

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 1707-1711

1-(1-Naphthyl)piperazine as a novel template for 5-HT₆ serotonin receptor ligands

Mase Lee,^a Jagadeesh B. Rangisetty,^a Manik R. Pullagurla,^a Małgorzata Dukat,^a Vince Setola,^b Bryan L. Roth^{b,c} and Richard A. Glennon^{a,*}

^aDepartment of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA ^bDepartment of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA ^cDepartments of Psychiatry and Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA

Received 30 November 2004; revised 12 January 2005; accepted 14 January 2005

Abstract—4-Sulfonyl analogs of 1-(1-naphthyl)piperazine bind at human 5-HT₆ receptors and represent a novel class of human 5-HT₆ receptor ligands. © 2005 Elsevier Ltd. All rights reserved.

1-(1-Naphthyl)piperazine (1-NP; **1a**), like serotonin (5-hydroxytryptamine, 5-HT, **2**) itself, is a fairly promiscuous serotonergic ligand that binds in a nonselective manner at multiple populations of serotonin (5-HT) receptors; we have suggested that 1-NP is a general tryptamine-mimic.¹ Consistent with this notion, we have found that 1-NP (**1a**, $K_i = 120$ nM) binds to human 5-HT₆ (h5-HT₆) serotonin receptors with an affinity comparable to that of 5-HT ($K_i = 100$ nM), and with 10-fold higher affinity than the monocyclic 2-methoxyphenyl-piperazine **3** ($K_i = 1.200$ nM),² indicating that its bicyclic nature might contribute to binding.

5-HT₆ Serotonin receptors represent one of the seven major types of 5-HT receptors $(5-HT_1-5-HT_7)$.^{3–7} This receptor population was identified about 10 years ago and within the past few years several selective ligands have been reported (reviewed^{6–9}). 5-HT₆ receptors are of interest due to their possible involvement in depression, psychosis, cognition, and appetite.^{6–9}

We identified MS-245 (4) as one of the first 5-HT₆ antagonists and have studied its structure–affinity relationships.¹⁰ For example, the 5-methoxy group of MS-245 (4) can be replaced by hydrogen with little impact on affinity; Russell and Dias¹¹ have reported similar

Keyword: 5-HT₆ Serotonin receptors.

findings. Although the presence of the sulfonyl moiety is optimal, a methylene group in its place causes only a modest decrease in affinity¹² without altering antagonist action. We have also shown that the tryptaminergic ligands 2-ethyl-5-methoxy-N,N-dimethyltryptamine (5; $K_i = 16$ nM) and 2-phenyl-5-methoxy-N,N-dimethyltryptamine (6; $K_i = 20$ nM) bind to h5-HT₆ receptors with relatively high affinity.¹³

The present investigation was focused not so much on developing novel 5-HT₆ ligands as it was on testing

^{*} Corresponding author. Tel.: +1 804 828 8487; fax: +1 804 828 7404; e-mail: glennon@hsc.vcu.edu

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.01.031

the hypothesis that 1-NP (1a) is a tryptamine-mimic at these receptors. Toward this end, we prepared analogs of 1a bearing tryptaminergic substituents either known to be tolerated, or that impart enhanced 5-HT₆ receptor affinity. Specifically, we prepared 1-(1-naphthyl)piperazine analogs of several previously characterized MS-245 (4) derivatives and of compounds 5 and 6, and then measured their affinity at h5-HT₆ receptors.

Results and discussion

Synthesis

Piperazine intermediate **1b** was obtained by treatment of **15** with bis(2-chloroethylamine) in the presence of triethylamine (Scheme 1). Reaction of **1b** with phenyl or benzyl 9-BBN in the presence of $PdCl_2(dppf)$ afforded **1c** and **e**, respectively, (Table 1).

Compounds 1d and f were prepared in a common manner (Scheme 1). Reaction of 16 with PhCOCl or PhSO₂Cl in the presence of AlCl₃ afforded 17 and 18; subsequent coupling with piperazine provided the desired targets. Compound 1g was prepared from *N*-Boc-protected 1b by treatment with BuLi and 4-nitrobenzenesulfonyl chloride, deprotection of the product with trifluoroacetic acid, and SnCl₂ reduction of the nitro group.

