

Journal of Nanoscience and Nanotechnology Vol. 17, 3744–3750, 2017 www.aspbs.com/jnn

AuPd@Mesoporous SiO₂: Synthesis and Selectivity in Catalytic Hydrogenation/Hydrodechlorination of *p*-Chloronitrobenzene

Guangming Yang^{1, 2}, Hongbo Yu¹, Jianfeng Zhang², Hongfeng Yin¹, Zhen Ma^{3, *}, and Shenghu Zhou^{1, 4, *}

¹ Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China ² Department of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China ³ Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China

⁴ School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China

AuPd nanoparticles (NPs) protected by tetradecyl trimethyl ammonium bromide (TTAB) were coated with SiO₂ through hydrolysis of tetraethylorthosilicate (TEOS). The as-synthesized AuPd@SiO₂ core–shell NPs were calcined in air at 500 °C to remove TTAB and open up mesopores within the SiO₂ shells. The obtained Au–PdO@m-SiO₂ NPs were reduced by H₂ at 300 °C to obtain AuPd@m-SiO₂ NPs with AuPd NP cores (diameter: ~3 nm) and SiO₂ shells (thickness: ~18 nm). Results from relevant characterization indicated that these SiO₂-protected core–shell NPs were highly stable during calcination and subsequent reduction. Au@m-SiO₂, Au₁₀Pd@m-SiO₂, Au₅Pd@m-SiO₂, AuPd₅@m-SiO₂, AuPd₁₀@m-SiO₂, and Pd@m-SiO₂ NPs with similar core sizes and shell thicknesses were also synthesized. These samples were tested in the catalytic hydrogenation of *p*-chloronitrobenzene. The activity and selectivity were found to be tunable, depending on the composition of the bimetallic alloys. AuPd@m-SiO₂ NPs with a 1/1 molar ratio of Au/Pd showed the highest selectivity for the hydrodechlorination of *p*-chloronitrobenzene.

Keywords: AuPd Alloy, Core–Shell, Mesoporous SiO₂, Nanoparticles, Thermal Stability.

1. INTRODUCTION

Conventional supported catalysts are prepared by supporting active components (e.g., metals, metal oxides) onto solid supports via methods such as impregnation, colloidal deposition, and deposition-precipitation. These catalysts are easy to prepare and have many choices of active components and supports, thus they can be tailored to satisfy the specific needs in different reactions. However, the thermal stability of supported noble metal catalysts remains to be an issue because metal nanoparticles (NPs) tend to agglomerate/sinter under elevated temperatures. To tackle this problem, metal@oxide core-shell catalysts have been developed.¹⁻⁸ A core-shell particle can be regarded as a nanoreactor in which the metal NP within the shell can provide catalytically active centers and the oxide shell can not only host the metal NP but also protect it against thermal sintering.9-14 The oxide shell should be porous, otherwise the reactants cannot diffuse into the "nanoreactor"

for a reaction to take place. Usually the oxide shell is SiO_2 because the sol–gel chemistry of SiO_2 is well established and SiO_2 has better thermal stability than TiO_2 and ZrO_2 .¹⁵

Although some papers have reported the preparation and catalytic application of metal@oxide core-shell NPs, it would be desirable to prepare alloy@oxide coreshell NPs. Bimetallic NPs have attracted much attention because of their unique optical,¹⁶⁻¹⁸ magnetic,^{19,20} and catalytic properties.²¹⁻²³ In particular, supported AuPd NPs are useful for catalyzing many reactions such as CO oxidation,^{24,25} combustion of methane,²⁶ combustion of tolune,^{27,28} photocatalytic degradation of antibiotic levofloxacin,²⁹ direct synthesis of H₂O₂ from H₂ and O₂,^{30,31} selective oxidation of alcohols,³²⁻³⁴ aerobic oxidation of clclohexane,³⁵ H₂ generation from formic acid,³⁶ and partial reduction of organic substrates.³⁷⁻⁴² However, the synthesis and catalytic application of AuPd@oxide core–shell NPs have been barely reported. In a recent work, Torimoto et al. developed a new method to coat AuPd NPs with In₂O₃ coatings, and studied the

^{*}Authors to whom correspondence should be addressed.

