Tetrahedron Letters 52 (2011) 5799-5801

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Mingxuan Wu^{a,c}, Qingqing Meng^a, Min Ge^b, Linquan Bai^c, Huchen Zhou^{a,*}

ABSTRACT

application as glycosyl donors.

^a School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China

^b College of Biotechnololy and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China ^c School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China

school of Life science of Biotechnology, Shanghar Juo Tong Oniversity, Shanghar 200050, Chi

ARTICLE INFO

Article history: Received 4 July 2011 Revised 16 August 2011 Accepted 23 August 2011 Available online 31 August 2011

Keywords: Sugar nucleotides 2,3,6-Trideoxy Synthesis Stability

Introduction

Glycosyltransferases play key roles in important cellular processes such as cell wall biosynthesis in bacterial pathogens and signal transduction, and carcinogenesis in human.¹⁻³ Glycosylated natural products produced by microorganisms, such as erythromycin and vancomycin, represent an indispensable source of biomediuseful molecules.^{1–3} The callv biosynthesis of these glycoconjugates is mediated by glycosylation reactions catalyzed by specific glycosyltransferases which require activated sugar donors in the form of sugar nucleotides as substrates.^{2–4} A variety of sugars appended to natural product scaffolds are of crucial importance in tuning the therapeutic properties of these complex molecules.^{1–3} Interestingly, it was found that glycosyltransferases are rather promiscuous with respect to sugar nucleotide substrates, which can be utilized to produce diversified compounds.⁵ Unfortunately, this effort, as well as the study of glycoconjugate biosynthesis, were hindered by the limited availability of required unusual sugar nucleotides.

Sugar nucleotides present a synthetic challenge due to a number of complications, including susceptibility to hydrolytic cleavage, low solubility in organic solvents, and the presence of polar and charged groups.^{6–9} The deoxy-sugar nucleotides are especially difficult to synthesize because the removal of electron-withdrawing hydroxyls makes the positively charged oxocarbenium, which is the intermediate of hydrolytic cleavage, more stable, thus the sugar nucleotides and their synthetic intermediates are more susceptible to hydrolysis.^{10,11} The stability of sugar nucleotides decreases with the decreasing number of hydroxyls on sugar ring.¹² In the past, although the synthesis of 2-deoxy sugar nucleotides¹³ and a stable isostere with C-glycosidic phosphonate linker¹⁴ have been reported using both chemical and enzymatic methods, the synthesis of 2,3,6-trideoxy sugar nucleotides has never been explored despite of their existence in a large number of natural products including L-rhodinose in urdamycin B and L-amicetose in tetrocarcin A (Fig. 1).^{15,16} Although they have significant value in the elu-

The synthesis and characterization of highly challenging 2,3,6-trideoxy sugar nucleotides were described

for the first time. The study of their hydrolysis kinetics in aqueous buffers provided insight into their

Figure 1. Examples of natural products containing 2,3,6-trideoxy sugars. Urdamycin B (1) has L-rhodinose and tetrocarcin A (2) has L-amicetose.

© 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +86 21 3420 6721; fax: +86 21 3420 4744. *E-mail address:* hczhou@sjtu.edu.cn (H. Zhou).

^{0040-4039/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.08.132

cidation of biosynthetic mechanisms and discovery of new medicinal molecules, the knowledge of the synthetic feasibility and the stability of 2,3,6-trideoxy sugar nucleotides were nonexistent.

Here we undertook the synthesis of NDP-L-rhodinose as representatives of 2,3,6-trideoxy sugar nucleotides and the study of their stability in aqueous buffers. The 4-OH-, as well as the 4-OCH₃- and 4-OAc-NDP-L-rhodinose (**13b**–**d**) were successfully synthesized and characterized, while the 4-OTBS-L-rhodinose monophosphate (**12a**) was too labile to get through the final pyrophosphate bond formation (Scheme 1). This is the first time the synthesis and stability study of 2,3,6-trideoxy sugar nucleotides were reported. It was found that the NDP was the primary hydrolytic cleavage product (Scheme 2) and the rate of cleavage is determined by a through-bond inductive effect as well as a through-space electronic effect. And the kinetics study of the hydrolysis provided a basis for the selection of enzymatic reaction conditions and guidelines for the synthesis and storage of 2,3, 6-trideoxy sugar nucleotides.

Scheme 1. Synthesis of NDP-L-rhodinose

Scheme 2. Hydrolytic reaction of 2,3,6-trideoxy sugar nucleotide.