The 3-substituted naphthylpiperazines were obtained from the protected naphthalene diol **20**,¹⁴ which was prepared in four steps from commercially available diol **19** (Scheme 2). Using a Suzuki-type coupling reaction,

Scheme 1. Reagents: (a) HN(CH₂CH₂Cl)₂, NEt₃; (b) PdCl₂(dppf), Ph or Bn 9-BBN, dioxane; (c) PhCOCl or PhSO₂Cl, AlCl₃; (d) piperazine, NaOBu-*t*, PdCl₂[P(*o*-tol)₃]₂.

compound **20** was converted to **21b**, and **21b** was converted to triflate **22b**. Compound **22b** was allowed to react with *N*-Boc-protected piperazine using BINAP, Cs_2CO_3 , and 18-crown-6 in toluene with Pd_2dba_3 as catalyst. Deprotection of **23b** afforded **1i**. Compound **21b** could also be obtained directly from **19** as previously reported.¹⁵ Compound **1h** was obtained by a similar sequence of reactions using a Stille reaction by first converting **20** to its corresponding ethyl derivative **21a** by reaction with $Et_4Sn/PdCl_2(PPh_3)_2$ and LiCl in DMF.

Table 1. Physicochemical and h5-HT₆ serotonin receptor binding properties of arylpiperazines and related derivatives

N-N-N-

	R	Overall yield, %	Melting point, °C	Recrystallization solvent	Empirical formula ^a	$h5$ -HT ₆ K_i , nM (±SEM) ^b
1a	Н	_	_	_	_	120 (±20)
1b	4-Br	45	208-209	MeOH	$C_{14}H_{15}BrN_2 C_2H_2O_4$	54 (±7)
1c	4-Ph	51	207-208	MeOH	$C_{20}H_{20}N_2 \cdot C_2H_2O_4^{d}$	190 (±90)
1d	4-C(=O)Ph	39	171-172	MeOH/Et ₂ O	$C_{21}H_{20}N_2O \cdot C_2H_2O_4^{e}$	57 (±10)
1e	4-CH ₂ Ph	37	210-211	MeOH	$C_{20}H_{20}N_2 \cdot C_2H_2O_4^{\ d}$	35 (±9)
1f	4-SO ₂ Ph	38	201-203	MeOH/Et ₂ O	$C_{20}H_{20}N_2O_2S \cdot C_2H_2O_4$	3.8 (±0.8)
1g	$4-SO_2C_6H_4NH_2-p$	5	197–199	MeOH	$C_{20}H_{21}N_3O_2S \cdot 2.75HCl$	0.9 (±0.3)
1h	3-Et	16	244-246	MeOH/Et ₂ O	C16H20N2·HCl	21 (±2)
1i	3-Ph	15	252–254	MeOH/Et ₂ O	C ₂₀ H ₂₀ N ₂ ·HCl ^f	9.3 (±1.3)
8		64	$200-202^{\circ}$	2-PrOH	$C_{16}H_{13}NO_2S$	34 (±4)
9		18	185–186	EtOAc	C ₁₆ H ₁₃ NO ₃ S·HCl	63 (±11)

^a All compounds analyzed within 0.4% of theory for C, H, and N; C₂H₂O₄ = oxalate salt. Compound **1a**, as its HCl salt, was available from previous investigations.

^b K_i values were determined in triplicate.²¹

^c Lit.²³ mp 203–205 °C.

^d Crystallized with 0.1 mol H₂O.

^e Crystallized with 0.5 mol H₂O.

^fCrystallized with 0.25 mol H₂O.