^{1533-4880/2017/17/3744/007}

Yang et al.

performance of the catalysts in electrocatalytic oxidation of ethanol.⁴³

We previously developed PdNi@m-SiO2,44 Pd-NiO@m-SiO₂,⁴⁴ PtNi@m-SiO₂,⁴⁵ and Pt-NiO@m-SiO₂,⁴⁵ and tested their catalytic performance in the hydrogenation of *p*-chloronitrobenzene. The hydrogenation of p-chloronitrobenzene (p-CNB) may yield p-chloroaniline (p-CAN), p-aminophenol (p-AP), and aniline (AN), depending on the nature of catalysts and reaction conditions (Fig. 1).44 Most references report the partial hydrogenation of p-CNB to p-CAN,44-53 because p-CAN is a useful chemical intermediate, whereas a few references focus on the hydrodechlorination of p-CNB to AN,⁵⁴ because hydrodechlorination is an important topic in environmental catalysis. The influence of support on the selectivity of Pd catalysts in gas-phase hydrogenation of p-CNB was also reported.55 It was found that while Pd/ZnO favored the formation of p-CAN, Pd/SiO₂ favored the formation of *p*-AN.

In the present work, a series of AuPd@m-SiO₂ NPs with different Au/Pd ratios were synthesized using a sol–gel method, and were tested in the hydrogenation of *p*-CNB. It was found that Au@m-SiO₂, Au₁₀Pd@m-SiO₂, and Au₅Pd@m-SiO₂ showed no activity or low activity for this reaction, whereas AuPd@m-SiO₂, AuPd₅@m-SiO₂, AuPd₁₀@m-SiO₂, and Pd@m-SiO₂ showed 100% conversion under the reaction condition. Pd@m-SiO₂ showed 55.0% selectivity to AN and 42.0% selectivity to *p*-CAN, whereas AuPd@m-SiO₂ with a 1/1 Au/Pd ratio favored dechlorination, showing 94.7% selectivity to AN. The data indicate that the activity and selectivity are tunable in this bimetallic catalyst system.

 NH_2

Figure 1. Reaction network for the catalytic hydrogenation of *p*-CNB. Reproduced with permission from [44], X. J. Zhang, et al., *Catal. Lett.* 145, 784 (2015). © 2015, Springer.

J. Nanosci. Nanotechnol. 17, 3744–3750, 2017

2. EXPERIMENTAL DETAILS

2.1. Chemicals

Potassium tetrachloropalladate(II) (K_2PdCl_4), gold chloride solution (23.5–23.8%), sodium borohydride (NaBH₄, 98%), aqueous ammonia solution (25–28%), tetraethylorthosilicate (TEOS, AR), and tetradecyl trimethyl ammonium bromide (TTAB, AR) were purchased from Aladdin. *p*-Chloronitrobenzene (*p*-CNB, AR) was purchased from Shanghai Chemical Reagent Company.

2.2. Synthesis of TTAB-Capped AuPd NPs and AuPd@SiO₂ NPs

In a typical synthesis, an aqueous solution of K₂PdCl₄ (0.183 mL, 153.2 mM) and an aqueous solution of HAuCl₄ (0.280 mL, 100 mM) were mixed with 90 ml of deionized water in a 250 mL three-neck round-bottomed flask with magnetic stirring at room temperature, and then 0.840 g TTAB was added. The mixture was stirred for ~ 10 min to fully dissolve TTAB. An ice-cooled NaBH4 aqueous solution (5 mL, 0.53 M) was then injected using a syringe. The tip of the syringe was maintained in the system to release the gas generated during the reaction, and was then removed to make a closed system. The solution was further stirred at low speeds for 15 h at room temperature to obtain AuPd NP colloids. The as-synthesized AuPd colloids (24 mL) were mixed with 120 mL of deionized water in a 250 mL three-neck round-bottomed flask at room temperature with magnetic stirring. A few drops of ammonia solution (25-28 wt.%) were added to adjust the pH value to 10.7, and then TEOS (600 μ L, 2.69 mmol) was added. The resultant solution was stirred at low speeds for 2 h at room temperature to obtain AuPd@SiO₂ NP colloids. The mixture was centrifuged, washed with ethanol twice and water twice, and then dried at 100 °C for 3 h.

2.3. Synthesis of Au-PdO@m-SiO₂ and AuPd@m-SiO₂ NPs

The dried AuPd@SiO₂ NPs were grounded and calcined in a muffle furnace at 500 °C for 2 h to remove TTAB. The resultant Au–PdO@m-SiO₂ powders were reduced by high-purity H₂ (30 mL/min) in a fixed bed reactor at 300 °C for 2 h to obtain AuPd@m-SiO₂ NPs.

