The authors thank Crystallographic Consulting LLC and Shamrock Structures LLC for diffraction data collection services and Ping Wu for assistance with some crystals. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. The

Berkeley Center for Structural Biology is supported in part by the National Institutes of Health. National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. The Advanced Photon Source (APS), an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Use of LS-CAT Sector 21 was supported by the Michigan Economic Development Corp. and the Michigan Technology Tri-Corridor (Grant 085P1000817). Use of the IMCA-CAT beamline 17-ID at APS was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute. Use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). Research described in this paper was performed at the Canadian Light Source (CLS), which is funded by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. The authors thank the analytics group at Argenta for SFC separation of stereoisomers, ee determination and assignment of NMR spectra. The authors thank Baiwei Lin for conducting LogD experiments, and thank Savita Ubhayakar, Xiaorong Liang, Ning Liu, Quynh Ho, and Kirsten Messick for in vitro and in vivo PK and bioanalytical support.

ABBREVIATIONS

oxidase: BrettPhos, 2-(Dicyclohexylphosphino)3,6-dimethoxy-2',4',6'-AO, aldehyde triisopropyl-1,1'-biphenyl; CDI, 1,1'-carbonyldiimidazole; Clhep, predicted hepatic clearance; Cl_p, plasma clearance; Cl_u, free clearance; DIPEA, N,N-diisopropylethylamine; EGFR, epidermal growth factor receptor; wtEGFR, wild-type epidermal growth factor receptor; HATU, 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate; HH, human hepatocyte; HLM, human liver microsome; IP, intraperitoneally; IPA, isopropanol; IVIVC, in vitro in vivo correlation; LLE, lipophilic ligand efficiency; MDCK, Madin-Darby canine kidney; NSCLC, non-small cell lung cancer; Pd₂(dba)₃, tris(dibenzylideneacetone)dipalladium(0); RLM, rat liver microsome; RH, rat hepatocyte; SD, standard deviation; p-TSA, p-Toluenesulfonic acid monohydrate; SFC, supercritical fluid chromatography; TKI, tyrosine kinase inhibitor; TMdel, epidermal growth factor receptor (T790M/del746-750); TMLR, epidermal growth factor receptor (T790M/L858R); UPLC, ultra performance liquid chromatography; XO, xanthine oxidase; XPhos, 2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl.

EXPERIMENTAL SECTION

Synthesis. General methods: ¹H NMR spectra were recorded at ambient temperature using either a Varian Unity Inova (400MHz) spectrometer with a triple resonance 5mm probe, an Avance III (300 MHz) spectrometer or a Bruker Ultrashield (400 MHz or 500 MHz) spectrometer. Chemical shifts are expressed in ppm relative to tetramethylsilane. The following abbreviations have been used: br = broad signal, s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, m = multiplet. Microwave experiments were carried out using a CEM Discover, Smith Synthesiser or a Biotage Initiator 60^{TM} , which uses a single-mode resonator and

dynamic field tuning, both of which give reproducibility and control. Temperatures from 40-250°C can be achieved and pressures of up to 30 bar can be reached. HPLC/UPLC - Mass Spectrometry experiments to determine retention times and associated mass ions were performed using various methods which are fully described in the Supporting Information. All final compounds were assessed for purity by UPLC and found to be \geq 95% purity. Diastereomeric and enantiomeric purity of final compounds was assessed by UPLC and SFC respectively and found to be \geq 95% de and \geq 95% ee.

(3*R*,4*S*)-3-Fluoro-1-{4-[2-((*R*)-1-hydroxyethyl)-1-((*S*)-2,2,2-trifluoro-1-methylethyl)-1*H*imidazo[4,5 -*c*]pyridin-6-ylamino]pyrimidin-2-yl}piperidin-4-ol (42a) (i) (2-Chloro-5nitropyridin-4-yl)-((*S*)-2,2,2-trifluoro-1-methylethyl)amine (44l) 2,4-Dichloro-5nitropyridine (11 g, 56.9 mmol), (*S*)-trifluoromethyl-2-aminopropane (9 g, 79.8 mmol), triethylamine (15.9 mL, 114 mmol) and THF (150 mL) was sealed in a stainless steel pressure vessel and heated at 110°C for 2.5 d. The reaction mixture was diluted with water (~200 mL) and extracted with EtOAc (3 × 100 mL). The combined organic fractions were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The resultant residue was purified by flash column chromatography (cyclohexane to EtOAc, 0-50%, gradient elution) to afford the title compound as a dark orange oil (11.9 g, 77%). LCMS (ESI): $[M+H]^+ = 270$; ¹H NMR (CDCl₃): δ 9.08 (1H, s), 8.24 (1H, br s), 6.85 (1H, s), 4.31-4.17 (1H, m), 1.58 (3H, d, J = 6.7 Hz).

(ii) 6-Chloro-N*4*-((S)-2,2,2-trifluoro-1-methylethyl)pyridine-3,4-diamine (45l) To a solution of (2-chloro-5-nitropyridin-4-yl)-((S)-2,2,2-trifluoro-1-methylethyl)amine 44l (24 g, 89.0 mmol), acetic acid (24 mL) and water (12 mL) in IMS (250 mL) cooled to \sim 5°C was added iron powder (29.9 g, 0.53 mol) and the reaction mixture stirred at 5 °C to rt for 2 h (a slight exotherm was observed). The reaction mixture was diluted with EtOAc (\sim 200 mL) and

Journal of Medicinal Chemistry

saturated aq. NaHCO₃ added until pH=8. The resultant slurry was filtered through celite and the solids thoroughly washed with EtOAc. The aqueous fraction was extracted with EtOAc (3×100 mL). The combined organic fractions were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The resultant residue was purified by flash column chromatography (cyclohexane to EtOAc 0-100%, gradient elution) to give the title compound as a dark orange oil which solidified on standing (17.8 g, 83%). LCMS (ESI): [M+H]⁺ = 240.0; ¹H NMR (CDCl₃): δ 7.74 (1H, s), 6.55 (1H, s), 4.47 (1H, br s), 4.09-3.97 (1H, m), 3.05 (2H, br s), 1.46 (3H, d, J = 6.7 Hz).

