

PCCP

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>author guidelines</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

PCCP

ARTICLE

Exploring the effect of fluorinated anions on the CO₂/N₂ separation of supported ionic liquid membranes

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 09 October 2017. Downloaded by Gazi Universitesi on 16/10/2017 08:25:09

Andreia S.L. Gouveia, ^{ab} Liliana C. Tomé, ^{ab} Elena I. Lozinskaya, ^c Alexander S. Shaplov, ^{cd} Yakov S. Vygodskii^c and Isabel M. Marrucho*

The CO_2 and N_2 permeation properties of ionic liquids (ILs) based on the 1-ethyl-3-methylimidazolium cation ([C_2 mim] $^+$) and different fluorinated anions, namely 2,2,2-trifluoromethylsulfonyl-N-cyanoamide ([TFSAM] $^-$), bis(fluorosulfonyl) imide ([FSI] $^-$), nonafluorobutanesulfonate ([C_4 F₃SO₃] $^-$), tris(pentafluoroethyl)trifluorophosphate ([FAP] $^-$), and bis(pentafluoroethylsulfonyl)imide ([BETI] $^-$) anions, were measured using supported ionic liquid membranes (SILMs). The results show that pure ILs containing [TFSAM] $^-$ and [FSI] $^-$ anions present the highest CO_2 permeabilities,753 and 843 Barrer, as well as the greatest CO_2/N_2 permselectivities of 43.9 and 46.1, respectively, ensuing CO_2/N_2 separation performances on top or above the Robeson 2008 upper bound. The re-design of the [TFSAM] $^-$ anion by structural unfolding was investigated through the use of IL mixtures. The gas transport and CO_2/N_2 separation properties through the pure [C_2 mim][TFSAM] SILM are compared to those of two different binary IL mixtures containing fluorinated and cyanofunctionalized groups in the anions. Although the use of IL mixtures is a promising strategy to tailor gas permeation through SILMs, the pure [C_2 mim][TFSAM] SILM displays higher CO_2 permeability, diffusivity and solubility than those of the selected IL mixtures. Nevertheless, both the prepared mixtures present CO_2 separation performances that are on top or above the Robeson plot.

Introduction

The development of supported ionic liquid membranes (SILMs) for CO₂ separation has been widely investigated in recent years mainly due to their easy preparation and versatility. ¹⁻³ In contrast to traditional liquid membranes, which are produced by impregnating a porous membrane support with common organic solvents, ⁴ SILMs use ionic liquids (ILs) and thus benefit from negligible displacement of the liquid phase from the membrane pores through evaporation, ^{5, 6} due to the low volatility of ILs. ⁷ It should also be emphasized that within the CO₂ separation context, the most important features of ILs are their high CO₂ affinity over light gases, ⁸⁻¹⁰ as well as their inherent designer nature that enables the tailoring of IL properties by proper selection of cation and/or anion or via the addition of specific functional groups.

Numerous works have investigated the effect of IL chemical structure on the gas permeation properties of SILMs. A broad diversity of cations, such as imidazolium, 11

triazolium, 12 thiazolium,¹³ pyridinium,¹⁴ cholinium.15 phosphonium,¹⁷ combined with halogens, sulfonates, carboxylates, fluorinated or cyano-functionalized anions, have been studied. Other works, mostly focusing on imidazolium-based ILs, have also explored the effect of alkyl, 18 fluoroalkyl, 19 etoxyalkyl, 20 and aminoalkyl 21-functionalized cations. Since IL anions have stronger influence on the CO2 separation performance of SILMs than IL cations, they deserved from the start a closer look. The first studies on SILMs made use of fluorinated anions such as the bis(trifluoromethylsulfonyl)imide [NTf2], tetrafluoroborate [BF₄]⁻, and hexafluorophosphate [PF₆]⁻ and enabled to draw conclusions about these anions CO₂-phylic behaviour and high CO₂ permeabilities.²² More recently, low viscous ILs with cyano-functionalized anions, as the tricyanomethanide ${\rm [C(CN)_3]}^-$ and tetracyanoborate ${\rm [B(CN)_4]}^-,^{23\text{-}25}$ have been recognized as better candidates for the development of improved SILMs, because of their superior CO₂ permeabilities and permselectivities when compared to the most used [NTf₂] anion. Task-specific ILs bearing amine groups, such as those containing amino acid anions, ²⁶⁻²⁸ have also been proposed to prepare SILMs, since amine groups can chemically bond CO2 and act as carriers for CO₂ facilitated transport through SILMs at low pressures. However, the high viscosity of these taskspecific ILs is undoubtedly a key limitation, as CO2 diffusion is strongly compromised.

In an effort to improve the CO_2 permeability and permselectivity properties of SILMs, our recent studies explored the use of IL mixtures by fixing the $[C_2 mim]^{\dagger}$ cation

a. Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.

b. Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.

^c A.N. Nesmeyanov Institute of Organoelement Compounds Russian academy of sciences (INEOS RAS), Vavilov St., 28, 119991 Moscow, Russia.

^d Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.

PCCP

ARTICLE

Published on 09 October 2017. Downloaded by Gazi Universitesi on 16/10/2017 08:25:09.

and researching on different anion chemical structures. Initially, SILMs based on IL mixtures combining anions with different CO₂ solubility behaviours were investigated: thiocyanate ([SCN]⁻), dicyanamide $([N(CN)_2]^-)$ bis(trifluoromethylsulfonyl)imide $([NTf_2]^-)$ that present physical solubility; acetate ([Ac] and lactate ([Lac] , which additionally have chemical solubility.²⁹ Afterwards, we focused on IL mixtures based on sulfate ([CH3SO4]) and cyanofunctionalized anions ([SCN], [N(CN)2], [C(CN)3] and [B(CN)4]).30 Moreover, we studied IL mixtures containing [C(CN)₃] and different amino acid anions, so that one IL component maintains the low viscosity, while the other provides the desired chemical characteristics for the active transport of CO₂. 31 The overall results of these studies showed that mixing anions with specific chemical features allows variations in IL viscosity and molar volume that significantly impact the gas transport through SILMs, and thus tailored permeabilities and permselectivities can be achieved.²⁹⁻³¹

In the present work, the gas permeation properties and CO₂/N₂ separation performance of SILMs prepared with pure ILs bearing the [C₂mim][†] cation and different less conventional fluorinated anions, namely [TFSAM], [FSI], [C₄F₉SO₃], [FAP] and [BETI], were evaluated and the effect of the fluorinated moieties in the IL anion was discussed. Despite the fact that several SILMs with common fluorinated anions have already been reported, 1-3 the gas permeation properties of SILMs containing fluorinated anions, such as those selected herein, have still not been properly studied and discussed. Only three studies have reported SILMs that made use of [C₄F₉SO₃], [FAP] and [BETI] anions. Pereiro et al. 32 conducted single gas permeation experiments through the [C2C1py][C4F9SO3] SILM, at 294 K and 75 KPa, using CO₂, N₂, O₂, hydrocarbon gases (CH₄, C₂H₆, C₃H₈, C₃H₆) and perfluorocarbon gases (CF₄, C₂F₆, C_3F_8). Scovazzo et al.²² determined ideal/mixed CO_2/CH_4 and CO₂/N₂ permselectivities in [C₄mim][BETI] SILM at 303 K and 200 kPa, while Althuluth et al. 33 reported ideal/mixed CO₂/CH₄ permselectivities in [C2mim][FAP] SILM at 313 K and 700 kPa. Nevertheless, the obtained results cannot be directly compared due to the different measurement conditions, as well as the use of diverse IL cation structures.