2.4. Synthesis of Other Core–Shell NPs

Au@m-SiO₂, Au₁₀Pd@m-SiO₂, Au₅Pd@m-SiO₂, AuPd₅@m-SiO₂, AuPd₁₀@m-SiO₂, and Pd@m-SiO₂ NPs were prepared by the similar method mentioned above. In each synthesis with different ratios of Au/Pd, the total molar number of the metal(s) was equal to that of AuPd@m-SiO₂.

2.5. Characterization

XRD patterns of samples were collected by a Bruker D8 Advance X-ray diffractometer with Cu K α radiation in the

 2θ range from 10° to 90°. Transition electron microscopy (TEM) images were obtained by JEOL 2100 transmission electron microscope. The samples were made as follows: a certain amount of catalysts was dispersed in ethanol by ultrasonic treatment, and a drop of the solution was dropped onto a carbon-coated copper grid that was subsequently dried in air at room temperature. The actual metal contents of the catalysts were obtained by a PE Optima 2100DV inductive coupled plasma optical emission spectrometer (ICP-OES). Infrared (IR) spectra of the NPs before and after treatments were recorded in the transmission mode by a Bruker Tensor 27 spectrophotometer. The thermal degradation property of the sample before treatment was measured by a Pyris Diamond thermo gravimetric analyzer (TGA). The sample was heated from 50 to 500 °C at a heating rate of 10 °C/min under flowing air (50 mL/min). Brunauer-Emmett-Teller (BET) surface areas, pore size distributions, and the adsorption/desorption isotherms of the samples were measured by N₂ adsorption at 77 K, using a Micrometrics ASAP-2020 M automatic specific surface area and porous physical adsorption analyzer.

3. RESULTS AND DISCUSSION

Figure 2 shows the TEM images of various as-synthesized NPs. The average particle size of TTAB-capped AuPd NPs with a 1/1 ratio of Au/Pd is ~ 2.5 nm, and the lattice spacing is 0.302 nm (Fig. 2(a)), consistent with the of Au@SiO₂, Au₁₀Pd@SiO₂, Au₅Pd@SiO₂, AuPd@SiO₂, AuPd₅@SiO₂, AuPd₁₀@SiO₂, and Pd@SiO₂ are shown in Figures 2(b-h), respectively. AuPd@SiO₂ in Figure 2(e)shows an average particle size of 2.5 nm for AuPd cores

and a thickness of ~ 18 nm for SiO₂ shells. Empty SiO₂ NPs are rarely seen in Figures 2(b-h), but a few core-shell NPs with multiple cores are found. In this study, the optimal hydrolysis condition is found at a pH value of 10.7 and a TEOS/total metal molar ratio of 192/1. Empty SiO₂ NPs are observed at lower pH values, and a large percentage of NPs with multiple cores are observed at higher pH values. Moreover, higher TEOS/total metal ratios result in thicker silica shells.

Figure 3 shows the TEM images of mesoporous coreshell NPs obtained by removing the TTAB at 500 °C followed by reduction in H₂ at 300 °C. The average particle size of the metal cores and thickness of silica shells of metal@m-SiO₂ structures are nearly the same as those of metal@SiO₂ NPs (Fig. 4), demonstrating the high thermal stability for these core-shell catalysts. The presence of mesopores is illustrated in Figure 3(f) showing one AuPd₅@m-SiO₂ NP.

Figure 5 shows the N₂ adsorption-desorption isotherms and pore size distribution of various metal@m-SiO₂ NPs with different Au/Pd ratios. Table I shows the BET surface areas, pore volumes, and pore sizes of these samples. These mesoporous core-shell NPs exhibit large BET surface areas higher than 1000 m²/g and the average pore sizes are identical (2.1 nm).

The creation of mesopores through calcination is due to the removal of TTAB. The TGA curve of AuPd@SiO₂ in Figure 6 suggests that the calcination at 500 °C in air can completely remove TTAB, and FT-IR spectra for lattice spacing of AuPd (111) plane. The TEM imagesd by AuPd@SiO2 and AuPd@m-SiO2 in Figure 7 further confirm the removal of TTAB upon calcination in air.