(iii) (R)-1-[(S)-6-Chloro-1-(2,2,2-trifluoro-1-methylethyl)-1H-imidazo[4,5-c]pyridin-2-yl]ethanol (85) To a suspension of (R)-lactamide (9.86 g, 110.7 mmol) in DCM (300 mL) was added triethyloxonium tetrafluoroborate (23.2 g, 121.8 mmol) and the reaction mixture stirred at rt for 2 h, during which the solids dissolved. The reaction mixture was concentrated *in vacuo* and the resultant residue dissolved in EtOH (400 mL). 6-Chloro-N*4*-((S)-2,2,2-trifluoro-1methyl-ethyl)-pyridine-3,4-diamine (17.69 g, 73.8 mmol) was added and the reaction mixture heated at 75 °C for 3 h. The reaction mixture was concentrated *in vacuo* to ~1/3 volume and diluted with EtOAc (300 mL). The solution was washed with water, then brine, dried (MgSO₄) and concentrated *in vacuo*. The resultant residue was purified by flash column chromatography (cyclohexane to EtOAc 0-100%, gradient elution) to give the title compound as a pale orange solid (14.08 g, 65%). LCMS (ESI): $[M+H]^+ = 294.0$; ¹H NMR (CDCl₃): δ 8.76 (1H, s), 7.48 (1H, s), 5.73-5.51 (1H, m), 5.22 (1H, quin, J = 6.52 Hz), 3.27 (1H, br s), 1.83 (3H, d, J = 7.2 Hz), 1.76 (3H, d, J = 6.8 Hz).

(iv) 6-Chloro-2-[(R)-1-(tetrahydropyran-2-yloxy)ethyl]-1-(2,2,2-trifluoro-1-methylethyl)-1H-imidazo[4,5-c]pyridine (86) To a solution of (R)-1-[(S)-6-chloro-1-(2,2,2-trifluoro-1methylethyl)-1H-imidazo[4,5-c]pyridin-2-yl]ethanol 85 (14.08 g, 47.9 mmol) in THF (200 mL)

was added 3,4-dihydro-2H-pyran (35 mL, 0.38 mol) and p-toluenesulfonic acid (911 mg, 4.8 mmol) and the reaction mixture heated at 65 °C for 16 h. The reaction mixture was diluted with saturated. aq. NaHCO₃ and the product extracted with EtOAc (3×80 mL). The combined organic fractions were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The resultant residue was purified by flash column chromatography (cyclohexane to EtOAc 0-100%, gradient elution) to give the title compound as a ~1:1 mix of diastereoisomers (15.7 g, 87%). LCMS (ESI): [M+H]⁺ 378.0; ¹H NMR (CDCl₃): δ 8.84 (1H, s), 8.82 (0.8 H, s), 7.48 (1.8 H, s), 6.02 (1H, sept, J = 7.7 Hz), 5.67 (0.8 H, sept, 7.6 Hz), 5.36-5.21 (1.8 H, m), 4.73 (1H, dd, J = 7.9, 2.6 Hz), 4.61-4.53 (0.8H, m), 3.98-3.78 (1.8H, m), 3.58-3.46 (1.8H, m), 1.89-1.67 (12.6 H, m), 1.61-1.36 (9 H, m).

(v) (-)-(3R,4S)-1-(4-Aminopyrimidin-2-yl)-3-fluoropiperidin-4-ol (88a) (-)-(3R,4S)-3-Fluoro-4-hydroxypiperidine-1-carboxylic acid *tert*-butyl ester (WO2011/36576) (500 mg, 2.27 mmol), was dissolved in HCl in dioxane (4 M, 5 mL) and the reaction stirred at 40 °C for 90 min. The reaction mixture was concentrated *in vacuo*. The resultant residue was suspended in IPA (5 mL) and 2-chloro-pyrimidin-4-ylamine (294 mg, 2.27 mmol) and triethylamine (0.95 mL, 6.82 mmol) were added. The reaction mixture was heated in a sealed reaction vessel at 130 °C for 16 h and cooled to room temperature. The reaction was concentrated *in vacuo* and subjected to flash column chromatography (EtOAc/MeOH 100:0 to 90:10, gradient elution) to afford the title compound (383 mg, 79%). LCMS (ESI): $[M+H]^+ = 213; [\alpha]_D -6.8 (c = 3.5, methanol).$

(vi)(3R,4S)-3-Fluoro-1-{4-[2-[(R)-1-(tetrahydropyran-2-yloxy)ethyl]-1-((S)-2,2,2-trifluoro-1-methylethyl)-1H-imidazo[4,5-c]pyridin-6-ylamino]pyrimidin-2-yl}piperidin-4-ol(90a)6-Chloro-2-[(R)-1-(tetrahydropyran-2-yloxy)ethyl]-1-((S)-2,2,2-trifluoro-1-

methylethyl)-1*H*-imidazo[4,5 -*c*]pyridine **86** (200 mg, 0.53 mmol), (-)-(3*R*,4*S*)-1-(4aminopyrimidin-2-yl)-3-fluoropiperidin-4-ol 88a (112)0.53 mmol), 2mg, dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos, 50 mg, 0.119 mmol), Pd₂(dba)₃ (27 mg, 0.03 mmol) and $C_{s_2}CO_3$ (345 mg, 1.06 mmol) were suspended in dioxane (5 mL) and the resultant mixture degassed with argon. The reaction mixture was heated at 100 °C for 1 h. The reaction mixture was diluted with water and the product extracted with EtOAc (3×15 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The resultant residue was purified by flash column chromatography on silica (EtOAc/MeOH 100:0 to 90:10, gradient elution) to yield the title compound (160 mg, 55%) LCMS (ESI): $[M+H]^+ = 554.0$.

(vii) (3*R*,4*S*)-3-Fluoro-1-{4-[2-((*R*)-1-hydroxyethyl)-1-((*S*)-2,2,2-trifluoro-1-methylethyl)-1*H*-imidazo[4,5 -*c*]pyridin-6-ylamino]pyrimidin-2-yl}piperidin-4-ol (42a) (3*R*,4*S*)-3-Fluoro-

1-{4-[2-[(*R*)-1-(tetrahydropyran-2-yloxy)ethyl]-1-((*S*)-2,2,2-trifluoro-1-methylethyl)-1*H*imidazo[4,5-*c*]pyridin-6-ylamino]pyrimidin-2-yl}piperidin-4-ol **90a** (160 mg, 0.29 mmol) was dissolved in HCl in MeOH (1.25 M, 5 mL) and the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with saturated aq. NaHCO₃ and the product extracted with EtOAc (3×15 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The resultant residue was subjected to preparative HPLC to yield the title compound as a white solid (53 mg, 39%). LCMS (ESI): rt 2.28 min, [M+H]⁺ 470.0, Method = 3; ¹H NMR 400MHz δ (d₆-DMSO): 9.80 (1H, br s), 8.63 (1H, s), 8.32 (1H, br s), 7.93 (1H, d, J = 5.9 Hz), 6.44 (1H, br s), 5.91 (1H, d, J = 6.2 Hz), 5.90-5.78 (1H, m), 5.07 (1H, d, J = 5.3), 4.98 (1H, quin, J = 6.6 Hz), 4.69-4.65 (0.5H,