Additionally, this work investigates the impact on gas transport through SILMs of using a pure IL versus a structurally similar IL mixture as liquid phase. Inspired by the fact that the [TFSAM] anion has an unusual asymmetric chemical structure, which combines both fluorinated and cyano functionalities, the redesign of the chemical structure of the pure [C2mim][TFSAM] IL through the use of IL mixtures is explored. For that purpose, different pairs of ILs, based on the [C2mim] cation and anions containing fluorinated or cyano functionalities, were selected and their gas permeation properties compared to those of the pure [C2mim][TFSAM] SILM. One of the IL mixtures contains [NTf2] and [N(CN)2] anions, which gas permeation properties were previously determined, whereas the other IL mixture is based on [OTf] and [SCN] anions and its gas transport properties are here reported for the first time.

Results and Discussion

Gas permeation through SILMs having fluorinated anions

The structures of the pure ILs bearing fluorinated anions are depicted in Fig. 1.

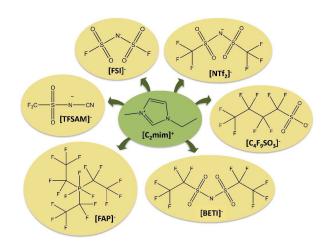


Fig. 1 Chemical structures of the pure ionic liquids (ILs) used in this work to prepare SILMs.

 $\textbf{Table 1} \ \textbf{Water contents and thermophysical properties of the pure ILs}.$

		•			
IL sample	wt% H ₂ O	<i>M</i> (g mol ⁻¹)	η (mPa s) ^a	ρ (g cm ⁻³) ^b	V _m (cm ³ mol ⁻¹)
[C ₂ mim][TFSAM]	0.02	284.26	23.7	1.3518	210.3
[C ₂ mim][FSI]	0.09	291.30	22.4	1.4480	201.2
[C ₂ mim][NTf ₂] ^c	0.02	391.31	39.1	1.5240	256.8
[C₂mim][FAP] ^d	-	556.17	76.4	1.7081	325.6
[C ₂ mim][BETI]	0.02	491.33	85.5	1.5989	307.3
$[C_2mim][C_4F_9SO_3]$	0.08	410.26	109.7	1.5420	266.1

^a Viscosity (η) and density (ρ) measured at 293 K, excepting for [C₂mim][C₄F₉SO₃] IL (303 K).

^b Molar volume (V_m) obtained for 293 K, excepting for [C_2 mim][C_4 F $_9$ SO $_3$] IL (303 K).

^cThe values of [C₂mim][NTf₂] were taken from Tomé et al.²⁹

^dThe density and viscosity values of [C₂mim][FAP] were taken from Neves et al.⁵²

The water content (wt %), molar mass (M), viscosity (η), density (ρ) and molar volume (V_m) values of the pure ILs used as liquid phases in the studied SILMs are summarized in Table 1. The thermophysical properties of the conventional [C_2 mim][NTf $_2$] IL are also included for comparison. Prom Table 1, it can be observed that the IL containing the [C_4 F $_9$ SO $_3$] anion shows the highest viscosity, while [C_2 mim][FSI] presents the lowest viscosity. The IL viscosity values can be organized following the IL anion order: [C_4 F $_9$ SO $_3$] > [BETI] > [FAP] > [NTf $_2$] > [TFSAM] > [FSI]. A slightly different trend was observed for molar volumes, with the IL comprising the [FAP] anion showing the highest molar volume, while [C_2 mim][FSI] exhibits the lowest molar volume. These data will be used ahead in the understanding of the gas permeation results.

The experimental gas permeability (P) values obtained through the prepared SILMs having ILs with fluorinated anions, measured at 293 K with a trans-membrane pressure differential of 100 kPa, are shown in Table 2. To the best of our knowledge, the CO_2/N_2 separation properties of $[C_2 \text{mim}][\text{TFSAM}]$, $[C_2 \text{mim}][\text{FSI}]$, $[C_2 \text{mim}][\text{FAP}]$, $[C_2 \text{mim}][\text{BETI}]$ and $[C_2 \text{mim}][C_4 \text{F}_9 \text{SO}_3]$ SILMs are here reported for the first time, while those of the $[C_2 \text{mim}][\text{NTf}_2]$ SILM were previously determined using the same experimental conditions. 29 It is important to mention that in order to attain stable SILMs, both hydrophilic and hydrophobic supports were used according to the ILs hydrophobicity, and the results are compared in this section, irrespective of the support used.

Table 2 Gas permeabilities (P)^a through the prepared SILMs of pure ILs.^b

SILM sample	P CO ₂	PN ₂	$\alpha CO_2/N_2$
[C ₂ mim][TFSAM]	753 ± 0.2	17 ± 0.1	43.9 ± 0.1
[C ₂ mim][FSI]	843 ± 0.5	18 ± 0.2	46.1 ± 0.5
[C ₂ mim][NTf ₂] ^c	589 ± 1.0	17 ± 0.1	35.5 ± 0.3
[C ₂ mim][FAP]	624 ± 0.4	24 ± 0.1	26.0 ± 0.1
[C ₂ mim][BETI]	437 ± 1.9	18 ± 0.1	24.8 ± 0.2
$[C_2mim][C_4F_9SO_3]$	32 ± 0.2	6 ± 0.1	5.5 ± 0.1

^a Barrer (1 Barrer = 10^{-10} cm³(STP)cm cm⁻² s⁻¹ cmHg⁻¹)

From Table 2, the same trend in gas permeability is valid for all the studied SILMs: P CO₂ >> P N₂, as expected. Regarding the influence of the fluorinated-based anions, SILMs having the [FSI], [TFSAM] and [FAP] anions present higher CO₂ permeabilities of 843, 753 and 624 Barrer, respectively, than the SILM containing the [NTf₂] anion, which is well-known for its high CO₂ permeability (589 Barrer). It should be noted that in spite of the similar structures of [NTf₂] and [FSI] anions, in which the difference consists in two extra $-CF_3$ groups in the [NTf₂] anion structure (Fig. 1), the CO₂ permeability through [C₂mim][FSI] SILM is ~1.5 times higher than of [C₂mim][NTf₂] SILM. Generally, CO₂ permeabilities through the studied SILMs are found to decrease in the following IL anion order: [FSI] > [TFSAM] > [FAP] > [NTf₂] > [BETI] > [C₄F₉SO₃] (Table 2). Considering the IL anion viscosity trend, obtained at 293 K (Table 1),

 $[FSI]^- < [TFSAM]^- < [NTf_2]^- < [FAP]^- < [BETI]^- < [C_4F_9SO_3]^-, it can be$ concluded that these experimental data are in agreement with the general trend usually observed in literature, where ILs with high viscosities yield SILMs with low gas permeabilities. $^{\rm 3,\ 14,\ 15,\ 23,\ 40}$ However, [C₂mim][FAP] is the only exception since it presents a different behaviour (Table 2): despite its high viscosity (76.4 mPa s), it also exhibits high CO2 permeability (624 Barrer), higher than those of the [C₂mim][NTf₂] IL (39.1 mPa s and 589 Barrer). Notice that [FAP] anion has the most different chemical structure among all the IL anions studied in this work, consisting of a phosphorus atom surrounded by fluorine atoms, without sulfonyl functional groups (Fig. 1). Moreover, taking a closer look at the gas permeabilities obtained through SILMs immobilized with the remaining ILs, it can be seen that higher CO2 permeabilities are achieved for ILs with anions bearing a smaller number of fluorine elements, such as [TFSAM] and [FSI] anions (Table 2).