> Figure 8 shows the XRD patterns of various core-shell NPs. The broad feature in the 2θ range of 20° and 30° corresponds to amorphous SiO₂. PdO@m-SiO₂ prepared

Figure 2. TEM images of core-shell NPs synthesized at the condition of a pH value of 10.7 and a TEOS/total metal molar ratio of 192/1. (a) TTABcapped AuPd NPs, and insert is HRTEM image of one NP showing a lattice spacing of 0.302 nm; (b) Au@SiO₂; (c) Au₁₀Pd@SiO₂; (d) Au₅Pd@SiO₅; (e) $AuPd@SiO_2$; (f) $AuPd_5@SiO_2$; (g) $AuPd_{10}@SiO_2$; (h) $Pd@SiO_2$.

J. Nanosci. Nanotechnol. 17, 3744-3750, 2017

Figure 3. TEM images of NPs synthesized at the condition of a pH value of 10.7 and a TEOS/total metal molar ratio of 192/1 after 500 °C calcination and following 300 °C H₂ reduction. (a) Au@m-SiO₂; (b) Au₁₀Pd@m-SiO₂; (c) Au₅Pd@m-SiO₂; (d) AuPd@m-SiO₂; (e) AuPd₅@m-SiO₂; (f) details of AuPd₅@m-SiO₂; (g) AuPd₁₀@m-SiO₂; (h) Pd@m-SiO₂.

Figure 4. Size distribution of AuPd and AuPd₅ NPs in different systems. (a) AuPd NPs capped with TTAB; (b) AuPd@SiO₂; (c) AuPd@m-SiO₂; (d) AuPd₅ NPs capped with TTAB; (e) AuPd₅@SiO₂; (f) AuPd₅@m-SiO₂.

Figure 5. N_2 adsorption-desorption isotherms (left panel) and pore size distribution (right panel). (a) Au@m-SiO₂; (b) Au₁₀Pd@m-SiO₂; (c) Au₅Pd@m-SiO₂; (d) AuPd@m-SiO₂; (e) AuPd₅@m-SiO₂; (f) AuPd₁₀@m-SiO₂; (g) Pd@m-SiO₂.

J. Nanosci. Nanotechnol. 17, 3744–3750, 2017

AuPd@Mesoporous SiO₂: Synthesis and Selectivity in Catalytic Hydrogenation/Hydrodechlorination of p-CNB

shell NPs.						
Samples	BET surface area (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)			
Au@m-SiO ₂	1527	2.0	2.1			
Au ₁₀ Pd@m-SiO ₂	1308	1.6	2.1			
Au ₅ Pd@m-SiO ₂	1209	1.5	2.1			
AuPd@m-SiO ₂	1153	1.5	2.1			
AuPd ₅ @m-SiO ₂	1199	1.5	2.1			
AuPd ₁₀ @m-SiO ₂	1178	1.4	2.1			
Pd@m-SiO ₂	1147	1.4	2.1			

Table I. BET surface areas, pore volumes, and pore sizes of core-shell NPs.

by calcining Pd@m-SiO₂ at 500 °C shows a diffraction peak at $2\theta = 33.8^\circ$, corresponding to the (101) plane of PdO (Fig. 8(a)). PdO@m-SiO₂ can be reduced in H₂ at 300 °C to form Pd@m-SiO₂, as seen from a peak at $2\theta =$ 40.1° corresponding to the (111) plane of metallic Pd (Fig. 8(b)). Au@m-SiO₂ obtained by calcining Au@SiO₂ at 500 °C contains metallic Au, as seen from a peak at $2\theta = 38.2^{\circ}$ corresponding to the (111) plane of Au (Fig. 8(c)). Figure 8(d) shows the XRD pattern of assynthesized AuPd@SiO₂ (without calcination to remove TTAB and open up mesopores). A very weak diffraction at $2\theta = 39.1^{\circ}$ of (111) plane of AuPd is present. The XRD pattern of AuPd@m-SiO₂ (prepared by calcining AuPd@SiO₂ in air at 500 °C followed by reduction in H₂ at 300 °C) is shown in Figure 8(e). The AuPd alloy phase is maintained after calcination and reduction.