(3*S*,4*R*)-3-Fluoro-1-{4-[2-((*R*)-1-hydroxyethyl)-1-((*S*)-2,2,2-trifluoro-1-methylethyl)-1*H*imidazo[4,5 -*c*]pyridin-6-ylamino]pyrimidin-2-yl}piperidin-4-ol (42b)

(i) (+)-(3*S*,4*R*)-1-(4-Aminopyrimidin-2-yl)-3-fluoropiperidin-4-ol (88b) (+)-(3*S*,4*R*)-3fluoro-4-hydroxypiperidine-1-carboxylic acid *tert*-butyl ester (500 mg, 2.27 mmol), was dissolved in HCl in dioxane (4 M, 5 mL) and the reaction stirred at 40 °C for 90 min. The reaction mixture was concentrated *in vacuo*. The resultant residue was suspended in IPA (5 mL) and 2-chloro-pyrimidin-4-ylamine (294 mg, 2.27 mmol) and triethylamine (0.95 mL, 6.82 mmol) added. The reaction mixture was heated in a sealed vial at 130 °C for 16 h. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (EtOAc/MeOH 100:0 to 90:10, gradient elution) to yield the title compound (378 mg, 78%). LCMS (ESI): $[M+H]^+ = 213.0$; $[\alpha]_D +9.0^\circ$ (c = 3.5 in methanol).

(ii) (3*S*,4*R*)-3-Fluoro-1-{4-[2-[(*R*)-1-(tetrahydropyran-2-yloxy)ethyl]-1-((*S*)-2,2,2trifluoro-1-methylethyl)-1*H*-imidazo[4,5 -*c*]pyridin-6-ylamino]pyrimidin-2-yl}piperidin-4-

ol (90b) 6-Chloro-2-[(R)-1-(tetrahydropyran-2-yloxy)ethyl]-1-((S)-2,2,2-trifluoro-1methylethyl)-1*H*-imidazo[4,5 -c]pyridine (200 mg, 0.53 mmol),(+)-(3S,4R)-1-(4-88b 0.53 aminopyrimidin-2-yl)-3-fluoropiperidin-4-ol (112)mmol), 2mg, dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (50 mg, 0.119 mmol), Pd₂dba₃ (27 mg, 0.03 mmol) and $C_{s_2}CO_3$ (345 mg, 1.06 mmol) were suspended in dioxane (5 mL) and the resultant mixture degassed with argon. The reaction mixture was heated at 100 °C for 1 h. The reaction mixture was diluted with water and extracted with EtOAc (3×15 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The

Page 49 of 60

Journal of Medicinal Chemistry

resultant residue was purified by flash column chromatography (EtOAc/MeOH 100:0 to 90:10, gradient elution) to afford the title compound (150 mg, 44%) LCMS (ESI): $[M+H]^+ = 554.0$.

(iii) (3*S*,4*R*)-3-Fluoro-1-{4-[2-((*R*)-1-hydroxyethyl)-1-((*S*)-2,2,2-trifluoro-1-methylethyl)-

1H-imidazo[4,5-c]pyridin-6-ylamino]pyrimidin-2-yl}piperidin-4-ol (42b) (3S,4R)-3-Fluoro-

 $1-\{4-[2-[(R)-1-(tetrahydropyran-2-yloxy)ethyl]-1-((S)-2,2,2-trifluoro-1-methylethyl)-1H-$

imidazo[4,5-*c*]pyridin-6-ylamino]pyrimidin-2-yl}piperidin-4-ol **90b** (150 mg, 0.27 mmol) was dissolved in HCl in MeOH (5 mL, 1.25 M) and the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with saturated aq. NaHCO₃ and extracted with EtOAc (3×15 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The resultant residue was subjected to preparative HPLC to yield the title compound as a white solid (53 mg, 39%). LCMS (ESI): rt = 2.28 min, [M+H]⁺ = 470, Method = 3; ¹H NMR 400MHz δ (d₆-DMSO): 9.80 (1H, br s), 8.63 (1H, s), 8.31 (1H, br s), 7.93 (1H, d, J = 5.9 Hz), 6.44 (1H, br s), 5.91 (1H, d, J = 6.2 Hz), 5.90-5.76 (1H, m), 5.11-5.04 (1H, m), 4.98 (1H, quin, J = 6.6 Hz), 4.68-4.64 (0.5H, m), 4.56-4.44 (1.5H, m), 4.34-4.24 (1H, m), 3.86-3.72 (1H, m), 3.53-3.40 (1H, m), 1.81 (3H, d, J = 7.1 Hz), 1.71-1.60 (3H, m), 1.58 (3H, d, J = 6.6 Hz).

Enzymatic assays were carried out as previously described.⁷⁰ All enzymatic data reported are the average of at least two independent experiments, data were only reported when repeat determinations were within 2-fold and the control (AZD7662) was within 3-fold of historical average. Control values, geometric mean \pm standard deviation: TMLR Ki_{app} = 18 \pm 7.8 nM; TMdel Ki_{app} = 4.6 \pm 1.8 nM; WT Ki_{app} = 29 \pm 9 nM.

H1975, H292 and PC9 pEGFR MSD Cellular Assays. These assays were used for determining cellular potency of mutant-selective EGFR small molecule inhibitors. The potency