Gas diffusivity (*D*) is a mass transfer property that directly accounts for gas permeability (Eq. 1). Typically, the higher the gas diffusivity, the faster is the gas flux through the SILM. The experimental CO_2 and N_2 diffusivities values obtained through the prepared SILMs are presented in Table 3. The CO_2 diffusivities of the SILMs with fluorinated anions can be ordered as follows: $[FSI]^- > [TFSAM]^- > [FAP]^- > [NTf_2]^- > [BETI]^- > [C_4F_9SO_3]^-$, which fully corresponds to IL anion order observed for CO_2 permeabilities (Table 2). As for N_2 diffusivities the subsequent order is attained: $([FAP]^- > [FSI]^- > [TFSAM]^- > [BETI]^- > [NTf_2]^- > [C_4F_9SO_3]^-$), which is nearly the same IL anion order observed for N_2 permeabilities, but different from that obtained for CO_2 diffusivities and permeabilities.

The relationship between IL viscosity and gas diffusion is in fact the basis of the dependence of permeability from viscosity that we have showed above. A number of works have reported the inversely proportional relationship between gas diffusivity and IL viscosity. $^{3, 16, 17, 41}$ Following this line of thought, the relationship between experimental $\rm CO_2$ diffusivities and IL viscosity for the studied SILMs is depicted in Fig. 2.

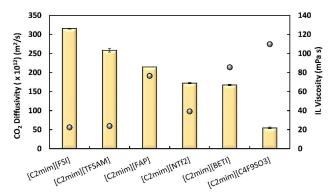


Fig. 2 Relationship between the CO_2 diffusivities determined through the SILMs prepared with pure ILs and respective IL viscosity measured at 293 K. Error bars represent standard deviations based on three experimental replicas.

In agreement to what was previously observed in literature for other SILMs, $^{4,\ 21-23}$ the CO $_2$ diffusivity through the SILMs having fluorinated anions decreases as the IL viscosity increases. The SILMs with the lowest CO $_2$ diffusivities are [C $_2$ mim][C $_4$ F $_9$ SO $_3$] (55·10 $^{-12}$ m 2

^b The listed uncertainties represent the standard deviations, based on three experiments.

^c Values taken from Tomé *et al.*²⁹

ARTICLE PCCP

 s^{-1}) and $[C_2 mim][BETI]$ (167·10⁻¹² m² s⁻¹), which also have the lowest CO2 permeabilities (437 and 32 Barrer), depict the highest viscosities (109.7 and 85.5 mPa). Similarly to what is aforementioned for CO₂ permeabilities, again a deviant behaviour can be observed for [C₂mim][FAP] SILM, since its CO₂ diffusivity is in between those of [C₂mim][NTf₂] and [C₂mim][TFSAM] (Table 3), but its viscosity values (76.4 mPa s) are higher than those of [C₂mim][NTf₂] (39.1 mPa s) and [C₂mim][TFSAM] (23.7 mPa s) (Fig.

Table 3 Gas diffusivity (D) values through the prepared SILMs of pure ILs.

CH M. comple	Gas diffusivity (x10 ¹²) (m ² s ⁻¹)			
SILM sample	D CO ₂	D N ₂		
[C ₂ mim][TFSAM]	258 ± 1.1	291 ± 4.5		
[C ₂ mim][FSI]	315 ± 4.4	353 ± 7.5		
$[C_2mim][NTf_2]*$	172 ± 1.7	203 ± 2.5		
[C ₂ mim][FAP]	214 ± 1.9	326 ± 0.2		
[C ₂ mim][BETI]	167 ± 2.1	216 ± 2.4		
$[C_2mim][C_4F_9SO_3]$	55 ± 1.2	88 ± 2.0		

*The gas diffusivity values through the [C2mim][NTf2] SILM were taken from Tomé et al.25

Published on 09 October 2017. Downloaded by Gazi Universitesi on 16/10/2017 08:25:09

The gas solubility (S) values calculated using Eq. 1 are listed in Table 4. It can be seen that $[C_2mim][C_4F_9SO_3]$ SILM presents the lowest CO_2 solubility $(4\cdot10^{-6} \text{ m}^3_{(STP)} \text{ m}^{-3} \text{ Pa}^{-1})$, while the previously reported [C₂mim][NTf₂] SILM has the highest CO₂ solubility (26·10⁻⁶ m³_(STP) m⁻³ Pa⁻¹). The CO₂ solubility values of the remaining studied SILMs having different fluorinated anions are very similar (ranging from $20\cdot10^{-6}$ to $22\cdot10^{-6}$ m $^3_{(STP)}$ m $^{-3}$ Pa $^{-1}$) and can be ordered as follows: $[TFSAM]^- \approx [FAP]^- > [FSI]^- \approx [BETI]^-$. Regarding the N_2 solubility, its values are always significantly lower (between $0.39 \cdot 10^{-6}$ and $0.61 \cdot 10^{-6}$ m³_(STP) m⁻³ Pa⁻¹) than those of CO₂ for all the SILMs studied.

Table 4 Gas solubility (S) values through the prepared SILMs of pure ILs.

CUM comple	Gas solubility (x10 ⁶) (m ³ (STP) m ⁻³ Pa ⁻¹)			
SILM sample	S CO ₂	S N ₂		
[C ₂ mim][TFSAM]	22 ± 0.09	0.44 ± 0.01		
[C ₂ mim][FSI]	20 ± 0.29	0.39 ± 0.01		
$[C_2mim][NTf_2]*$	26 ± 0.28	0.61 ± 0.01		
[C ₂ mim][FAP]	22 ± 0.21	0.55 ± 0.001		
[C ₂ mim][BETI]	20 ± 0.17	0.61 ± 0.01		
$[C_2mim][C_4F_9SO_3]$	4 ± 0.07	0.49 ± 0.002		

The gas solubility values through the [C2mim][NTf2] SILM were taken from Tomé et al.29

Over the past few years, a number of correlations have been proposed with the intent of understanding the relationships between CO₂ solubility and the intrinsic properties of ILs. 42-44 The

proposed models showed that CO2 solubility increases with increasing IL molecular weight, molar volume and free volume.¹⁰ Taking into consideration the gas solubility results obtained in this work (Table 4), as well as the range of molar volume (from 201.2 up to 325.6 cm³ mol⁻¹) and molecular weight (from 284.3 up to 556.2 g mol⁻¹) of the ILs used, divergences from the abovementioned trends can be found for the studied SILMs having fluorinated anions. For example, the [C₂mim][NTf₂] SILM shows the highest CO₂ solubility $(26\cdot10^{-6} \text{ m}^3_{(STP)} \text{ m}^{-3} \text{ Pa}^{-1})$, but it does not have the highest IL molar volume and molecular weight (Table 1). Likewise, the lowest CO₂ solubility (4·10⁻⁶ m³_(STP) m⁻³ Pa⁻¹) belongs to the [C₂mim][C₄F₉SO₃] SILM, although it does not present the lowest IL molar volume and molecular weight (Table 1). The effect of fluorination, either in the IL cation or anion, on CO2 solubility has been studied by different researchers. 19, 45-47 Tagiuri et al. 48 explored the effect of cation on the CO₂ solubility of three different ILs combining the [FSI] anion. Moreover, Kroon et al. 49 determined the CO₂ solubility in the [C₂mim][FAP] IL by measuring the bubble point pressures of the binary mixture of [C₂mim][FAP] + CO₂. The results showed that the CO2 solubility in [C2mim][FAP] is higher when compared to that of ILs having the same cation combined with other fluorinated anions such as [NTf₂]⁻, [BF₄]⁻ and [PF₆]⁻, due to the fact that [FAP] has large size and it is highly fluorinated. Albeit it has been recognized that introducing fluorination in the cation and/or anion can effectively improve CO₂ solubility, ⁴⁶ it was recently reported after critical analysis that no special effect of the fluorination upon the CO2 solubility has been observed for both perfluorocarbon and heavily fluorinated ILs. 50 In fact, the introduction of fluorination in the anions of the ILs studied in this work does not significantly affect the obtained gas solubility values (Table 4), except for the case of [C₂mim][C₄F₉SO₃] IL that displays a very low CO₂ solubility.