Catalytic hydrogenation of *p*-chloronitrobenzene with H_2 using mesoporous core–shell NPs as catalysts was tested using ethanol solvent with vigorous stirring at 50 °C and atmospheric pressure. Table II shows the actual loadings of Au and Pd in various mesoporous core–shell NPs, as obtained by ICP. The weight of catalysts was adjusted according to the actual metal loadings to keep the total molar number of Au and Pd constant. Figure 1 shows the reaction network,⁴⁴ and Table III shows the catalytic results. It is clear that Au@m-SiO₂ and Au₁₀Pd@m-SiO₂ are not active at all. Au₅Pd@m-SiO₂ shows a low conversion of 6.5%. The null activity of Au@m-SiO₂ in the

Figure 7. FT-IR spectra. (a) AuPd@m-SiO₂; (b) AuPd@SiO₂. The 2853 and 2923 cm⁻¹ peaks in spectrum b are ascribed to methylene group in TTAB, which disappears in the calcined sample in spectrum a.

hydrogenation of *p*-chloronitrobenzene is in line with the finding that Au/C showed no activity in the hydrogenation of 2-chloronitrobenzene.⁵⁶

On the other hand, AuPd@m-SiO₂, AuPd₅@m-SiO₂, AuPd₁₀@m-SiO₂, and Pd@m-SiO₂ show 100% conversion under the reaction conditions. The selectivity to AN obtained using different catalysts follows the sequence of AuPd@m-SiO₂ (94.7%) > AuPd₅@m- SiO_2 (77.8%) > AuPd₁₀@m-SiO₂ (51.3%)~Pd@m-SiO₂ (55.0%). The selectivity to p-CAN obtained using different catalysts follows the sequence of AuPd@m-SiO₂ $(3.3\%) < AuPd_5@m-SiO_2$ (20.2%) > AuPd₁₀@m-SiO₂ (44.0%)~Pd@m-SiO₂ (42.0%). The data indicate that the selectivity is tunable and AuPd@m-SiO₂ favors dechlorination. Corbos and co-workers developed several PdAu/C catalysts with Pd/Au weight percentage ratios of 10/90, 50/50, 75/25, and 100/0, respectively, and tested the catalysts in the hydrogenation of 2-chloronitrobenzene.⁵⁶ The authors found that the selectivity to 2-CAN increased when the Pd content of the catalyst was increased. The trend is consistent with the trend seen in our current work. Additional theoretical work is still needed to understand the

Figure 8. XRD patterns of NPs. (a) PdO@m-SiO₂; (b) Pd@m-SiO₂; (c) Au@m-SiO₂; (d) as-synthesized AuPd@SiO₂; (e) AuPd@m-SiO₂.

J. Nanosci. Nanotechnol. 17, 3744-3750, 2017

3748

Table II. The real metal loadings of core-shell NPs as analyzed by ICP-OES.

Sample	Au content (wt.%)	Pd content (wt.%)	
Au@m-SiO ₂	1.876	N/A	
Au ₁₀ Pd@m-SiO ₂	1.737	0.0875	
Au ₅ Pd@m-SiO ₂	1.6235	0.1625	
AuPd@m-SiO ₂	0.9615	0.496	
AuPd ₅ @m-SiO ₂	0.321	0.757	
AuPd ₁₀ @m-SiO ₂	0.174	0.872	
Pd@m-SiO ₂	N/A	1.009	

Table III. Hydrogenation of *p*-CNB with H_2 catalyzed by core–shell MPs. The products are aniline (AN), *p*-chloroaniline (*p*-CAN), and *p*-aminophenol (*p*-AP).

		Selectivity (%)		
Catalysts	Conv. (%)	AN	<i>p</i> -CAN	p-AP
Au@m-SiO ₂	0.0	0.0	0.0	0.0
Au ₁₀ Pd@m-SiO ₂	0.0	0.0	0.0	0.0
Au ₅ Pd@m-SiO ₂	6.5	3.5	49.4	47.1
AuPd@m-SiO ₂	100	94.7	3.3	2.0
AuPd ₅ @m-SiO ₂	100	77.8	20.2	2.0
AuPd ₁₀ @m-SiO ₂	100	51.3	44.0	3.7
Pd@m-SiO ₂	100	55.0	42.0	3.0

Copyright: American

reasons for the change of selectivity as a function of Pd/Audratios.