Scheme 2. Reagents: (a) Et_4Sn , $PdCl_2(PPh_3)_2$, LiCl, DMF; or $PhB(OH)_2$, Na_2CO_3 , $Pd(PPh_3)_4$, THF; (b) $(CF_3SO_2)_2O$, Et_3N , CH_2Cl_2 ; (c) *N*-Boc-piperazine, BINAP, Cs_2CO_3 , 18-crown-6, Pd_2dba_3 , toluene; (d) HCl, EtOH; (e) benzene, AlCl₃.

Compound **8** was obtained following hydrolysis of the product obtained by heating naphthalene, trifluoroacetic acid, and trifluoroacetic anhydride with sulfanilic acid. Hydroxylamine **9** was isolated in an attempt to obtain **8** from 1-bromonaphthalene by reaction with BuLi and 4-nitrobenzenesulfonyl chloride followed by reduction of the product with SnCl₂.

Pharmacology

MS-245 (4; $K_i = 2.1 \text{ nM}$)¹⁰ binds with high affinity to h5-HT₆ receptors. Replacement of the benzenesulfonyl moiety with a phenyl group ($K_i = 33 \text{ nM}$) or benzoyl group ($K_i = 18 \text{ nM}$) results in about 10- to 15-fold decreased affinity; the corresponding benzyl analog ($K_i = 6.5 \text{ nM}$) binds with only 3-fold decreased affinity.¹² In the present investigation, the benzenesulfonyl analog of **1** (**1f**; $K_i = 3.8 \text{ nM}$; Table 1) displayed an affinity comparable to that of MS-245 (**4**). Replacement of the benzenesulfonyl moiety by a phenyl group (**1c**; $K_i = 190 \text{ nM}$), benzoyl group (**1d**; $K_i = 57 \text{ nM}$), or benzyl group (**1e**, $K_i = 35 \text{ nM}$) resulted in lower-affinity compounds. As with the benzenesulfonyltryptamine series, the sulfonyl group seems optimal for h5-HT₆ serotonin receptor affinity.

Compounds **1h** ($K_i = 21 \text{ nM}$) and **1i** ($K_i = 9.3 \text{ nM}$) are the 1-(1-naphthyl)piperazine analogs of tryptamines **5** and **6** ($K_i = 16 \text{ nM}$ and 20 nM, respectively). As in the tryptamine series, an ethyl or phenyl substituent results in enhanced affinity relative to the parent compound 1-NP (**1a**; $K_i = 120 \text{ nM}$).

We have previously demonstrated (i) that the methoxy substituent of **4** does not contribute to binding, (ii) that a 4'-amino substituent is tolerated, and (iii) that an intact tryptamine moiety is not essential for 5-HT₆ affinity.¹⁶ For example, compound 7 ($K_i = 12 \text{ nM}$),¹⁶ which lacks the tryptamine amine moiety, binds with only about 6-fold reduced affinity relative to **4**.

To further test possible binding similarities between the naphthylpiperazines and the tryptamines, we prepared compounds **1g** and **8**. The 4'-amine analog **1g** ($K_i = 0.9 \text{ nM}$) was found to bind with high affinity. Furthermore, as with the tryptamines, removal of the 'side chain' (i.e., the piperazine moiety) in the benzenesulfonylnaphthylpiperazine series, also resulted in a compound (i.e., **8**; $K_i = 34 \text{ nM}$) that binds to 5-HT₆ receptors, albeit with about 10-fold reduced affinity relative to **1f**. Hydroxylamine **9** ($K_i = 63 \text{ nM}$) was isolated as a byproduct in the synthesis of **8**; compound **9** is the first hydroxylamine shown to bind to 5-HT₆ receptors.

Tryptamine 4, MS-245, is a 5-HT₆ antagonist.¹⁰ The functional activity of compound **1f** at h5-HT₆ receptors was examined (i.e., 5-HT-stimulated adenylate cyclase; data not shown) and showed that **1f** also is a 5-HT₆ antagonist (**1f** $pA_2 = 7.5 \pm 0.2$).