Re-designing the [TFSAM] anion by structural unfolding: effect on gas permeation

Taking into account that the [TFSAM] anion has an unconventional and asymmetric chemical structure, combining both fluorinated and cyano functionalities, which have both been recognized to be responsible for high CO₂ separation performance, we here explore the effect of structural unfolding of the pure [C₂mim][TFSAM] IL on gas permeation properties of SILMs using IL mixtures. Thus, two equimolar IL mixtures were used for this purpose: [C2mim][SCN][OTf] (Fig. 3), which is here studied for the first time, and [C₂mim][N(CN)₂][NTf₂], which gas permeation and thermophysical properties were previously determined by us²⁹. Both these mixtures have IL anions that show structural similarities with the [TFSAM] anion (Fig. 3). The composition description, water content (wt%), molar mass (M), viscosity (η), density (ρ) and molar volume (V_m) values of the pure ILs, $[C_2 mim][TFSAM]$, $[C_2mim][SCN]$, $[C_2mim][OTf]$, $[C_2mim][N(CN)_2]$, $[C_2mim][NTf_2]$, and the selected IL mixtures are listed in Table 5, while their gas permeability, diffusivity and solubility values are depicted in Figs. 4(a) - (c), respectively.

Figs. 4(a) and (b) show that the pure [C₂mim][TFSAM] SILM exhibits higher gas permeabilities and diffusivities than SILMs composed of both [C₂mim][SCN][OTf] and [C₂mim][N(CN)₂][NTf₂] IL

mixtures. Moreover, the addition of 0.5 mole fraction of $[C_i]^{\text{min}}$ did not significantly affects CO permochility but

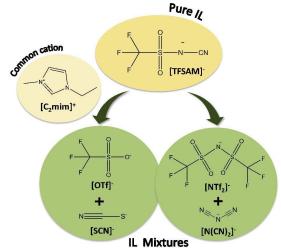
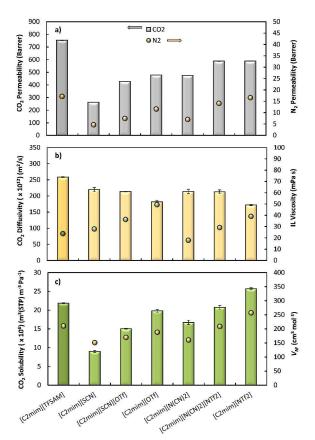



Fig. 3 Chemical structures of the pure IL and IL mixtures studied in this work.

decreased to almost half the N_2 permeability compared to those of the pure $[C_2 mim][OTf]$ SILM. From Fig. 4(b), where the relationship between CO_2 diffusivity and IL viscosity is illustrated, it can also be seen that both $[C_2 mim][N(CN)_2][NTf_2]$ and $[C_2 mim][SCN][OTf]$ IL mixtures present slightly higher viscosities (Table 5) and lower CO_2 diffusivities than those of the pure $[C_2 mim][TFSAM]$ SILM. Also, the presence of 0.5 mole fraction of $[C_2 mim][SCN]$ leads to a decrease in IL viscosity and an increase in CO_2 diffusivity. The same behaviour was found for $[C_2 mim][N(CN)_2][NTf_2]$ with the addition of 0.5 mole fraction of $[C_2 mim][N(CN)_2]$. These results are in accordance with the general trend observed in literature: the CO_2 diffusivity decreases with the increase in IL viscosity. 4 , $^{21-23}$

In what concerns gas solubility, from Fig. 4(c), it can be observed that CO_2 solubilities of both IL mixtures are in between of the individual IL components. Moreover, the presence of 0.5 of mole fraction of $[C_2mim][OTf]$ or $[C_2mim][NTf_2]$ in the corresponding mixtures, leads to an increase in the CO_2 solubilities, probably due to the fact that they present higher molar volume compared to the pures $[C_2mim][SCN]$ or $[C_2mim][N(CN)_2]$, respectively. Furthermore, the $[C_2mim][N(CN)_2][NTf_2]$ mixture displays a CO_2 solubility $(20\cdot10^{-6} \, m^3_{(STP)} \, m^{-3} \, Pa^{-1})$ closer to that of the pure $[C_2mim][TFSAM]$ SILM $(22\cdot10^{-6} \, m^3_{(STP)} \, m^{-3} \, Pa^{-1})$, probably due to the fact that these IL phases have very close molar volumes $(208.7 \, and \, m^2)$

210.3 cm³ mol $^{-1}$, respectively) and the same molecular weight 284.3 g mol $^{-1}$). Conversely, the [C $_2$ mim][SCN][OTf] mixture has lower CO $_2$ solubility (15·10 $^{-6}$ m 3 (STP) m $^{-3}$ Pa $^{-1}$) than that observed for the pure [C $_2$ mim][TFSAM] SILM, which is in agreement with the lower molar volume (169.9 cm³ mol $^{-1}$) and molecular weight (214.7 cm 3 mol $^{-1}$) presented by this IL mixture containing the [SCN] $^-$ and [OTf] $^-$ anions. Despite the fact that it is possible to obtain similar viscosities and molar volumes of the pure [C $_2$ mim][TFSAM] IL by mixing the [C $_2$ mim][N(CN) $_2$] and [O $_2$ mim][NTf $_2$] ILs, improved gas permeabilities, diffusivities and solubilities were obtained through the pure [C $_2$ mim][TFSAM] SILM.

Fig. 4 (a) Gas permeability, (b) CO_2 diffusivity as a function of IL viscosity and (c) CO_2 solubility as a function of IL molar volume for the studied SILMs. Error bars represent standard deviations based on three experimental replicas. The gas permeability, diffusivity and solubility values of $[C_mim][N](CN)_2[N]T_1$ and $[C_mim][N]T_2]$ were taken from Tomé et al. ²⁹

IL sample	Composition description (mole fraction)	wt% H ₂ O	M (g mol ⁻¹)	η " (mPa s)	ρ " (g cm ⁻³)	V_m (cm ³ mol ⁻¹)
[C ₂ mim][TFSAM]	Pure	0.02	284.26	23.7	1.3518	210.3
[C₂mim][SCN] ^c	Pure	0.09	169.25	27.9	1.1190	151.2
$[C_2mim][SCN][OTf]$	$0.5 [C_2 mim][SCN] + 0.5 [C_2 mim][OTf]$	0.16	214.74	36.4	1.2638	169.9
[C ₂ mim][OTf]	Pure	0.10	260.23	49.5	1.3850	187.9
$[C_2mim][N(CN)_2]^c$	Pure	0.09	177.21	18.0	1.1060	160.2
$[C_2mim][N(CN)_2][NTf_2]^c$	$0.5[C_2 mim][N(CN)_2] + 0.5[C_2 mim][NTf_2]$	0.12	284.26	29.2	1.3620	208.7
[C ₂ mim][NTf ₂] ^c	Pure	0.02	391.31	39.1	1.5240	256.8

Table 5 Composition descriptions, water contents and thermophysical properties of the pure ILs and IL mixtures.