The recyclability of representative catalysts was also studied. There was slight loss of catalysts after the separation of catalysts and the products, so the amount of reactant (*p*-CNB) and solvent (ethanol) were adjusted to make sure that the ratios of ethanol/*p*-CNB and catalyst/*p*-CNB in the following cycles were kept the same as those in the first cycle. As shown in Table IV, AuPd@m-SiO₂ shows

Table IV. Recyclability of typical catalysts in hydrogenation of p-CNB with H_2 . The products are aniline (AN), p-chloroaniline (p-CAN), and p-aminophenol (p-AP).

Cycle	Weight (g)	p-CNB (g)	Conversion (%)	AN (%)	p-CAN (%)	p-AP (%)
			AuPd@m	-SiO ₂		
1	2.000	1.000	100	95.2	3.1	1.7
2	1.786	0.893	99.8	85.6	10.3	4.1
3	1.542	0.771	99.0	84.7	10.8	4.5
			Pd@m-S	SiO ₂		
1	2.008	1.00	100	55.6	43.2	1.2
2	1.806	0.899	99.6	54.9	43.8	1.3
3	1.578	0.786	98.2	56.7	42.7	0.6

Note: Reaction conditions: atmospheric H_2 pressure; reaction time (2.5 h); speed of agitation (600 rpm); 30 ml of ethanol was used as solvent in the first cycle, and the ratios of ethanol/*p*-CNB and catalyst/*p*-CNB in the following cycles were kept the same as those in the first cycle.

J. Nanosci. Nanotechnol. 17, 3744–3750, 2017

100% conversion and the selectivity to AN is 95.2%. In the second cycle, the conversion is 99.8%, and the selectivity to AN somehow decreases to 85.6%. In the third cycle, the conversion is 99%, and the selectivity to AN remains 84.7%. For Pd@m-SiO₂, the conversion is 100% and the selectivity to AN is 55.6% under the reaction condition. Both the conversion and selectivity to AN are constant in three cycles. These data indicate that both catalysts are recyclable.

4. CONCLUSIONS

Various AuPd@m-SiO₂ mesoporous core-shell NPs were synthesized by a sol-gel method. They exhibited high surface areas (>1000 m^2/g) and mesopores (average pore sizes ~ 2.1 nm) due to the removal of TTAB template by calcination. These materials were tested in the hydrogenation of *p*-chloronitrobenzene. Au@m-SiO₂ and Au₁₀Pd@m-SiO₂ are not active at all under the reaction condition. Au₅Pd@m-SiO₂ shows a low conversion of 6.5%. AuPd@m-SiO2, AuPd5@m-SiO2, AuPd10@m-SiO₂, and Pd@m-SiO₂ show 100% conversion. The selectivity to aniline obtained using different catalysts follows the sequence of AuPd@m-SiO₂ (94.7%) > AuPd₅@m- SiO_2 (77.8%) > AuPd₁₀@m-SiO₂ (51.3%)~Pd@m-SiO₂ (55.0%). In particular, AuPd@m-SiO₂ with a 1/1 ratio of Au/Pd exhibited enhanced hydrodechlorination selectivity. This kind of materials could be potentially used in high temperature reactions due to the high thermal stability. In addition, they may be tested in other hydrogenation and hydrodechlorination reactions because the selectivity can be tuned as a function of alloy compositions.

Acknowledgments: This study was supported by National Natural Science Foundation of China (NSFC, 21571183), Ningbo City International Coorperation Program (Y40831DG05), the National Basic Research Program of China ("973" program) (2013CB934800), and Ningbo City Natural Science Foundation (2015A610056).

References and Notes

- M. Ikeda, T. Tago, M. Kishida, and K. Wakabayashi, *Chem. Com*mun. 37, 2512 (2001).
- C. M. Y. Yeung, K. M. K. Yu, Q. J. Fu, D. Thompsett, M. I. Petch, and S. C. Tsang, J. Am. Chem. Soc. 127, 18010 (2005).
- C. M. Y. Yeung, F. Meunier, R. Burch, D. Thompsett, and S. C. Tsang, J. Phys. Chem. B 110, 8540 (2006).
- K. Hori, H. Matsune, S. Takenaka, and M. Kishida, *Sci. Technol. Adv. Mater.* 7, 678 (2006).
- Q. Zhang, T. R. Zhang, J. P. Ge, and Y. D. Yin, *Nano Lett.* 8, 2867 (2008).
- S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. D. Yang, and G. A. Somorjai, *Nat. Mater.* 8, 126 (2009).
- C. Z. Wu, Z. Y. Lim, C. Zhou, W. G. Wang, S. H. Zhou, H. F. Yin, and Y. J. Zhu, *Chem. Commun.* 49, 3215 (2013).
- Y. B. Hu, C. Z. Wu, C. Zhou, H. F. Yin, and S. H. Zhou, J. Phys. Chem. C 117, 8974 (2013).
- 9. A. M. Cao, R. W. Lu, and G. Veser, *Phys. Chem. Chem. Phys.* 12, 13499 (2010).

