## Letter

# Stereoselective Synthesis of the A,E-Ring Bicyclic Core of Calyciphylline B-Type Alkaloids

Α

Balagani Satish Kumar Sadagopan Raghavan\*

Department of Organic Synthesis and Process Chemistry, Indian Institute of Chemical Technology, Hyderabad 500007, India sradhavan@iict.res.in



Received: 12.09.2019 Accepted after revision: 07.10.2019 Published online: 22.09.2019 DOI: 10.1055/s-0039-1690721; Art ID: st-2019-d0485-I

**Abstract** A stereoselective synthesis of the bicyclic unit constituting the A and E rings of calyciphylline B-type alkaloids is disclosed. The propionate ester of (1*R*)-cyclohex-2-en-1-ol, obtained by enzymatic resolution, is subjected to an Ireland–Claisen rearrangement. Subsequent reduction of the acid, Mitsunobu reaction to introduce a nitrogen functionality, oxidative cleavage to a dialdehyde, and intramolecular aldol and aza-Michael reactions afford the bicyclic subunit.

**Key words** asymmetric synthesis, alkaloids, chiral resolution, electrocyclic reaction, Michael addition, Mitsunobu reaction

Calyciphylline B-type alkaloids constitute a subclass of calyciphylline alkaloids that belong to the large family of *Daphniphyllum* alkaloids. Calyciphylline B (**1**; Figure 1) was isolated from the leaves of *Daphniphyllum calycinum* by

Morita and Kobayashi in 2003.<sup>1</sup> Subsequently, deoxycalyciphylline B ( $\mathbf{2}$ ) and deoxyisocalyciphylline B ( $\mathbf{3}$ ) were isolated from the stems of *D. subverticillatum*.<sup>2</sup> Hao and co-workers elucidated the structure of daphlongamine H ( $\mathbf{4}$ ).<sup>3</sup>

Calyciphylline B-type alkaloids contain a penta- or hexacyclic framework with eight or nine stereogenic centers, including one quaternary center, and a tertiary nitrogen. Alkaloids of this class possess a wide range of biological activities including cytotoxicity against murine lymphoma L1210 cells<sup>1</sup> and inhibition of platelet aggregation induced by platelet-activating factor.<sup>4</sup>

The first synthesis of isodaphlongamine H (**5**), possessing *cis*-fused B,C rings, was disclosed by Hanessian and coworkers.<sup>5</sup> Recently, Sarpong's group reported total syntheses of daphlongamine H and isodaphlongamine H.<sup>6</sup> The synthesis of the ABE core of these alkaloids was reported by Belanger in 2017.<sup>7</sup> We envisaged the synthesis of deoxycalyciphylline B by following the retrosynthetic strategy de-



<sup>© 2019.</sup> Thieme. All rights reserved. *Synlett* **2019**, *30*, A–D Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany



В

picted in Scheme 1. The target compound **2** might be obtained from ketone **6** by elaboration of the lactone ring, followed by C–N bond formation by means of the Appel reaction. We surmised that ketone **6** might be obtained by combining aldehyde **7** and ester **8**, followed by oxidation of the resulting alcohol to a  $\beta$ -keto ester and the creation of the quaternary center by means of the Stolz allylation protocol. We proposed to synthesize aldehyde **7** by organocatalysis and to prepare ester **8** from the cyclohexene derivative **9**, which, in turn, might be obtained from the cyclohexenol **10**.

Here, we report the synthesis of the A,E bicyclic core **8**, which is common to all calyciphylline B-type alkaloids. The synthesis commenced from (1R)-cyclohex-2-en-1-ol (10), obtained by enzymatic resolution following a reported procedure.<sup>8</sup> Esterification with propanoyl chloride furnished ester **11** (Scheme 2). The trimethylsilyl ketene acetal obtained from ester **11** on warming underwent Ireland–



Claisen rearrangement to yield a 5:1 mixture of acids **12** and **13**, respectively.<sup>9,10</sup> The formation of acid **12** can be rationalized by invoking boat-like (**I**) and chair-like transition states (**II**) in the Claisen rearrangement of the (*Z*)- and (*E*)-silyl ketene acetal, respectively. The acids, on bromolactonization, furnished a separable mixture of bromolactones **14** and **15**. The lactone **14** was isomerized by enolization followed by quenching with diethyl malonate to furnish lactone **15**.<sup>11</sup> Reductive cleavage of lactone **15** by treatment with Zn/EtOH afforded the acid **13**, which was reduced to alcohol **16**.