ARTICLE PCCP

Comparison of CO₂/N₂ separation performance

The gas permeabilities and CO₂/N₂ permselectivities of all the studied SILMs are listed in Table 6. Amongst the pure SILMs with fluorinated anions, the [C2mim][FSI] and [C2mim][TFSAM] SILMs not only show the highest gas permeabilities (843 and 753 Barrer, respectively), but also have the largest CO2/N2 permselectivities (43.9 and 46.1, respectively). In contrast, the lowest gas permeabilities and CO2/N2 permselectivity belong to the $[C_2mim][C_4F_9SO_3]$ SILM. The CO_2/N_2 permselectivities of the pure SILMs decrease as the fluorinated chain increases in the IL anion: $[FSI]^- > [TFSAM]^- > [NTf_2]^- > [BETI]^-$, being the only exceptions the $[C_2mim][FAP]$ and $[C_2mim][C_4F_9SO_3]$ SILMs.

Concerning the effect of the structural unfolding of [TFSAM] anion, and as previously discussed, the pure [C2mim][TFSAM] SILM presents higher gas permeabilities compared to those of its structurally similar IL mixtures (Table 6). Nevertheless, the greatest CO₂/N₂ permselectivity (57.6) was achieved for the SILM containing

SILM sample	P CO ₂	PN ₂	$\alpha CO_2/N_2$
[C ₂ mim][TFSAM]	753 ± 0.2	17 ± 0.1	43.9 ± 0.1
[C ₂ mim][FSI]	843 ± 0.5	18 ± 0.2	46.1 ± 0.5
[C ₂ mim][FAP]	624 ± 0.4	24 ± 0.1	26.0 ± 0.1
[C ₂ mim][BETI]	437 ± 1.9	18 ± 0.1	24.8 ± 0.2
$[C_2mim][C_4F_9SO_3]$	32 ± 0.2	6 ± 0.1	5.5 ± 0.1
[C ₂ mim][SCN] ^c	263 ± 0.6	5 ± 0.2	56.6 ± 1.9
$[C_2mim][SCN][OTf]$	428 ± 0.5	7 ± 0.1	57.6 ± 0.4
[C ₂ mim][OTf]	479 ± 0.6	12 ± 0.1	41.4 ± 0.3
$[C_2mim][N(CN)_2]^c$	476 ± 0.8	7 ± 0.1	67.8 ± 0.6
$[C_2mim][N(CN)_2][NTf_2]^c$	589 ± 1.9	14 ± 0.2	41.8 ± 0.7
[C ₂ mim][NTf ₂] ^c	589 ± 1.0	17 ± 0.1	35.5 ± 0.3

the [C₂mim][SCN][OTf] IL mixture.

Published on 09 October 2017. Downloaded by Gazi Universitesi on 16/10/2017 08:25:09

Table 6 Single gas permeability $(P)^a$ and ideal permselectivities (α) of all the studied SILMs.

With the purpose of comparing the performance results obtained in this work to those reported in the literature for other SILMs, Fig. 5 displays the Robeson plot for CO₂/N₂ separation, where the CO₂/N₂ permselectivity is plotted against CO₂ permeability and the solid black line represents the empirical 2008 upper bound for this gas pair.⁵¹ It can be seen that among the SILMs immobilized with the pure IL having fluorinated anions, both the [C₂mim][TFSAM] and [C₂mim][FSI] SILMs fall or exceed the Robeson 2008 upper bound, meaning that these two ILs are the most promising candidates for CO₂/N₂ separation processes. Comparing the results of the pure [C₂mim][TFSAM] SILM with those of selected separation efficiency of the [C₂mim][N(CN)₂][NTf₂] SILM is on top of the upper bound, since it presents lower permselectivity (41.8), despite its high CO₂ permeability (589 Barrer) in comparison to that of the [C2mim][SCN][OTf] SILM (428 Barrer). Actually, it is the [C₂mim][N(CN)₂][NTf₂] SILM that discloses the most similar CO₂/N₂ separation performance results to the pure synthesized [C₂mim][TFSAM] IL (Fig. 5).

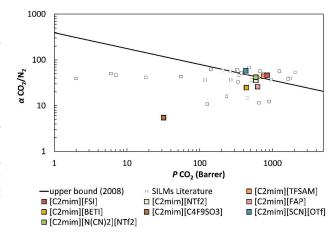


Fig. 5 CO₂/N₂ separation performance of all the studied SILMs. The experimental error is within the data points. Data are plotted on a log-log scale and the upper bound is adapted from Robeson. ⁵¹ The literature data previously reported for other SILMs $(\square)^{15, 17, 22, 24, 29, 30, 32, 53}$ is also illustrated for comparison. The values of $[C_2mim][N(CN)_2][NTf_2]$ and $[C_2mim][NTf_2]$ SILMs were taken from Tomé et al.2

IL mixtures, Fig. 5 clearly shows that the CO₂/N₂ separation performance of the SILM immobilized with the [C₂mim][SCN][OTf] IL mixture surpasses the upper bound, primarily due to its higher CO_2/N_2 permselectivity (57.6). On the other hand, the CO_2/N_2

Barrer (1 Barrer = 10^{-10} cm³ (STP)cm cm⁻² s⁻¹ cmHg⁻¹)

^bThe listed uncertainties represent the standard deviations, based on three experiments.

^c Values taken from Tomé *et al.*²⁹

DOI: 10.1039/C7CP06297D

ARTICLE

Experimental

Materials

Lithium bis(pentafluoroethylsulfonyl)imide (Li($CF_3CF_2SO_2$)₂N, LiBETI, 98%, Chameleon Reagent) and lithium nonafluoro-1-butanesulfonate (LiC₄F₉SO₃, > 95%, TCI Chemicals) were used without purification. Reagent-grade dichloromethane, acetonitrile, hexane and ethyl acetate were obtained from Aldrich or Merck and were dried by vacuum distillation over P₂O₅. N-methylimidazole (98%, Aldrich) and bromoethane (98%, Acros) were distilled under inert atmosphere over CaH₂.

The 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([C₂mim][FSI], 99.5 wt%, Solvionic), 1-ethyl-3-methylimidazolium tris(pentafluoro-ethyl)trifluorophosphate ([C₂mim][FAP], 98 wt%, Merck) 1-ethyl-3-methylimidazolium thiocyanate ([C₂mim][SCN]), > 98 wt%, IoLiTec) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([C₂mim][OTf], \geq 98 wt%, Aldrich) were obtained from the specified suppliers. To reduce the content of water and other volatile substances, the pure ILs were dried at approximately 1 Pa and 318 K for at least 4 days.

IL synthesis and characterization

1-Ethyl-3-methylimidazolium bromide ([C_2 mim][Br]]. [C_2 mim][Br] was synthesized by the reaction between N-methylimidazole and excess of bromoethane following the reference method. ³⁴ Spectroscopic data of the target compound were in accordance with those reported in the literature.