Given the lack of strict structural correspondence between an indole ring and a naphthyl ring, the results support the general notion that those structural features tolerated by, or that enhance, the 5-HT₆ serotonin receptor affinity of the tryptamine nucleus are also tolerated by or enhance the affinity of the corresponding 1-(1-naphthyl)piperazines. In fact, for eight compounds where such comparisons could be made (i.e., compounds **1a,c-1i**, and their corresponding tryptamine derivatives— K_i values for which have been previously published^{2,10,12}) there was a significant correlation between their pK_i values (r = 0.856) supporting the idea that parallel structural modification in the two series results in parallel shifts in receptor affinity.

Initially, it was found that simple arylpiperazines, such as **3**, bind to 5-HT₆ receptors with low affinity.² However, the arylpiperazine derivatives described here are not the first to demonstrate significant affinity for 5-HT₆ receptors. Incorporation of specific arylsulfonamide moieties dramatically enhances the affinity of **3**

[i.e., 10; $K_i = 5 \text{ nM}$ and 11 (SB-271046); $K_i = 1 \text{ nM}$].¹⁷ Furthermore, 'reverse' sulfonamides such as 12 (SB-357134; $K_i = 3 \text{ nM}$)¹⁸ also bind to 5-HT₆ receptors with relatively high affinity. These findings indicate that the orientation of the sulfonamide portion of these molecules might not be a critical determinant of binding.

In the present investigation it was found that certain 1-(1-naphthyl)piperazine analogs of tryptamine bind to h5-HT₆ serotonin receptors, and that compound **1f**, like MS-245 (**4**), is a 5-HT₆ antagonist. However, unlike the sulfonamide MS-245 (**4**), **1f** is a sulfone. Several other sulfones have been recently shown to bind to 5-HT₆ receptors;^{19,20} compounds **13** (K_i ca. 1 nM)¹⁹ and especially **14** (K_i ca. 0.1 nM)¹⁹ are particularly relevant to the present work. Nevertheless, whereas **14** is the sulfone of a 3-substituted arylpiperazine, compounds **1f** and **g** are sulfones of 4-substituted arylpiperazines.

The general conclusion drawn from these studies is that 1-NP (1a) represents a suitable template for the further development of 5-HT₆ serotonin receptor ligands, and upon incorporation of appropriate substituents (e.g., 1f,g), can result in compounds with high affinity for the receptor. The findings also present additional evidence for the high-affinity binding of sulfones to h5-HT₆ serotonin receptors, and demonstrate that arylpiperazines can bear the sulfone moiety at the ring 4-position as opposed to arylpiperazine compounds such as 14, which bear a sulfonyl moiety at the arylpiperazine 3-position. Additional studies with such compounds are now in progress.

Acknowledgments

The present work was supported in part by NIMH MH 60599. Studies of the 3-substituted arylpiperazines were supported by BTG International.