The sulfonamide **17** was prepared in a straightforward manner by following a Mitsunobu protocol.<sup>12,13</sup> Subjecting the cyclohexene group of **17** to oxidative cleavage by means of Jin's protocol<sup>14</sup> afforded a dialdehyde that, without further purification, was treated with piperidinium acetate to furnish aldehyde **18**. Aldehyde **18** is probably formed by an intramolecular aldol reaction followed by an aza-Michael reaction or, alternatively, by a Mannich reaction. Pinnick oxidation<sup>15</sup> of aldehyde **18** afforded the corresponding acid that, on reaction with allyl bromide in the presence of triethylamine, gave the bicyclic compound **8** corresponding to the A and E rings of calyciphylline B-type alkaloids.<sup>16</sup>

In summary a short stereoselective synthesis of the bicyclic subunit of calyciphylline B-type alkaloids is disclosed. Enzymatic resolution, Ireland–Claisen rearrangement, Mitsunobu reaction, and an intramolecular aldol reaction followed by an aza-Michael reaction are the key steps in this synthetic protocol.

#### **Funding Information**

Funding Information: Science and Engineering Research Board, DST, New Delhi, (Grant / Award Number: 'PDF/2017/001254')

### Acknowledgement

B.S.K is grateful to DST for a postdoctoral fellowship. Manuscript Communication No. IICT/Pubs/2019/281.

### **Supporting Information**

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690721.

## **References and Notes**

- (1) Morita, H.; Kobayashi, J. Org. Lett. 2003, 5, 2895.
- (2) Yang, S.-P.; Yue, J.-M. J. Org. Chem. 2003, 68, 7961.
- (3) Li, C.-S.; Di, Y.-T.; Zhang, Q.; Zhang, Y.; Tan, C.-J.; Hao, X.-J. Helv. Chim. Acta 2009, 92, 653.
- (4) Mu, S.-Z.; Wang, J.-S.; Yang, X.-S.; He, H.-P.; Li, C.-S.; Di, Y.-T.; Wang, Y.; Zhang, Y.; Fang, X.; Huang, L.-J.; Hao, X.-J. J. Nat. Prod. 2008, 71, 564.

- (5) (a) Chattopadhyay, A. K.; Ly, V. L.; Jakkepally, S.; Berger, G.; Hanessian, S. Angew. Chem. Int. Ed. 2016, 55, 2577.
  (b) Chattopadhyay, A. K.; Menz, H.; Ly, V. L.; Dorich, S.; Hanessian, S. J. Org. Chem. 2016, 81, 2182. (c) Chattopadhyay, A. K.; Berger, G.; Hanessian, S. J. Org. Chem. 2016, 81, 5074.
- (6) Hugelshofer, H. C. L.; Palani, V.; Sarpong, R. J. Am. Chem. Soc. 2019, 141, 8431.
- (7) Boissarie, P.; Bélanger, G. Org. Lett. 2017, 19, 3739.
- (8) Kolodiazhna, O. O.; Kolodiazhna, A. O.; Kolodiazhnyi, O. I. *Russ. Chem. Bull.* **2012**, *61*, 2175.
- (9) (a) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868. (b) Ireland, R. E.; Wipf, P.; Xiang, J. N. J. Org. Chem. 1991, 56, 3572.
- (10) The structure assigned to acids **12** and **13** is based on their conversion into lactones **14** and **15**, respectively, and a comparison of their spectra with known iodolactones; see: Bartlett, P. A.; Pizzo, C. F. *J. Org. Chem.* **1981**, *46*, 3896.
- (11) Among the various proton sources used for quenching (which included acetic acid, pivalic acid, and methyl salicylate), diethyl malonate was found to afford lactone **15** selectively.
- (12) (a) Mitsunobu, O.; Yamada, Y. Bull. Chem. Soc. Jpn. 1967, 40, 2380. (b) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551.
- (13) *N*-[(15)-1-Cyclohex-2-en-1-ylpropyl]-4-nitrobenzenesulfonamide (17)

To a solution of alcohol **16** (1.4 g, 10 mmol) in anhyd THF (200 mL) were added Ph<sub>3</sub>P (5.24 g, 20 mmol), (4-nitrobenzene)sulfonamide (4.04 g, 20 mmol), and DIAD (3.16 mL, 20 mmol) at 0 °C, and the mixture was stirred for 12 h at rt. H<sub>2</sub>O (100 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3 × 20 mL), and the combined organic extracts were washed with brine (20 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated in vacuo. The crude product was purified by column chromatography [silica gel (100–200 mesh), 10% EtOAc-hexane] to give a colorless solid; yield: 2.21 g (6.5 mmol, 65%); mp 98–100 °C;  $[\alpha]_D^{20}$  –15.3 (*c* 0.31, CHCl<sub>3</sub>); *R*<sub>f</sub> = 0.2 (15% EtOAc-hexane).