of compounds to inhibit phosphor-EGFR in the following EGFR expressing cell lines was determined using the Meso Scale Discovery 384 well pEGFR Tyr1068 assay kits. (Meso Scale Discovery Catalog# N31CB-1). NCI-H1975 (ATCC Catalog# CRL-5908), EGFR T790M/L858R. PC9-ER (generated at Genentech), EGFR ex19del + T790M. Generation of PC9 erlotinib resistant line (PC9-ER): PC9 cells were treated with 2 µM erlotnib. Media was replaced every 3 to 4 days with new media containing 2 μ M of erlotnib. After 2 months viable cells were collected as a 2 µM erlotinib-resistant pool. The erlotinib concentration was gradually increased from 2-10 μ M. PC9 cells grown for a month in 10 μ M erlotinib were designated PC9-ER cells. NCI-H292 (ATCC Catalog# CRL-1848), EGFR WT. Cell Culture: NCI-H1975 and NCI-H292 cells were separately maintained in medium containing RPMI 1640, 10% FBS, 4 mM L-Glutamine, 1% Penicillin-Streptomycin, and 4.5 g/L glucose. All cell culture reagents were purchased from Invitrogen/Gibco. Cells were cultured at 37 °C at 5% CO₂ and split as recommended by ATCC. PC9-ER cells were maintained in medium containing RPMI 1640, 10% FBS, 4 mM L-Glutamine, and 10 µM Erlotinib. Cells are cultured at 37 °C at 5% CO₂ and maintained at a sub-confluent density by harvesting with trypsin and sub culturing at a ratio of 1:8 every 72 h. Cell Plating and Serum Starvation: NCI-H1975, NCI-H292, or PC9-ER cells were harvested and plated into sterile cell culture treated 384 well plates (Greiner catalog #781091) at a density of 30,000 cells/well in 50 µL culture medium and placed in a 37 °C at 5% CO₂ incubator for 6 h. After 6 h, culture medium was aspirated and replaced with serum-free culture medium. Cells were then incubated with the serum-free medium overnight at 37 °C and 5% CO₂. Assay Procedure: The following day, test compounds were serially diluted in dimethyl sulfoxide (DMSO) and added to cells in serum free medium (final DMSO concentration 0.5%). Assay plates were then incubated for 1 hour at 37 °C and 5% CO₂. Following compound

incubation for 1 h, H292 WT cells were stimulated with 100 ng/ml EGF for 8 minutes. All cells were then lysed and processed as per the MSD pEGFR assay kit protocol. Cell lysates were added to assay plates pre-coated with antibodies against phosphorylated EGFR. Phosphorylated EGFR in samples are allowed to bind to the capture antibodies overnight at 4 °C. The detection antibody (anti-total EGFR, labeled with an electrochemiluminescent SULFO-TAG) was added to the bound lysate and incubated for 1 h at room temperature. The MSD Read Buffer was added such that when a voltage is applied to the plate electrodes, the labels bound to the electrode surface emit light. The MSD Sector Instrument measures the intensity of the light, and quantitatively measures the amount of phosphorylated-EGFR in the sample. Percent inhibition of EGFR phosphorylation by varying concentrations of test compounds was calculated relative to untreated controls. EC_{50} values were calculated using the 4 parameter logistic nonlinear regression dose-response model. All values quoted are the average of at least two independent experiments, data were only reported when repeat determinations were within 2-fold and the control was within 3-fold of historical average.

H1975, H292, and PC9-ER Proliferation Assays. These assays were used to determine the potency of compounds to inhibit H1975 (EGFR T790M/L858R), NCI-H292 (EGFR WT), and PC9-ER (EGFR ex19del + T790M) cell proliferation. <u>Cell Culture</u>: NCI-H1975 and NCI-H292 cells both separately maintained in medium containing RPMI 1640, 10% FBS, 4 mM L-Glutamine, 1% Penicillin-Streptomycin, and 4.5 g/L glucose. All cell culture reagents were purchased from Invitrogen/Gibco. Cells were cultured at 37 °C at 5% CO₂ and split as recommended by ATCC. PC9-ER cells were maintained in medium containing RPMI 1640, 10% FBS, 4 mM L-Glutamine, and 10 μM erlotinib. Cells were cultured at 37 °C at 5% CO₂ and

maintained at a sub-confluent density by harvesting with trypsin and sub culturing at a ratio of 1:8 every 72 h. Assay Procedure: NCI-H1975 or NCI-H292 cells were harvested and plated into sterile cell culture treated 384 well plates (Greiner catalog #781091) at a density of 1000 cells/well in 50 µL culture medium and placed in a 37 °C at 5% CO₂ incubator overnight. PC9-ER cells were harvested and plated into sterile cell culture treated 384 well plates (Greiner catalog #781091) at a density of 1000 cells/well in 50 μ L culture medium including 10 μ M erlotinib and placed in a 37 °C at 5% CO₂ incubator overnight. The following day, test compounds were serially diluted in dimethyl sulfoxide (DMSO) and added to cells in culture medium (final DMSO concentration 0.5%, final assay volume 50 μ L). Assay plates were then incubated for 72 h at 37 °C and 5% CO₂. After 72 h, 25 µL of reconstituted Promega Cell Titer-Glo reagent (Promega Catalog# G7572) was added to all wells. Plates were then read on a Perkin Elmer Envision Multi-label plate reader using luminescence mode. Percent inhibition of proliferation by varying concentrations of test compounds is calculated relative to untreated controls. EC₅₀ values were calculated using the 4 parameter logistic nonlinear regression doseresponse model. All values quoted are the average of at least two independent experiments, data were only reported when repeat determinations were within 2-fold and the control was within 2fold of historical average.

Control compounds for cell assays. Control values shown are geometric mean \pm standard deviation. H1975: Compound **42**. pEGFR H1975 IC₅₀ = 236 \pm 9.4 nM; H1975 prolif. EC₅₀ = 868 \pm 310). This control was used due to the lack of selectivity of potent literature compounds available at the time. Assays for earlier compounds were repeated once compound **42** was available and found to be consistent. H292: erlotinib. pEGFR H292 IC₅₀ (nM) 6.3 \pm 3.2 nM; H292 prolif. EC₅₀ (nM) 31 \pm 20 nM. PC9(ER):

Journal of Medicinal Chemistry

Log D determination. Microscale shake flask log D assay: Test compounds were prepared as 10 mM DMSO stock solutions and stored at room temperature to avoid precipitation that can be induced by a freeze-thaw cycle. Two buffers were used in the assay: a saturated 1octanol/phosphate buffer solution (20 mL PBS pH7.4 + 200 mL 1-octanol) and a saturated PBS/1-octanol solution (1 mL 1-octanol + 200 mL PBS pH 7.4). Each solution was freshly prepared, shaken for 1 h and allowed to stand for 24 h before use. The Tecan robot first dispensed 250 µL of the saturated 1-octanol/PBS solution into each well of a 96-deep well plate and then added 5 μ L of a 10 mM test compound in DMSO stock solution. The plates were sealed with aluminum sealing film and shaken for 20 minutes at 1000 rpm. After shaking, the Tecan added 250 μ L of saturated PBS/1-octanol solution to each well. The plates were then resealed, shaken for 1 h at 1000 rpm at room temperature (25°C), and centrifuged at 3000 rpm for 10 min. Sample analyses were carried out by transferring the octanol and PBS phases to 384 well plates. Finally, 2 µL of 0.1 mM propranolol in acetonitrile was added to each well as an internal standard. Detection by LC-MS/MS. A UPLC/MS/MS equipped with Shimadzu LC and Sciex API4000 was used for quantification of octanol and PBS samples. The quantification was performed by MRM (multiple reaction monitor) transition analysis. With separate injections, 3 μ L for the octanol samples and 10 μ L for the PBS samples, MRM peaks were collected, processed, and integrated. The lipophilicity of the compound was determined as the log of ratio of MRM peaks in octanol and PBS phases. Measured LogD values reported are average of at least two separate determinations.

cLogP calculation. MoKa software (version 1.1.0, Molecular Discovery) was used to calculate the logarithm of the partition coefficient (cLogP).

