Laboratoire de Chimie Organique, Faculté de Pharmacie, 3, Rue de l'Argonne, F-67083 Strasbourg Cedex, France

Many types of reagents have been used for the synthesis of nitriles from aldoximes¹⁻⁷. We wish to report the use of another reagent for this synthesis, namely 1-(N,N-diethyl-amino)-propyne (1). The reaction of 1 with benzaldoximes 2 is carried out at reflux for 2 h in acetonitrile and nitriles 4 are obtained in good yields (see Table).

Table. Benzonitriles 4 from Benzaldoximes 2 and 1-Diethylaminopropyne 1

X	Configuration of oxime	Yield [%]	m.p. or b.p./torr	Lit. m.p. or b.p./torr
Н	E	69ª	79°/15	69°/10°
H	\bar{z}	21 ^a	79°/15	69°/10°
Cl	E	77	91°	94 96°°
O ₂ N	Ē	80	146°	149° 9
H ₃ CO	Ē	73	60°	$61-62^{\circ 9}$

Yield determined by N.M.R. spectrometry of mixture of 4 and 5.

To explain the formation of the nitrile 4 and the diethyl propanamide (5), we must assume the formation of the intermediate 3 which fragments to give 4 and 5. The existence of this intermediate can also explain the low yield of benzonitrile from Z-benzaldoxime. The Z-isomer, to form 3, must at first be converted into the E-isomer, but reacts also directly with the guanine to give a mixture from which no identifiable product could be isolated.

Preparation of Nitriles 4 from Benzaldoximes 2; General Procedure:

A solution of 1-diethylaminopropyne⁸ (1: 2.22 g, 0.022 mol) in acetonitrile (10 ml) is added to a stirred solution of he oxime (0.02 mol) in acetonitrile (50 ml). The temperature of the mixture is maintained at 20° during the addition. The reaction mixture is then refluxed for 2 h and a slight excess of 1 (0.22 g) is added after 1 h. Acetonitrile is evaporated and the residue distilled in vacuo; in the case of benzonitrile, distillation is unable to affect a separation of the product from diethylpropanamide. In this case the yield was determined by N.M.R. spectrometry.

Received: December 16, 1976

¹ J. A. Albright, M. L. Alexander, Org. Prep. Proced. Int. 4, 215 (1972).

² G. Rosini, G. Baccolini, S. Cacchi, J. Org. Chem. 38, 1060 (1973).

³ M. M. Rogic, J. F. van Peppen, K. P. Klein, T. R. Demmin, J. Org. Chem. 39, 3424 (1974).

⁴ V. P. Kukhar, V. I. Pasternak, Synthesis 1974, 563.

⁵ A. Antonowa, S. Hauptmann, Z. Chem. 16, 17 (1976).

⁶ J. B. Hendrickson, K. W. Bair, P. M. Keehn, *Tetrahedron Lett.* 1976, 603.

⁷ T.-L. Ho, Synthesis **1975**, 401.

⁸ Obtained from Fluka, Buchs, Switzerland.

⁹ Handbook of Chemistry and Physics, 52 edit., Chemical Rubber Co., Cleveland, Ohio, 1972.