Yang et al.

- 10. J. C. Park and H. Song, Nano Res. 4, 33 (2011).
- 11. Z. Ma and S. Dai, ACS Catal. 1, 805 (2011).
- 12. M. Cargnello, P. Fornasiero, and R. J. Goete, Catal. Lett. 142, 1043 (2012).
- 13. G. D. Li and Z. Y. Tang, Nanoscale 6, 3995 (2014).
- 14. S. Y. Song, X. Wang, and H. J. Zhang, NPG Asia Mater. 7, e179 (2015)
- 15. L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, Langmuir 12, 4329 (1996).
- 16. B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz Marzán, J. Mater. Chem. 15, 1755 (2005).
- 17. D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, and S. Gialanella, J. Nanosci. Nanotechnol. 7, 2480 (2007).
- 18. B. W. Boote, H. Byun, and J. H. Kim, J. Nanosci. Nanotechnol. 14, 1563 (2014).
- 19. Z. H. Lu, M. D. Prouty, Z. H. Guo, V. O. Golub, C. S. S. R. Kumar, and Y. M. Lvov, Langmuir 21, 2042 (2005).
- 20. I. Garcia, J. Echeberria, G. N. Kakazei, V. O. Golub, O. Y. Saliuk, M. Ilyn, K. Y. Guslienko, and J. M. Gonzalez, J. Nanosci. Nanotechnol. 12, 7529 (2012).
- 21. M. A. Behnajady and H. Eskandarloo, J. Nanosci. Nanotechnol. 13. 548 (2013).
- X. F. Wang, Z. L. Huang, L. L. Lu, H. J. Zhang, Y. N. Cao, Y. J. 22. Gu, Z. Cheng, and S. W. Zhang, J. Nanosci. Nanotechnol. 15, 2770 (2015).
- 23. S. Tokonami, H. J. Zhang, Y. N. Cao, L. L. Lu, Z. Cheng, and S. W. Zhang, J. Nanosci. Nanotechnol. 15, 5785 (2015).
- 24. L. Guczi, A. Beck, A. Horváth, Z. Koppány, G. Stefler, K. Frey, I. Sajó, O. Geszti, D. Bazin, and J. Lynch, J. Mol. Catal. A 204-205, 545 (2003).
- 25. J. Xu, T. White, P. Li, C. H. He, J. G. Yu, W. K. Yuan, and Y. F. Han, J. Am. Chem. Soc. 132, 10398 (2010).
- 26. Z. X. Wu, J. G. Deng, Y. X. Liu, S. H. Xie, Y. Jiang, X. T. Zhao, M. 50. H. Q. Liu, M. H. Eiang, C. Xiao, N. Zheng, X. H. Feng, Y. Liu, J. Yang, H. Arandiyan, G. S. Guo, and H. X. Dai, J. Catal, 332, 13 Scient, L. Xie, and Y. Wang, J. Mol. Catal. A 308, 79 (2009). (2015)
- 27. S. H. Xie, J. G. Deng, S. M. Zang, H. G. Yang, G. S. Guo, H. Arandiyan, and H. X. Dai, J. Catal. 322, 38 (2015).
- 28. S. H. Xie, J. G. Deng, Y. X. Liu, Z. H. Zhang, H. G. Yang, Y. Jiang, H. Arandiyan, H. X. Dai, and C. T. Au, Appl. Catal. A 507, 82 (2015)
- 29. Q. H. Chen, Y. J. Xin, and X. W. Zhu, Electrochim. Acta 186, 34 (2015).
- J. K. Edwards, A. F. Carley, A. A Herzing, C. J. Kiely, and G. J. 30. Hutchings, Faraday Discuss, 138, 225 (2008).
- 31. T. García, S. Agouram, A. Dejoz, J. F. Sánchez-Royo, L. Torrente-Murciano, and B. Solsona, Catal. Today 248, 48 (2015).
- 32. W. Hou, N. A. Dehm, and R. W. J. Scott, J. Catal. 253, 22 (2008).