Kinetic solubility. Solubility determination was as previously described.³⁹

In vitro microsome and hepatocyte metabolic stability assays. Experiments were carried out as previously described.^{71, 72} Values shown are for predicted hepatic clearance using intrinsic clearance and a conversion factor for liver blood flow to predict hepatic clearance. $Cl_{hep}=$ (Q.Cl_{int})/(Q+Cl_{int}) where $Cl_{hep}=$ predicted hepatic clearance, Q= liver blood flow and $Cl_{int}=$ intrinsic clearance. Liver blood flow values in mL/min/kg rat= 55.2, dog= 30.9, human= 20.7, mouse= 90.

X-ray crystallography. Crystallographic methods and the production and use of TMLR proteins were as previously described³⁹. For the wild-type EGFR kinase domain, codon optimized DNA encoding residues Gly696-Gln1021 and an N-terminal His6-tag and TEV cleavage site were cloned into a modified version of BD Pharmingen pAcGP67 vector. Sf9 cells were used for virus generation and expression. After harvest, cells were resuspended in a buffer containing of 600 mM NaCl, 15% glycerol, 50 mM Tris-HCl pH7.5, 1 mM TCEP supplemented with a protease-inhibitor cocktail (Complete EDTA-free, Roche), homogenized and lysed by Microfluidizer and centrifuged at 186000xg for 1hr at 4°C. The clear supernatant was filtered and loaded onto Nickel-chelating resin (Qiagen). EGFR protein was eluted with 25 mM Tris-HCl pH 8.0, 500 mM NaCl, 10% glycerol, 250 mM imidazole and 1 mM TCEP. The His6-tag was removed by dialysis with TEV Protease overnight at 4°C in 50mM Tris-HCl pH8, 250 mM NaCl, 10% glycerol and 1 mM TCEP, followed by a second nickel affinity column capturing the flow-through. Apo-EGFR was concentrated and further purified over a HiLoad 16/60 Superdex 75 size-exclusion column (GE Healthcare) in 500 mM NaCl, 50 mM Tris-HCl pH 8.0, 10% glycerol and 1mM TCEP. Final unphosphorylated EGFR protein was concentrated to $\sim 10 - 12$ mg/mL in the final buffer of 25 mM Tris-HCl pH 8.0, 100 mM NaCl, 2 mM DTT, 2 mM TCEP. Crystals were grown at 19°C by the hanging-drop vapor diffusion method described in Stamos et

2	
3	
4	
5	
2	
6	
7	
8	
õ	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
40	
IQ	
19	
20	
21	
<u> </u>	
22	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
27	
31	
38	
39	
40	
14	
41	
42	
43	
44	
17	
40	
46	
47	
48	
10	
49	
50	
51	
52	
50	
23	
54	
55	
56	
50	
57	
58	

59 60 al.⁷³ Purified wild-type EGFR kinase domain was crystallized in 1:1 ratio (2.5µl protein: 2.5µl well solution) containing 1M Na/K tartrate, 0.1M Mes pH7. Crystals formed after overnight at 19°C. The inhibitor-bound complex of EGFR was prepared by diffusion soaking from 1.0 mM to 2.5 mM inhibitor plus well solution into apo EGFR crystals using microbridges (Hampton Research) and incubated at 19°C for 2 days. Crystals were cryoprotected in well solution supplemented with 20% glycerol before immersion in liquid nitrogen.

REFERENCES

1. Gazdar, A. F.; Minna, J. D. Inhibition of EGFR signaling: all mutations are not created equal. *PLoS Med* **2005**, 2, e377.

2. Sharma, S. V.; Bell, D. W.; Settleman, J.; Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. *Nat Rev Cancer* **2007**, *7*, 169-81.

3. Sordella, R.; Bell, D. W.; Haber, D. A.; Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. *Science* **2004**, 305, 1163-7.

4. Tracy, S.; Mukohara, T.; Hansen, M.; Meyerson, M.; Johnson, B. E.; Janne, P. A. Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. *Cancer Res* **2004**, 64, 7241-4.

5. Sharma, S. V.; Settleman, J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. *Genes Dev* **2007**, 21, 3214-31.

6. Jackman, D. M.; Miller, V. A.; Cioffredi, L. A.; Yeap, B. Y.; Janne, P. A.; Riely, G. J.; Ruiz, M. G.; Giaccone, G.; Sequist, L. V.; Johnson, B. E. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. *Clin Cancer Res* **2009**, 15, 5267-73.

7. Rosell, R.; Moran, T.; Queralt, C.; Porta, R.; Cardenal, F.; Camps, C.; Majem, M.; Lopez-Vivanco, G.; Isla, D.; Provencio, M.; Insa, A.; Massuti, B.; Gonzalez-Larriba, J. L.; Paz-Ares, L.; Bover, I.; Garcia-Campelo, R.; Moreno, M. A.; Catot, S.; Rolfo, C.; Reguart, N.; Palmero, R.; Sanchez, J. M.; Bastus, R.; Mayo, C.; Bertran-Alamillo, J.; Molina, M. A.; Sanchez, J. J.; Taron, M. Screening for epidermal growth factor receptor mutations in lung cancer. *N Engl J Med* **2009**, 361, 958-67.

8. Lynch, T. J.; Bell, D. W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R. A.; Brannigan, B. W.; Harris, P. L.; Haserlat, S. M.; Supko, J. G.; Haluska, F. G.; Louis, D. N.; Christiani, D. C.; Settleman, J.; Haber, D. A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. *N Engl J Med* **2004**, 350, 2129-39.

9. Paez, J. G.; Janne, P. A.; Lee, J. C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F. J.; Lindeman, N.; Boggon, T. J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M. J.; Sellers, W. R.; Johnson, B. E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. *Science* **2004**, 304, 1497-500. 10. Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; Mardis, E.; Kupfer, D.; Wilson, R.; Kris, M.; Varmus, H. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. *Proc Natl Acad Sci U S A* **2004**, 101, 13306-11.