References and notes

- Glennon, R. A.; Westkaemper, R.; Bartyzel, P. In Serotonin Receptor Subtypes; Peroutka, S., Ed.; Wiley-Liss: NY, 1991; pp 19–64.
- Glennon, R. A.; Bondarev, M.; Roth, B. L. Med. Chem. Res. 1999, 9, 108.
- 3. Hoyer, D.; Hannon, J. P.; Martin, G. R. *Pharmacol. Biochem. Behav.* **2002**, *71*, 533.
- 4. Kroeze, W. K.; Kristiansen, K.; Roth, B. L. Curr. Top. Med. Chem. 2002, 2, 507.
- 5. Humphrey, P. P. A.; Hartig, P. R.; Hoyer, D. Trends Pharmacol. Sci. 1993, 14, 233.
- Roth, B. L.; Hanizavareh, S. M.; Blum, A. E. Psychopharmacology (Berl.) 2004, 174, 17.
- Woolley, M. L.; Marsden, C. A.; Fone, K. C. F. Curr. Drug Top. 2004, 3, 59.
- Slassi, A.; Isaac, M.; O'Brien, A. Expert Opin. Ther. Patents 2002, 12, 513.
- 9. Glennon, R. A. J. Med. Chem. 2003, 46, 2795.
- Tsai, Y.; Dukat, M.; Slassi, A.; MacLean, N.; Demchyshyn, L.; Savage, J. E.; Roth, B. L.; Hufesein, S.; Lee, M.; Glennon, R. A. *Bioorg. Med. Chem. Lett.* 2000, 10, 2295.
- 11. Russell, M. G. N.; Dias, R. Curr. Top. Med. Chem. 2002, 2, 643.
- Lee, M.; Rangisetty, J. B.; Dukat, M.; Slassi, A.; MacLean, N.; Lee, D. K. H.; Glennon, R. A. *Med. Chem. Res.* 2000, 10, 230.
- Glennon, R. A.; Lee, M.; Rangisetty, J. B.; Dukat, M.; Roth, B. L.; Savage, J. E.; McBride, A.; Rauser, L.; Hufesien, L.; Lee, D. K. H. J. Med. Chem. 2000, 43, 1011.
- 14. Ye, B.; Burke, T. R., Jr. Tetrahedron 1996, 52, 9963.
- 15. Koltunov, K. Y.; Repinskaya, I. B.; Shakirov, M. M. Russ. J. Org. Chem. 1994, 30, 88.
- Pullagurla, M.; Setola, V.; Roth, B. L.; Glennon, R. A. Bioorg. Med. Chem. Lett. 2003, 13, 3355.
- Bromidge, S. M.; Brown, A. M.; Clarke, S. E.; Dodgson, K.; Gager, T.; Grassam, H. L.; Jeffrey, P. M.; Joiner, G. F.; King, F. D.; Middlemiss, D. N.; Moss, S. F.; Newman, H.; Riley, G.; Routledge, C.; Wyman, P. J. Med. Chem. 1999, 42, 202.
- Bromidge, S. M.; Clarke, S. E.; Gager, T.; Griffith, K.; Jeffrey, P.; Jennings, A. J.; Joiner, G. F.; King, F. D.; Lovell, P. J.; Moss, S. F.; Newman, H.; Riley, G.; Rogers, D.; Routledge, C.; Serafinowska, H.; Smith, D. R. *Bioorg. Med. Chem. Lett.* 2001, 11, 55.
- Riemer, C.; Borroni, E.; Levit-Trafit, B.; Martin, J. R.; Poli, S.; Porter, R. H.; Bos, M. J. Med. Chem. 2003, 46, 1273.
- Wu, Y.-J.; He, H.; Hu, S.; Huang, Y.; Scola, P. M.; Grant-Young, K.; Bertekap, R. L.; Wu, D.; Gao, Q.; Li, Y.; Klakouski, C.; Westphal, R. S. J. Med. Chem. 2003, 46, 4834.
- 21. The h5-HT₆ radioligand binding assay was performed as previously described.²² In brief, h5-HT₆ cDNA was transiently expressed in HEK-293 cells using Fugene6 according to the manufacturer's recommendations. After 24 h transfection the medium was replaced; 24 h later, medium containing dialyzed serum (to remove 5-HT) was added. At 75 h after transfection, cells were harvested by scraping and centrifugation. Cells were then washed by

centrifugation and resuspension once in phosphate buffered saline (PBS; pH = 7.40) and then frozen as tight pellets at -80 °C until use. Binding assays were performed at room temperature for 90 min in binding buffer (50 mM Tris-Cl, 10 mM MgCl₂, 0.1 mM EDTA, pH = 7.40) with [³H]LSD (1 nM final concentration) using 10 μ M clozapine for non-specific binding. Concentrations of unlabeled test agent (1–10,000 nM) were used for K_i determinations with K_i values calculated using the program LIGAND. Specific binding represented 80–90% of total binding. K_i values are the result of triplicate determinations.

- Kohen, R.; Metcalf, M. A.; Khan, N.; Druck, T.; Huebner, K.; Lachowicz, J. E.; Meltzer, H. Y.; Sibley, D. R.; Roth, B. L.; Hamblin, M. W. J. Neurochem. 1996, 66, 47.
- 23. Gilbert, E. E. Synth. Commun. 1971, 372.