1-Ethyl-3-methylimidazolium 2,2,2-trifluoromethylsulfonyl-Ncyanoamide ([C₂mim][TFSAM]). [C₂mim][TFSAM] was prepared by ion exchange between [C₂mim][Br] and KTFSAM, in an aqueous medium in accordance with described procedure. Telestrian in accordance

1-Ethyl-3-methylimidazolium nonafluorobutanesulfonate ($[C_2mim][C_4F_9SO_3]$). Lithium nonafluoro-1-butanesulfonate (8.00 g, 0.026 mol) was dissolved in 20 mL of distilled water and added dropwise to the solution of $[C_2mim][Br]$ (3.84 g, 0.020 mol) in 15 mL of H_2O at ambient temperature. The solution was stirred for 2 h at room temperature and then $[C_2mim][C_4F_9SO_3]$ was extracted with dichloromethane (4 × 40 mL). The combined CH_2CI_2 solution was

washed with small amount of water and dried over anhydrous MgSO₄. The magnesium sulfate was filtered off and dichloromethane was stripped off under the reduced pressure. The product was obtained as slightly yellow transparent fluid oil, which was finally dried at 323K and 100 Pa for 12 h with a special flask filled with P2O5 and introduced into the vacuum line. Yield: 5.61 g (68%); Anal. Calcd. for C₁₀H₁₁N₂F₉SO₃ (410.26), %: C, 29.28%; H, 2.70%; F, 41.68%; Found, %: C, 28.99%; H, 2.83%; F, 41.39%; ¹H NMR (300 MHz, DMSO-d₆): 9.09 (s, 1H, H2 (Im)), 7.77 (s, 1H, H4 (Im)), 7.68 (s, 1H, H5 (Im)), 4.22-4.17 (m, 2H, CH2CH3), 3.85 (s, 3H, CH₃), 1.43-1.39 (m, 3H, CH₂CH₃); ¹³C NMR (100.6 MHz, DMSO-d₆): 136.2, 123.5, 121.9, 117.1 (qt, $-CF_2-CF_3$, 1J = 288 Hz, 2J = 34 Hz), 113.4 (tt, (-) $O_3S-\underline{C}F_2$ -, 1J = 288 Hz, 2J = 34 Hz), 110.4 (tp, (- $O_3S-CF_2-CF_2-$, 1J = 266, 2J = 33 Hz), 109.8 (qq, $-CF_2-CF_3$, 1J = 268 Hz, 2J = 38 Hz), 44.1, 35.6, 14.9; ¹⁹F NMR (282.4 MHz, DMSO-d₆): -80.8, -114.9, -121.6, -125.9; IR (KBr pellet): 3156 (s, v_{C-H}), 3117 (s, v_{C-H}), 2993 (m, v_{C-H}), 1574 (s), 1462 (m), 1432 (w), 1393 (w), 1353 (s), 1261 (vs, v_{asSO2}), 1236 (vs), 1214 (vs, v_{CF}), 1170 (vs, v_{sSO2}), 1134 (s, v_{CF}), 1057 (vs), 1119 (m), 1006 (m), 988 (w), 870 (m), 845 (m), 802 (m), 736 (m), 699 (m), 679 (w), 656 (s), 620 (s), 596 (m), 564 (m), 532 (s) cm⁻¹.

1-Ethyl-3-methylimidazolium bis(pentafluoroethylsulfonyl)imide ([C_2 mim][BETI]). The procedure previously described for $[C_2 \text{mim}][C_4 F_9 SO_3]$, was also used for the synthesis of $[C_2 \text{mim}][BETI]$. After purification and drying, [C2mim][BETI] was obtained as colorless transparent fluid liquid. Yield: 82 %; Anal. Calcd. for $C_{10}H_{11}N_3F_{10}S_2O_4$ (491.32), %: C, 24.45%; H, 2.26%; N, 8.55%; Found, %: C, 24.50%; H, 2.03%; N, 8.49%; ¹H NMR (300 MHz, DMSO-d₆): 9.11 (s, 1H, H2 (Im)), 7.76 (s, 1H, H4 (Im)), 7.68 (s, 1H, H5 (Im)), 4.22-4.16 (m, 2H, CH_2CH_3), 3.84 (s, 3H, CH_3), 1.43-1.40 (m, 3H, CH₂CH₃); ¹³C NMR (100.6 MHz, DMSO-d₆): 136.7, 123.9, 122.4, 117.7 (qt, $-CF_2-\underline{C}F_3$, 1J = 287 Hz, 2J = 34 Hz), 110.1 (tq, $-\underline{C}F_2-CF_3$, 1J = 293 Hz, 2J = 37 Hz), 44.6, 36.0, 15.4; ¹⁹F NMR (282.4 MHz, DMSOd₆): -78.8, -117.6; IR (KBr pellet): 3160 (m, $\nu_{\text{C-H}}$), 3124 (m, $\nu_{\text{C-H}}$), 2993 (w, $\nu_{\text{C-H}}$), 1574 (m), 1472 (w), 1432 (w), 1355 (vs, ν_{asSO2}), 1331 (vs, v_{CE}), 1223 (vs., v_{CE}), 1172 (vs., v_{SSO2}), 1087 (s., v_{CE}), 978 (s), 824 (w), 775 (w), 755 (m), 742 (m), 701 (w), 644 (m), 616 (s), 536 (m), 525 (m) cm⁻¹.

NMR spectra were recorded on AMX-400 spectrometer (Bruker) at 298 K in the indicated deuterated solvent and are listed in ppm. The signal corresponding to the residual protons of the deuterated solvent was used as an internal standard for ^1H and ^{13}C NMR, while for ^{19}F NMR the CHCl $_2\text{F}$ was used as an external standard. IR spectra were acquired on a Nicolet Magna-750 Fourier IR-spectrometer using KBr pellets (128 scans, resolution is 2 cm $^{-1}$).

IL mixture preparation. The IL mixture, $[C_2 mim][SCN][OTf]$, containing 0.5 mole fraction of both $[C_2 mim][OTf]$ and $[C_2 mim][SCN]$, was prepared using an analytical high precision balance with an uncertainty of \pm 10⁻⁵ g by syringing known masses of the IL components into a glass vial. Good mixing was assured by magnetic stirring for 30 min at 298 K. Then, the IL mixture was dried at roughly 1 Pa and 318 K for at least 4 days immediately prior to use. The water contents of all IL samples were determined by Karl Fischer titration using a 831 KF Coulometer (Metrohm).

Density and viscosity determination. The density and viscosity measurements of the pure ILs and the [C₂mim][SCN][OTf] IL mixture were performed at 293 K and atmospheric pressure using an SVM 3000 Anton Paar rotational Stabinger viscometer-densimeter, where the standard uncertainty for the temperature is 0.02 K. The repeatability of density and dynamic viscosity of this equipment is 0.0005 g·cm⁻³ and 0.35%, respectively. Triplicates of each sample were performed to ensure accuracy and the reported results are average values. The highest relative standard uncertainty registered for the density and dynamic viscosity measurements was 1·10⁻⁴ and 0.03, respectively.