11. Pao, W.; Chmielecki, J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. *Nat Rev Cancer* **2010**, 10, 760-74.

12. Kobayashi, S.; Boggon, T. J.; Dayaram, T.; Janne, P. A.; Kocher, O.; Meyerson, M.; Johnson, B. E.; Eck, M. J.; Tenen, D. G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. *N Engl J Med* **2005**, 352, 786-92.

13. Pao, W.; Miller, V. A.; Politi, K. A.; Riely, G. J.; Somwar, R.; Zakowski, M. F.; Kris, M. G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. *PLoS Med* **2005**, 2, e73.

14. Yu, H. A.; Arcila, M. E.; Rekhtman, N.; Sima, C. S.; Zakowski, M. F.; Pao, W.; Kris, M. G.; Miller, V. A.; Ladanyi, M.; Riely, G. J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. *Clin Cancer Res* **2013**, 19, 2240-7.

15. Kosaka, T.; Yatabe, Y.; Endoh, H.; Yoshida, K.; Hida, T.; Tsuboi, M.; Tada, H.; Kuwano, H.; Mitsudomi, T. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. *Clin Cancer Res* **2006**, 12, 5764-9.

16. Balak, M. N.; Gong, Y.; Riely, G. J.; Somwar, R.; Li, A. R.; Zakowski, M. F.; Chiang, A.; Yang, G.; Ouerfelli, O.; Kris, M. G.; Ladanyi, M.; Miller, V. A.; Pao, W. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. *Clin Cancer Res* **2006**, 12, 6494-501.

17. Erlotinib activity in biochemical assays: wtEGFR Ki = 0.1 nM, EGFR(d746-750) Ki = 0.1 nM, EGFR(T790M/L858R) Ki = 123 nM, EGFR(T790M/d746-750) Ki = 95 nM.

18. Kwak, E. L.; Sordella, R.; Bell, D. W.; Godin-Heymann, N.; Okimoto, R. A.; Brannigan, B. W.; Harris, P. L.; Driscoll, D. R.; Fidias, P.; Lynch, T. J.; Rabindran, S. K.; McGinnis, J. P.; Wissner, A.; Sharma, S. V.; Isselbacher, K. J.; Settleman, J.; Haber, D. A. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. *Proc Natl Acad Sci U S A* **2005**, 102, 7665-70.

19. Shah, N. P.; Nicoll, J. M.; Nagar, B.; Gorre, M. E.; Paquette, R. L.; Kuriyan, J.; Sawyers, C. L. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. *Cancer Cell* **2002**, *2*, 117-25.

20. Quintas-Cardama, A.; Kantarjian, H.; Cortes, J. Flying under the radar: the new wave of BCR-ABL inhibitors. *Nat Rev Drug Discov* **2007**, 6, 834-48.

21. Yun, C. H.; Mengwasser, K. E.; Toms, A. V.; Woo, M. S.; Greulich, H.; Wong, K. K.; Meyerson, M.; Eck, M. J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. *Proc Natl Acad Sci U S A* **2008**, 105, 2070-5.

22. Janne, P. A.; Schellens, J. H.; Engelman, J. A.; Eckhardt, S. G.; Millham, R.; Denis, L. J.; Britten, C. D.; Wong, S. G.; Boss, D. S.; Camidge, D. R. Preliminary activity and safety results from a phase I clinical trial of PF-00299804, an irreversible pan-HER inhibitor, in patients (pts) with NSCLC. *Journal of Clinical Oncology* **2008**, 26, (May 20 suppl; abstr 8027).

23. Sequist, L. V.; Besse, B.; Lvnch, T. J.; Miller, V. A.; Wong, K. K.; Gitlitz, B.; Eaton, K.; Zacharchuk, C.; Freyman, A.; Powell, C.; Ananthakrishnan, R.; Quinn, S.; Soria, J. C. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J Clin Oncol 2010, 28, 3076-83. Kim, Y.; Ko, J.; Cui, Z.; Abolhoda, A.; Ahn, J. S.; Ou, S. H.; Ahn, M. J.; Park, K. The 24. EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol Cancer Ther 2012, 11, 784-91. 25. Sos, M. L.; Rode, H. B.; Heynck, S.; Peifer, M.; Fischer, F.; Kluter, S.; Pawar, V. G.; Reuter, C.; Heuckmann, J. M.; Weiss, J.; Ruddigkeit, L.; Rabiller, M.; Koker, M.; Simard, J. R.; Getlik, M.; Yuza, Y.; Chen, T. H.; Greulich, H.; Thomas, R. K.; Rauh, D. Chemogenomic profiling provides insights into the limited activity of irreversible EGFR Inhibitors in tumor cells expressing the T790M EGFR resistance mutation. Cancer Res 2010, 70, 868-74. 26. Soria, J.-C.; Sequist, L. V.; Gadgeel, S.; Goldman, J.; Wakelee, H.; Varga, A.; Fidias, P.; Wozniak, A. J.; Neal, J. W.; Doebele, R. C.; Garon, E. B.; Jaw-Tsai, S.; Caunt, L.; Kaur, P.; Rolfe, L.; Allen, A.; Camidge, D. R. First-in-human evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). In 15th World Conference on Lung Cancer, Sydney, Australia, 2013. Ranson, M. Preliminary results from a Phase I study with AZD9291. In European Cancer 27. Congress, 2013. 28. Cross, D. A. E.; Ashton, S. E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C. A.; Spitzler, P. J.; Orme, J. P.; Finlay, M. R. V.; Ward, R. A.; Mellor, M. J.; Hughes, G.; Rahi, A.; Jacobs, V. N.; Brewer, M. R.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G. H. P.; Cantarini, M.; Kim, D.-W.; Ranson, M. R.; Pao, W. AZD9291, an Irreversible EGFR TKI, Overcomes T790M-Mediated Resistance to EGFR Inhibitors in Lung Cancer. Cancer Discovery 2014, 4, 1046-1061. 29. Sjin, R. T. T.; Lee, K.; Walter, A. O.; Dubrovskiy, A.; Sheets, M.; Martin, T. S.; Labenski, M. T.; Zhu, Z.; Tester, R.; Karp, R.; Medikonda, A.; Chaturvedi, P.; Ren, Y.; Haringsma, H.; Etter, J.; Raponi, M.; Simmons, A. D.; Harding, T. C.; Niu, D.; Nacht, M.; Westlin, W. F.; Petter, R. C.; Allen, A.; Singh, J. In Vitro and In Vivo Characterization of Irreversible Mutant-Selective EGFR Inhibitors That Are Wild-Type Sparing. Mol. Cancer Ther. 2014, 13, 1-12. 30. Janne, P. A.; Ramaligam, S. S.; Yang, J. C. H.; Ahn, M.-J.; Kim, D.-W.; Kim, S.-W.; Planchard, D.; Ohe, Y.; Felip, E.; Watkins, C.; Cantarini, M.; Ghiorghiu, S.; Ranson, M. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitorresistant non-small-cell lung cancer (NSCLC). J. Clin. Oncol. 2014, 32, 8009. Jänne, P. A.; Yang, J. C.-H.; Kim, D.-W.; Planchard, D.; Ohe, Y.; Ramalingam, S. S.; 31. Ahn, M.-J.; Kim, S.-W.; Su, W.-C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.-H.; Frewer, P.; Cantarini, M.; Brown, K. H.; Dickinson, P. A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR Inhibitor Resistant Non Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 1689-1699. Finlay, M. R. V.; Anderton, M.; Ashton, S.; Ballard, P.; Bethel, P. A.; Box, M. R.; 32. Bradbury, R. H.; Brown, S. J.; Butterworth, S.; Campbell, A.; Chorley, C.; Colclough, N.; Cross, D. A. E.; Currie, G. S.; Grist, M.; Hassall, L.; Hill, G. B.; James, D.; James, M.; Kemmitt, P.; Klinowska, T.; Lamont, G.; Lamont, S. G.; Martin, N.; McFarland, H. L.; Mellor, M. J.; Orme, J. P.; Perkins, D.; Perkins, P.; Richmond, G.; Smith, P.; Ward, R. A.; Waring, M. J.; Whittaker, D.; Wells, S.: Wrigley, G. L. Discovery of a Potent and Selective EGFR Inhibitor (AZD9291) of