- 33. S. Marx and A. Baiker, J. Phys. Chem. C 113, 6191 (2009).
- 34. G. T. Whiting, S. A. Kondrat, C. Hammond, N. Dimitratos, Q. He, D. J. Morgan, N. F. Dummer, J. K. Bartley, C. J. Kiely, S. H. Taylor, and G. J. Hutchings, ACS Catal. 5, 637 (2015).
- 35. L. B. Wang, S. T. Zhao, C. X. Liu, C. Li, X. Li, H. L. Li. Y. C. Wang, C. Ma, Z. Y. Li, and H. Zeng, Nano Lett. 15, 2875 (2015).
- 36. J. Cheng, X. J. Gu, X. L. Sheng, P. L. Liu, and H. Q. Su, J. Mater. Chem. A 4, 1887 (2016).
- 37. X. Yang, D. Chen, S. J. Liao, H. Y. Song, Y. W. Li, Z. Y. Fu, and Y. L. Su, J. Catal. 291, 36 (2012).
- 38. N. El Kolli, L. Delannoy, and C. Louis, J. Catal. 297, 79 (2013).
- 39. T. Szumelda, A. Drelinkiewicz, R. Kosydar, and H. Gurgul, Appl. Catal. A 487, 1 (2014).
- 40. M. L. Testa, L. Corbel-Demaily, L. La Parola, A. M. Venezia, and C. Pinel, Catal. Today 257, 291 (2015).
- 41. Y. Mizukoshi, K. Sato, J. Kugai, T. A. Yamamoto, T. J. Konno, and N. Masahashi, J. Exp. Nanosci. 10, 235 (2015).
- 42. P. Concepcion, S. Garcia, J. C. Hernandez-Garrido, J. J. Calvino, and A. Corma, Catal. Today 259, 213 (2016).
- 43. T. Torimoto, Y. Ohta, K. Enokida, D. Sugioka, T. Kameyama, T. Yamamoto, T. Shibayama, K. Yoshii, T. Tsuda, and S. Kuwabata, J. Mater. Chem. A 3, 6177 (2015).
- 44. X. J. Zhang, P. P. Zhang, H. B. Yu, Z. Ma, and S. H. Zhou, Catal. Lett. 145, 784 (2015)
- 45. H. M. Liu, K. Tao, C. R. Xiong, and S. H. Zhou, Catal. Sci. Technol. 5, 405 (2015).
- 46. H. M. Liu, H. B. Yu, C. R. Xiong, and S. H. Zhou, RSC Adv. 5, 20238 (2005).
- 47. B. Coq, A. Tijani, and F. Figueras, J. Mol. Catal. 68, 331 (1991).
- 48. B. Coq, A. Tijani, and F. Figueras, J. Mol. Catal. 71, 317 (1992).
- 49. F. Cárdenas-Lizana, S. Gómez-Quero, A. Hugon, L. Delannoy, C. Louis, and M. A. Keane, J. Catal. 262, 235 (2009).
- elivered by 51. R. Mistri, J. Llorca, B. C. Ray, and A. Gayen, J. Mol. Catal. A
 - 376, 111 (**2013**). 52. Q. F. Zhang, C. Su, J. Cen, F. Feng, L. Ma, C. S. Lu, and X. N. Li, Chin. J. Chem. Eng. 22, 1111 (2014).
 - 53. A. B. Dongil, L. Pastor-Pérez, J. L. G. Fierro, N. Escalona, and A. Sepúlveda-Escribano, Catal. Commun. 75, 55 (2016).
 - 54. A. H. Pizarro, C. B. Molina, J. A. Casas, and J. J. Rodriguez, Appl. Catal. B 158-159, 175 (2014).
 - 55. F. Cárdenas-Lizana, Y. F. Hao, M. Crespo-Quesada, I. Yuranov, X. D. Wang, M. A. Keane, and L. Kiwi-Minsker, ACS Catal. 3, 1386 (2013).
 - 56. E. C. Corbos, P. R. Ellis, J. Cookson, V. Briois, T. I. Hyde, G. Sankar, and P. T. Bishop, Catal. Sci. Technol. 3, 2934 (2013).

Received: 1 March 2016. Accepted: 22 March 2016.