Gas permeation measurements. Porous hydrophobic poly(vinylidene fluoride) (PVDF) membranes supplied by Millipore Corporation (USA), with a pore size of 0.22 µm and average thickness of 125 µm, were used to support the [C₂mim][FSI], [C₂mim][FAP] and [C₂mim][BETI]. Since the impregnation of the remaining IL samples into hydrophobic PVDF resulted in unstable SILMs, the other IL samples were supported in porous hydrophilic poly(tetrafluoroethylene) (PTFE) membranes acquired from Merck Millipore, with a pore size of 0.2 µm and an average thickness of 65 µm. All the SILM configurations were prepared by the vacuum method.²⁹

Ideal gas permeabilities and diffusivities through the prepared SILMs were measured using a time-lag apparatus.³⁶ First, each SILM was degassed under vacuum inside the permeation cell during 12 h. Then, CO₂ and N₂ permeation experiments were carried out at 293 K with a trans-membrane pressure differential of 100 kPa. All the permeation data were measured at least in triplicate on a single SILM sample. The highest relative standard uncertainty registered for gas permeability measurements was 0.03. The permeation cell and lines were evacuated until the pressure was below 0.1 kPa before each run. No residual IL was found inside the permeation cell at the end of the experiments. The thickness of the SILMs was assumed to be equivalent to the membrane filter thickness.

Gas transport through the prepared SILMs was assumed to follow a solution-diffusion mass transfer mechanism, 37 where the permeability (P) is related to diffusivity (D) and solubility (S) as follows:

$$P = D \times S \tag{1}$$

The permeate flux of each gas (J_i) was determined experimentally using Eq. (2), 38 where V^{ρ} is the permeate volume, Δp_d the variation of downstream pressure, A the effective membrane surface area, t the experimental time, R the gas constant and T the temperature.

$$J_i = \frac{V^p \Delta p_d}{AtRT} \tag{2}$$

Ideal gas permeability (P_i) was then determined from the steady-state gas flux (J_i) , the membrane thickness (ℓ) and the transmembrane pressure difference (Δp_i), as shown in Eq. (3).³⁸

$$P_{i} = \frac{J_{i}}{\Delta p_{i} / \ell} \tag{3}$$

Gas diffusivity (D_i) was determined according Eq. (4). The timelag parameter (θ) was calculated by extrapolating the slope of the linear portion of the $p_{\underline{d}}$ vs. t curve back to the time axis, where the intercept is equal to θ .

$$D_i = \frac{\ell^2}{6\theta} \tag{4}$$

After P_i and D_i were known, the gas solubility (S_i) was calculated using the relationship shown in Eq. (1). The ideal permeability selectivity (or permselectivity), $\alpha_{\text{i/j}}\text{,}$ was obtained by dividing the permeability of the more permeable specie i to the permeability of the less permeable specie j. The permselectivity can also be expressed as the product of the diffusivity selectivity and the solubility selectivity:

$$\alpha_{i/j} = \frac{P_i}{P_j} = \left(\frac{D_i}{D_j}\right) \times \left(\frac{S_i}{S_j}\right)$$
 (5)

Conclusions

In this work, ILs containing a common cation ([C₂mim]⁺) and different fluorinated anions ([TFSAM], [FSI], [C₄F₉SO₃], [BETI], [FAP] were synthesized and used as liquid phases to prepare SILMs for flue gas separation (CO_2/N_2). The single CO_2 and N_2 permeation properties through the prepared SILMs were determined. The viscosity and density of the IL phases were also evaluated. The results showed that CO2 permeabilities and diffusivities through the studied SILMs follow the same fluorinated anion order: $[FSI]^- > [TFSAM]^- > [FAP]^- > [NTf_2]^- > [BETI]^- >$ [C₄F₉SO₃], which is inversely related to IL viscosity, with the only outlier being [C2mim][FAP]. Conversely, the introduction of fluorination in the IL anions did not significantly affect gas solubility, except for the case of [C₂mim][C₄F₉SO₃] SILM displaying a very low CO₂ solubility. Among the pure SILMs, it is worth noting that the best separation performances were achieved for [C₂mim][TFSAM] and [C2mim][FSI] SILMs that fall on top or surpassed the Robeson 2008 upper bound, with CO₂ permeabilities of 753 and 843 Barrer and CO₂/N₂ permselectivities of 43.9 and 46.1, respectively.

Furthermore, the effect of structural unfolding of the [TFSAM] anion on gas permeation properties of SILMs was investigated using IL mixtures comprising both fluorinated and cyano functionalities in the anions. The pure [C₂mim][TFSAM] IL provided a membrane with improved CO₂ permeabilities, diffusivities and solubilities compared to those of the SILMs based on the selected [C₂mim][SCN][OTf] and [C₂mim][N(CN)₂][NTf₂] IL mixtures. Overall, and despite that the [C₂mim][SCN][OTf] SILM revealed better CO₂/N₂ separation performance essentially due to its higher CO₂/N₂ permselectivity (57.6), the [C₂mim][N(CN)₂][NTf₂] IL mixture disclosed the most similar results to the pure synthesized [C_2 mim][TFSAM] IL, not only in terms of thermophysical properties, but also regarding gas transport and CO₂/N₂ separation performance.

Acknowledgements

Andreia S.L. Gouveia and Liliana C. Tomé are grateful to FCT (Fundação para a Ciência e a Tecnologia) for their Doctoral (SFRH/BD/116600/2016) and Post-doctoral research grants (SFRH/BPD/101793/2014), respectively, Isabel M. Marrucho acknowledges FCT/MCTES (Portugal) for a contract under

Journal Name ARTICLE

Investigador FCT 2012. This work was partially supported by FCT through the project PTDC/CTM-POL/2676/2014, R&D unit UID/Multi/04551/2013 (GreenIT) and through the grant of President of the Russian Federation "For Young Outstanding Professors" (project no. MD-2371.2017.3).