Both Sensitizing and T790M Resistance Mutations That Spares the Wild Type Form of the Receptor. *Journal of Medicinal Chemistry* 57, 8249-8267.

33. Walter, A. O.; Sjin, R. T. T.; Haringsma, H. J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; Martin, T. S.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.; Petter, R. C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Dyke, T. V.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A. D.; Harding, T. C.; Allen, A. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. *Cancer discovery* 3, 1404-1415.

34. Thress, K. S.; Paweletz, C. P.; Felip, E.; Cho, B. C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; Ercan, D.; Matthews, S. E.; Cantarini, M.; Barrett, J. C.; Janne, P. A.; Oxnard, G. R. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. *Nat. Med.* advance online publication.

35. Yu, H. A.; Tian, S. K.; Drilon, A. E.; Borsu, L.; Riely, G. J.; Arcila, M. E.; Ladanyi, M. Acquired Resistance of EGFR-Mutant Lung Cancer to a T790M-Specific EGFR Inhibitor: Emergence of a Third Mutation (C797S) in the EGFR Tyrosine Kinase Domain. *JAMA Oncology* **2015**, Published Online: May 7, 2015. doi:10.1001/jamaoncol.2015.1066.

36. Niederst, M. J.; Hu, H.; Mulvey, H. E.; Lockerman, E. L.; Garcia, A. R.; Piotrowska, Z.; Sequist, L. V.; Engelman, J. A. The allelic context of the C797S mutation acquired upon treatment with third generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. *Clinical Cancer Research* **2015**, doi:10.1158/1078-0432.CCR-15-0560

37. http://www.ariad.com/pdf/Rivera_2012_AACR_POSTER_AP26113_noQRcode.pdf

38. <u>http://www.ariad.com/AP26113</u>

39. Hanan, E. J.; Eigenbrot, C.; Bryan, M. C.; Burdick, D. J.; Chan, B. K.; Chen, Y.; Dotson, J.; Heald, R. A.; Jackson, P. S.; La, H.; Lainchbury, M. D.; Malek, S.; Purkey, H. E.; Schaefer, G.; Schmidt, S.; Seward, E. M.; Sideris, S.; Tam, C.; Wang, S.; Yeap, S. K.; Yen, I.; Yin, J.; Yu, C.; Zilberleyb, I.; Heffron, T. P. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation. *J. Med. Chem.* **2014**, *57*, 10176-10191.

40. Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist's guide to molecular interactions. *J. Med. Chem.* **2010**, 53, 5061-84.

41. A total of 34 out of 531 (6%) kinases have equivalent Met + Thr residues and 27 out of 531 (5%) kinases have equivalent Met + Ser residues.

42. Hughes, J. D. B., J.; Price, D.A.; Bailey, S.; Decrescenzo, G.A.; Devraj, R.V.; Ellsworth, E.; Fobian, Y.M.; Gibbs, M.E.; Gilles, R.W.; Greene, N.; Huang, E.; Krieger-Burke, T.; Loesel, J.; Wager, T.; Whiteley, L.; Zhang, Y. Physiochemical drug properties associated with in vivo toxicological outcomes. *Bioorg. Med. Chem. Lett.* **2008**, 18, 4872–4875.

43. Leeson, P. D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. *Nat. Rev. Drug Discovery* **2007**, 6, 881-890.

44. Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. *J. Med. Chem.* **2009**, 52, 6752-6756.

45. Ritchie, T. J.; Macdonald, S. J. The impact of aromatic ring count on compound developability: further insights by examining carbo- and hetero-aromatic and -aliphatic ring types. *Drug Discov. Today* **2011**, 16, 164–171.