IR (neat): 3282, 2926, 2850, 1608, 1530, 1351, 1156, 753, 611 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.37 (d, *J* = 8.8 Hz, 2 H), 8.05 (d, *J* = 8.9 Hz, 2 H), 5.74 (ddd, *J* = 9.7, 6.5, 2.9 Hz, 1 H), 5.43 (d, *J* = 10.2 Hz, 1 H), 4.65 (t, *J* = 6.1 Hz, 1 H), 3.07–2.98 (m, 1 H), 2.92–2.83 (m, 1 H), 2.18–2.07 (m, 1 H), 2.00–1.89 (m, 2 H), 1.77–1.68 (m, 1 H), 1.67–1.59 (m, 2 H), 1.53–1.41 (m, 1 H), 1.31–1.13 (m, 1 H), 0.88 (d, *J* = 6.9, Hz, 3 H).<sup>13</sup>C[<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 150.1, 146.0, 129.2, 128.6, 128.31, 124.4, 46.8, 38.1, 37.6, 25.7, 25.2, 22.1, 14.8. MS (ESI–TOF): *m/z* = 325 [M + H]<sup>+</sup>; HRMS (ESI–TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>15</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub>S: 325.1222; found: 325.1227.

- (14) Wensheng, Y.; Yan, M.; Ying, K.; Hua, Z.; Jin, Z. Org. Lett. **2004**, *6*, 3217.
- (15) Bal, B. S.; Childers, W. E.; Pinnick, H. W. *Tetrahedron* **1981**, 37, 2091.

#### (16) Allyl Ester 8

Et<sub>3</sub>N (80 μL, 0.56 mmol) and allyl bromide (25 μL, 0.28 mmol) were added to a solution of acid **19** (50 mg, 0.14 mmol) in anhyd CH<sub>2</sub>Cl<sub>2</sub> (1.5 mL) cooled to 0 °C. The mixture was stirred for 30 min at rt then concentrated in vacuo and extracted with EtOAc (3 × 5 mL). The combined organic extracts were washed with brine (10 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated in vacuo. The crude product was purified by column chromatography [silica gel (100–200 mesh), 10% EtOAc–hexanes] to give a colorless solid; yield: 44 mg (0.11 mmol, 80%); mp 124–126 °C;  $[\alpha]_D^{20}$  +2.6 (*c* 1.3, CHCl<sub>3</sub>); *R*<sub>f</sub> = 0.6 (20% EtOAc–hexane).

| Svn | ett |
|-----|-----|
|     |     |

B. S. Kumar, S. Raghavan

IR (KBr): 3096, 2927, 2860, 1727, 1531, 1351, 1167, 1115, 1026, 613 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.42 (d, *J* = 8.8 Hz, 2 H), 8.07 (d, *J* = 8.8 Hz, 2 H), 5.99 (ddd, *J* = 17.2, 10.7, 5.7 Hz, 1 H), 5.40 (dd, *J* = 17.2, 1.5 Hz, 1 H), 5.31 (dd, *J* = 10.4, 1.2 Hz, 1 H), 4.70–4.66 (m, 2 H), 4.12 (dd, *J* = 9.0, 3.8 Hz, 1 H), 3.73 (dd, *J* = 9.3, 6.3 Hz, 1 H), 3.25–3.21 (m, 1 H), 2.57 (t, *J* = 9.3 Hz, 1 H), 2.21–

2.11 (m, 2 H), 1.99–1.90 (m, 2 H), 1.83–1.75 (m, 1 H), 1.55–1.50 (m, 1 H), 0.86 (d, *J* = 6.6 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 174.0, 150.3, 141.4, 132.2, 129.3, 124.3, 118.4, 67.0, 65.5, 57.5, 51.7, 38.0, 30.4, 30.0, 16.5. MS (ESI–TOF): *m/z* = 395 [M + H]<sup>+</sup>. HRMS (ESI–TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>23</sub>N<sub>2</sub>O<sub>6</sub>S: 395.1277; found: 395.1275.