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Abstract A stereoselective synthesis of the bicyclic unit constituting
the A and E rings of calyciphylline B-type alkaloids is disclosed. The pro-
pionate ester of (1R)-cyclohex-2-en-1-ol, obtained by enzymatic resolu-
tion, is subjected to an Ireland–Claisen rearrangement. Subsequent re-
duction of the acid, Mitsunobu reaction to introduce a nitrogen
functionality, oxidative cleavage to a dialdehyde, and intramolecular al-
dol and aza-Michael reactions afford the bicyclic subunit.

Key words asymmetric synthesis, alkaloids, chiral resolution, electro-
cyclic reaction, Michael addition, Mitsunobu reaction

Calyciphylline B-type alkaloids constitute a subclass of
calyciphylline alkaloids that belong to the large family of
Daphniphyllum alkaloids. Calyciphylline B (1; Figure 1) was
isolated from the leaves of Daphniphyllum calycinum by

Morita and Kobayashi in 2003.1 Subsequently, deoxycalyci-
phylline B (2) and deoxyisocalyciphylline B (3) were isolat-
ed from the stems of D. subverticillatum.2 Hao and co-work-
ers elucidated the structure of daphlongamine H (4).3

Calyciphylline B-type alkaloids contain a penta- or hex-
acyclic framework with eight or nine stereogenic centers,
including one quaternary center, and a tertiary nitrogen. Al-
kaloids of this class possess a wide range of biological activ-
ities including cytotoxicity against murine lymphoma
L1210 cells1 and inhibition of platelet aggregation induced
by platelet-activating factor.4

The first synthesis of isodaphlongamine H (5), possess-
ing cis-fused B,C rings, was disclosed by Hanessian and co-
workers.5 Recently, Sarpong’s group reported total synthe-
ses of daphlongamine H and isodaphlongamine H.6 The
synthesis of the ABE core of these alkaloids was reported by
Belanger in 2017.7 We envisaged the synthesis of deoxyca-
lyciphylline B by following the retrosynthetic strategy de-

Figure 1  Representative calyciphylline B-type alkaloids
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picted in Scheme 1. The target compound 2 might be ob-
tained from ketone 6 by elaboration of the lactone ring, fol-
lowed by C–N bond formation by means of the Appel
reaction. We surmised that ketone 6 might be obtained by
combining aldehyde 7 and ester 8, followed by oxidation of
the resulting alcohol to a -keto ester and the creation of
the quaternary center by means of the Stolz allylation pro-
tocol. We proposed to synthesize aldehyde 7 by organoca-
talysis and to prepare ester 8 from the cyclohexene deriva-

tive 9, which, in turn, might be obtained from the cyclohex-
enol 10.

Here, we report the synthesis of the A,E bicyclic core 8,
which is common to all calyciphylline B-type alkaloids. The
synthesis commenced from (1R)-cyclohex-2-en-1-ol (10),
obtained by enzymatic resolution following a reported pro-
cedure.8 Esterification with propanoyl chloride furnished
ester 11 (Scheme 2). The trimethylsilyl ketene acetal ob-
tained from ester 11 on warming underwent Ireland–

Scheme 1  Retrosynthetic disconnection of deoxycalyciphylline B
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Scheme 2  Synthesis of the bicyclic subunit 8; brsm = based on recovered starting material Ns = (4-nitrobenzene)sulfonyl.
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Claisen rearrangement to yield a 5:1 mixture of acids 12
and 13, respectively.9,10 The formation of acid 12 can be ra-
tionalized by invoking boat-like (I) and chair-like transition
states (II) in the Claisen rearrangement of the (Z)- and (E)-
silyl ketene acetal, respectively. The acids, on bromolacton-
ization, furnished a separable mixture of bromolactones 14
and 15. The lactone 14 was isomerized by enolization fol-
lowed by quenching with diethyl malonate to furnish lac-
tone 15.11 Reductive cleavage of lactone 15 by treatment
with Zn/EtOH afforded the acid 13, which was reduced to
alcohol 16.

The sulfonamide 17 was prepared in a straightforward
manner by following a Mitsunobu protocol.12,13 Subjecting
the cyclohexene group of 17 to oxidative cleavage by means
of Jin’s protocol14 afforded a dialdehyde that, without fur-
ther purification, was treated with piperidinium acetate to
furnish aldehyde 18. Aldehyde 18 is probably formed by an
intramolecular aldol reaction followed by an aza-Michael
reaction or, alternatively, by a Mannich reaction. Pinnick
oxidation15 of aldehyde 18 afforded the corresponding acid
that, on reaction with allyl bromide in the presence of tri-
ethylamine, gave the bicyclic compound 8 corresponding to
the A and E rings of calyciphylline B-type alkaloids.16

In summary a short stereoselective synthesis of the bi-
cyclic subunit of calyciphylline B-type alkaloids is dis-
closed. Enzymatic resolution, Ireland–Claisen rearrange-
ment, Mitsunobu reaction, and an intramolecular aldol re-
action followed by an aza-Michael reaction are the key
steps in this synthetic protocol.
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