Notes and references

- L. C. Tomé and I. M. Marrucho, *Chem. Soc. Rev.*, 2016, 45, 2785-2824.
- 2 Dai, R. D. Noble, D. L. Gin, X. Zhang and L. Deng, J. Membr. Sci., 2016, 497, 1-20.
- 3 P. Scovazzo, J. Membr. Sci., 2009, **343**, 199-211.
- 4 P. K. Parhi, J. Chem., 2013, 2013, 11.
- 5 L. J. Lozano, C. Godínez, A. P. de los Ríos, F. J. Hernández-Fernández, S. Sánchez-Segado and F. J. Alguacil, J. Membr. Sci., 2011, 376, 1-14.
- 6 P. Luis, T. Van Gerven and B. Van der Bruggen, Prog. Energy Combust. Sci., 2012, 38, 419-448.
- 7 M. J. Earle, J. M. S. S. Esperanca, M. A. Gilea, J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon and J. A. Widegren, *Nature*, 2006, 439, 831-834.
- C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke and E. J. Maginn, *J. Am. Chem. Soc.*, 2004, **126**, 5300-5308.
- M. Hasib-ur-Rahman, M. Siaj and F. Larachi, Chem. Eng. Process.: Process Intensification, 2010, 49, 313-322.
- 10 M. Ramdin, T. W. de Loos and T. J. H. Vlugt, *Ind. Eng. Chem. Res.*, 2012, **51**, 8149-8177.
- 11 L. A. Neves, J. G. Crespo and I. M. Coelhoso, J. Membr. Sci., 2010, 357, 160-170.
- 12 P. C. Hillesheim, J. A. Singh, S. M. Mahurin, P. F. Fulvio, Y. Oyola, X. Zhu, D.-e. Jiang and S. Dai, *RSC Adv.*, 2013, 3, 3981-3989.
- 13 P. C. Hillesheim, S. M. Mahurin, P. F. Fulvio, J. S. Yeary, Y. Oyola, D.-e. Jiang and S. Dai, *Ind. Eng. Chem. Res.*, 2012, **51**, 11530-11537
- 14 S. M. Mahurin, T. Dai, J. S. Yeary, H. Luo and S. Dai, *Ind. Eng. Chem. Res.*, 2011, **50**, 14061-14069.
- 15 L. C. Tomé, D. J. S. Patinha, R. Ferreira, H. Garcia, C. Silva Pereira, C. S. R. Freire, L. P. N. Rebelo and I. M. Marrucho, ChemSusChem, 2014, 7, 110-113.
- 16 R. Condemarin and P. Scovazzo, *Chem. Eng. J.*, 2009, **147**, 51-57.
- 17 L. Ferguson and P. Scovazzo, *Ind. Eng. Chem. Res.*, 2007, **46**, 1369-1374.
- 18 J. J. Close, K. Farmer, S. S. Moganty and R. E. Baltus, *J. Membr. Sci.*, 2012, **390–391**, 201-210.
- J. E. Bara, C. J. Gabriel, T. K. Carlisle, D. E. Camper, A. Finotello,
 D. L. Gin and R. D. Noble, *Chem. Eng. J.*, 2009, **147**, 43-50.
- 20 P. Cserjési, N. Nemestóthy, A. Vass, Z. Csanádi and K. Bélafi-Bakó, *Desalination*, 2009, 245, 743-747.
- 21 C. Myers, H. Pennline, D. Luebke, J. Ilconich, J. K. Dixon, E. J. Maginn and J. F. Brennecke, *J. Membr. Sci.*, 2008, **322**, 28-31.
- 22 P. Scovazzo, D. Havard, M. McShea, S. Mixon and D. Morgan, J. Membr. Sci., 2009, 327, 41-48.
- 23 S. M. Mahurin, J. S. Lee, G. A. Baker, H. Luo and S. Dai, J. Membr. Sci., 2010, 353, 177-183.
- 24 S. M. Mahurin, P. C. Hillesheim, J. S. Yeary, D.-e. Jiang and S. Dai, RSC Adv., 2012, 2, 11813-11819.

 S. M. Mahurin, J. S. Yeary, S. N. Baker, D.-e. Jiang, S. Dai and G. A. Baker, *J. Membr. Sci.*, 2012, 401–402, 61-67.

DOI: 10.1039/C7CP06297D

- 26 E. Kamio, T. Matsuki, S. Kasahara and H. Matsuyama, Sep. Sci. Technol., 2017, 52, 209-220.
- 27 S. Kasahara, E. Kamio, T. Ishigami and H. Matsuyama, J. Membr. Sci., 2012, 415–416, 168-175.
- 28 S. Kasahara, E. Kamio, T. Ishigami and H. Matsuyama, *Chem. Commun.*, 2012, **48**, 6903-6905.
- 29 L. C. Tomé, D. J. S. Patinha, C. S. R. Freire, L. P. N. Rebelo and I. M. Marrucho, RSC Adv., 2013, 3, 12220-12229.
- L. C. Tomé, C. Florindo, C. S. R. Freire, L. P. N. Rebelo and I. M. Marrucho, *Phys. Chem. Chem. Phys.*, 2014, 16, 17172-17182.
- 31 A. S. L. Gouveia, L. C. Tomé and I. M. Marrucho, *J. Membr. Sci.*, 2016, **510**, 174-181.
- 32 A. B. Pereiro, L. C. Tomé, S. Martinho, L. P. N. Rebelo and I. M. Marrucho, *Ind. Eng. Chem. Res.*, 2013, **52**, 4994-5001.
- 33 M. Althuluth, J. P. Overbeek, H. J. van Wees, L. F. Zubeir, W. G. Haije, A. Berrouk, C. J. Peters and M. C. Kroon, J. Membr. Sci., 2015, 484, 80-86.
- 34 Y. U. Paulechka, G. J. Kabo, A. V. Blokhin, A. S. Shaplov, E. I. Lozinskaya and Y. S. Vygodskii, *J. Chem. Thermodyn.*, 2007, **39**, 158-166.
- 35 A. S. Shaplov, E. I. Lozinskaya, P. S. Vlasov, S. M. Morozova, D. Y. Antonov, P. H. Aubert, M. Armand and Y. S. Vygodskii, *Electrochim. Acta*, 2015, **175**, 254-260.
- 36 L. C. Tomé, D. Mecerreyes, C. S. R. Freire, L. P. N. Rebelo and I. M. Marrucho, *J. Membr. Sci.*, 2013, 428, 260-266.
- 37 J. G. Wijmans and R. W. Baker, J. Membr. Sci., 1995, 107, 1-21.
- 38 S. Matteucci, Y. Yampolskii, B. D. Freeman and I. Pinnau, in Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, Ltd, 2006, pp. 1-47.
- 39 S. W. Rutherford and D. D. Do, Adsorption, 1997, 3, 283-312.
- 40 E. Santos, J. Albo, C. I. Daniel, C. A. M. Portugal, J. G. Crespo and A. Irabien, J. Membr. Sci., 2013, 430, 56-61.
- 41 D. Morgan, L. Ferguson and P. Scovazzo, *Ind. Eng. Chem. Res.*, 2005, **44**, 4815-4823.
- 42 D. Camper, J. Bara, C. Koval and R. Noble, *Ind. Eng. Chem. Res.*, 2006. 45, 6279-6283.
- 43 P. J. Carvalho and J. A. P. Coutinho, J. Phys. Chem. Lett., 2010, 1, 774-780.
- 44 M. S. Shannon, J. M. Tedstone, S. P. O. Danielsen, M. S. Hindman, A. C. Irvin and J. E. Bara, *Ind. Eng. Chem. Res.*, 2012, 51, 5565-5576.
- 45 J. L. Anderson, J. K. Dixon and J. F. Brennecke, Acc. Chem. Res., 2007, 40, 1208-1216.
- 46 M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon and J. F. Brennecke, *J. Phys. Chem. B*, 2007, **111**, 9001-9009.
- 47 Y.-F. Hu, Z.-C. Liu, C.-M. Xu and X.-M. Zhang, *Chem. Soc. Rev.*, 2011. 40, 3802-3823.
- 48 A. Tagiuri, K. Z. Sumon, A. Henni, K. Zanganeh and A. Shafeen, Fluid Phase Equilib., 2014, **375**, 324-331.
- 49 M. Althuluth, M. T. Mota-Martinez, M. C. Kroon and C. J. Peters, J. Chem. Eng. Data, 2012, 57, 3422-3425.
- 50 P. J. Carvalho, K. A. Kurnia and J. A. P. Coutinho, *Phys. Chem. Chem. Phys.*, 2016, 18, 14757-14771.
- 51 L. M. Robeson, J. Membr. Sci., 2008, 320, 390-400.

ARTICLE **PCCP**

52 C. M. S. S. Neves, K. A. Kurnia, K. Shimizu, I. M. Marrucho, L. P. N. Rebelo, J. A. P. Coutinho, M. G. Freire and J. N. Canongia Lopes, Phys. Chem. Chem. Phys., 2014, 16, 21340-21348.

53 P. Cserjési, N. Nemestóthy and K. Bélafi-Bakó, J. Membr. Sci., 2010, **349**, 6-11.

1

Published on 09 October 2017. Downloaded by Gazi Universitesi on 16/10/2017 08:25:09.