1	
2	
3	46. Lee, H. J.; Schaefer, G.; Heffron, T. P.; Shao, L.; Ye, X.; Sideris, S.; Malek, S.; Chan, E.;
4 5	Merchant, M.; La, H.; Ubhayakar, S.; Yauch, R. L.; Pirazzoli, V.; Politi, K.; Settleman, J.
5 6	Noncovalent wild-type-sparing inhibitors of EGFR T790M <i>Cancer Discov</i> 2013, 3 168-81
0	47 Shultz M D Setting expectations in molecular entimizations: Strongths and limitations
7	47. Shullz, M. D. Setting expectations in molecular optimizations. Strengths and minitations $C_{1} = 1$
0	of commonly used composite parameters. Bioorg. Med. Chem. Lett. 2013, 23, 5980–5991.
9 10	48. Tarcsay, A.; Nyíri, K.; Keserű, G. M. Impact of Lipophilic Efficiency on Compound
10	Quality. J. Med. Chem. 2012, 55, 1252-1260.
12	49. Shultz, M. D. Improving the Plausibility of Success with Inefficient Metrics. ACS Med.
12	Chem Lett 2013. 5 2-5
13	50 Honking A. L. : Kasarij G. M. : Lasson P. D. : Rass D. C. : Raynolds C. H. Tha role of
15	Josen d afficiences matrices in drug discossony. Net Dev. Drug Discossony 2014, 12, 105, 121
16	ingand efficiency metrics in drug discovery. Nat. Rev. Drug Discovery 2014, 13, 105-121.
17	51. Shultz, M. D. The thermodynamic basis for the use of lipophilic efficiency (LipE) in
18	enthalpic optimizations. Bioorg. Med. Chem. Lett. 2013, 23, 5992-6000.
19	52. Pryde, D. C.; Dalvie, D.; Hu, Q.; Jones, P.; Obach, R. S.; Tran, TD. Aldehyde Oxidase:
20	An Enzyme of Emerging Importance in Drug Discovery. J. Med. Chem. 2010, 53, 8441-8460.
21	53 in vitro rat henatocyte predicted clearance 35 mL/min/kg in vivo plasma clearance 40
22	mI/min/kg
23	$\frac{1111}{11111}$
24	54. Measured pKa for 15 was 6.4 indicating that it is unifikely that any of these compounds
25	are significantly ionized at pH/.4.
26	55. <u>http://www.chem.wisc.edu/areas/reich/handouts/a-values/a-values.htm</u> .
27	56. $cLogP < 4.0$, aromatic rings < 4, solubility index < 7.0, $cHLM_prob > 0.2$, $MW < 450$,
28	rotatable bonds < 8 , also removed everything with no H-bonding potential.
29	57 Blocking of the pyrimidine C4 and C5 positions with substituents results in loss of
30	TMI R notency (data not shown)
31	59 van Niel M. D. Colling J. D. M. S. Droughton H. Chang S. K. E. Coodeere S. C.
32	36. Vali Niel M. D., Collins, I. D., M. S., Diougnon, H., Cheng, S. K. F., Ooouacie, S. C.,
33	Heald, A.; Locker, K.; MacLeod, A. M.; Morrison, D.; Moyes, C. R.; O'Connor, D.; Pike, A.;
34	Rowley, M.; Russell, M.G.N; Sohal, B.; Stanton, J; Thomas, S.; Verrier, H.; Watt, A. P.;
30	Castro. J. L. Fluorination of 3-(3-(Piperidin-1-yl)propyl)indoles and 3-(3-(Piperazin-1-
37	yl)propyl)indoles Gives Selective Human 5-HT1D Receptor Ligands with Improved
38	Pharmacokinetic Profiles. J. Med. Chem. 1999, 42, 2087-2104.
39	59 Müller K · Faeh C · Diederich F Fluorine in pharmaceuticals: looking beyond intuition
40	Science 2007 317 1881-6
41	60 Vulnetti A: Delvit C Elucrine level environment: from screening to drug design Drug
42	Dimene Terley 2012, 17, 800.7
43	Discov. Today 2012, 17, 890-7.
44	61. Rosenberg, R. E. Does fluoromethane form a hydrogen bond with water? J. Phys. Chem.
45	A 2012, 116, 10842-9.
46	62. Giuffredi, G. T.; Gouverneur, V.; Bernet, B. Intramolecular OH…FC Hydrogen Bonding
47	in Fluorinated Carbohydrates: CHF is a Better Hydrogen Bond Acceptor than CF2. Angew.
48	Chem Int Ed 2013. 52 10524-10528
49	63 Meanwell N A Synopsis of some recent tactical application of hioisosteres in drug
50	design L Mod Chem 2011 54 2520 01
51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
52	04. Bonm, H. J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Muller, K.; Obst-Sander, U.;
53	Stahl, M. Fluorine in Medicinal Chemistry. <i>ChemBioChem</i> 2004 , 5, 637-643.
54 55	65. Sun, A.; Lankin, D. C.; Hardcastle, K.; Snyder, J. P. 3-Fluoropiperidines and N-methyl-3-
55 56	fluoropiperidinium salts: the persistence of axial fluorine. Chemistry 2005, 11, 1579-91.
57	66. Rat microsomal/hepatocyte clearance data mL/min/kg: $34 = 18/20$ $35 = 12/11$ $36 = 13/13$.
58	1 ,
59	
60	
~ ~	

67. Zürcher, M.; Diederich, F. Structure-based drug design: exploring the proper filling of apolar pockets at enzyme active sites. *J. Org. Chem.* **2008**, 73, 4345-61.

68. Poulin, P.; Hop, C. E.; Ho, Q.; Halladay, J. S.; Haddad, S.; Kenney, J. R. Comparative Assessment of In Vitro–In Vivo Extrapolation Methods used for Predicting Hepatic Metabolic Clearance of Drugs. *J. Pharm. Sci.* **2012**, 101, 4308-4326.

69. Clearance in excess of liver blood flow was observed in mice for 42a and 42b, see Supporting Information page S10.

70. Lee, H.-J.; Schaefer, G.; Heffron, T. P.; Shao, L.; Ye, X.; Sideris, S.; Malek, S.; Chan, E.; Merchant, M.; La, H.; Ubhayakar, S.; Yauch, R. L.; Pirazzoli, V.; Politi, K.; Settleman, J. Noncovalent Wild-type–Sparing Inhibitors of EGFR T790M. *Cancer Discovery* **2013**, *3*, 168-181.

71. Halladay, J. S.; Wong, S.; Jaffer, S. M.; Sinhababu, A. K.; Khojasteh-Bakht, S. C. Metabolic Stability Screen for Drug Discovery Using Cassette Analysis and Column Switching. *Drug Metab. Lett.* **2014**, 1, 67-72.

72. Ndubaku, C. O.; Heffron, T. P.; Staben, S. T.; Baumgardner, M.; Blaquiere, N.; Bradley, E.; Bull, R.; Do, S.; Dotson, J.; Dudley, D.; Edgar, K. A.; Friedman, L. S.; Goldsmith, R.; Heald, R. A.; Kolesnikov, A.; Lee, L.; Lewis, C.; Nannini, M.; Nonomiya, J.; Pang, J.; Price, S.; Prior, W. W.; Salphati, L.; Sideris, S.; Wallin, J. J.; Wang, L.; Wei, B.; Sampath, D.; Olivero, A. G. Discovery of 2-{3-[2-(1-Isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-

dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): A β -Sparing Phosphoinositide 3-Kinase Inhibitor with High Unbound Exposure and Robust in Vivo Antitumor Activity. *J. Med. Chem.* **2013**, 56, 4597-4610.

73. Eigenbrot, C.; Stamos, J.; Sliwkowski, M., X. . Structure of the Epidermal Growth Factor Receptor Kinase Domain Alone and in Complex with a 4-Anilinoquinazoline Inhibitor. *J. Bio. Chem.* **2002**, 277, 46265-46272.