Results and discussion

Firstly, the 4-OTBS-, 4-OCH₃-, and 4-OAc-L-rhodinose (**10a-c**) were synthesized from (*S*)-ethyl lactate (**3**) using methods adapted from Schlessinger et al. (Scheme 1).¹⁷ After protection with benzyl group, ester **4** was reduced to aldehyde **5** with DIBALH. The chelation controlled stereoselective addition with tri-*n*-butylallylstannane in the presence of MgBr₂–Et₂O gave olefin **6**, which in turn was converted to its TBS, methyl, or acetyl derivatives **7a-c** under conditions of TBSCl, CH₃I/NaH, or Ac₂O/pyridine. Hydroboration of olefin **7a-c** with 9-BBN followed by oxidation with H₂O₂–NaOH (**7a** and **b**) or H₂O₂–NaOAc (**7c**) gave the corresponding alcohols **8a-c**. After oxidation with PCC, the resulting aldehydes **9a-c** were converted to 4-OTBS-, 4-OCH₃-, and 4-OAc-L-rhodinose (**10a-c**) under Pd/C catalyzed hydrogenation. It was necessary to use anhydrous methanol as the solvent to suppress the hydrolysis of acetyl group on **10c**.

The glycosyl monophosphates **12a-c** were obtained via the glycosyl chloride intermediates **11a-c** using the method adapted from Kahne et al. (Scheme 1).⁷ The stability of the glycosyl chlorides decreases when the electron-withdrawing ability of the sugar ring substituents decreases due to the stabilization of the oxocarbenium intermediate.^{10,11} Indeed, chloride **11c** with an electron-withdrawing 4-OAc substituent was easily generated at 0 °C, while chloride 11a with an electron-donating 4-OTBS substituent was only successfully prepared under temperatures as low as -80 °C. Consistently, chloride 11b with a moderate electron-donating 4-OCH₃ was prepared at -50 °C. Decomposition of **11a** and **b** was observed when temperature was raised to 0 °C. Subsequent phosphorylation with tetrabutylammonium dihydrogen phosphate $(Bu_4NH_2PO_4)$ in the presence of DIPEA in dichloromethane gave monophosphates 12a-c. In this case, the steric effect instead of electronic effect determined the β/α ratio. Among the three substituted chlorides, 11a with the bulkiest 4-OTBS substitution gave the lowest β/α ratio of 1:2 presumably because the steric presence of OTBS hindered the S_N2 trajectory thus disfavoring the formation of the corresponding β -anomer. At the same time, the 4-OCH₃ substituted chloride 11b which is the least sterically hindered gave the highest β/α ratio of 3:2. Phosphates **12b** and **c** were successfully converted to their UDP and TDP derivatives using the method developed by Wong et al.¹⁸ Since the β -anomer is the bioactive configuration in most cases, the isolation and characterization of pure β-anomer were emphasized on purification. Acetylated sugar nucleotides 13cupp and 13crpp were converted to NDP-L-rhodinoses (13d_{UDP}, 13d_{TDP}) by removal of acetyl group under NaOMe/ MeOH conditions. Thus, six 2,3,6-tridexoy sugar nucleotides 13b_{UDP}, 13b_{TDP}, 13c_{UDP}, 13c_{TDP}, 13d_{UDP}, and 13d_{TDP} were successfully synthesized. Although they are susceptible to hydrolysis in

Figure 2. Kinetics of the hydrolysis of **13c**_{UDP} α - and β -anomers at different concentrations (0.08–10 mM, pH 8.0, *T* = 30 °C) proved first order reaction (R >0.999 in all cases). $k_{\alpha} = 4.99 \times 10^{-5} \text{ s}^{-1}$ and $t_{1/2} = 232 \text{ min } k_{\beta} = 1.14 \times 10^{-5} \text{ s}^{-1}$ and $t_{1/2} = 1011 \text{ min}$.

aqueous solution, they can be stored at -20 °C without decomposition over a few months as lyophilized powder.

Considering the susceptibility of 2,3,6-trideoxy sugar nucleotides toward hydrolytic cleavage, appropriate selection of the buffer conditions is critical for carrying out successful enzymatic reactions. Thus, we took UDP-L-rhodinose derivatives **13b**_{UDP} (4-OCH₃), **13c**_{UDP} (4-OAc), and **13d**_{UDP} (4-OH) as representatives to study their stability in aqueous buffers. First the hydrolysis reaction was demonstrated to be first order by the linearity of the kinetic curve in Figure 2 (Fig. S1) and the product was found by HPLC and ³¹P NMR to be UDP instead of UMP (Scheme 2, Fig. S2), which is due to the absence of neighboring group participation from the 2-position.^{19,20} The stability decreases in the order of **13c**_{UDP}- $\beta >$ **13b**_{UDP}- $\alpha >$ **13b**_{UDP}- β (Fig. 3). The β -anomer is more stable than the α -anomer which is consistent with a kinetic anomeric effect.²¹ These sugar nucleotides are most stable at basic

Figure 3. (Left) Effect of pH on the half life $(t_{1/2})$ of sugar nucleotides (30 °C); (right) Effect of temperature on the half life $(t_{1/2})$ of sugar nucleotides (pH 7.0). **13b**_{UDP}- β (\bigcirc); **13c**_{UDP}- β (\blacksquare); **13c**_{UDP}- α (\blacktriangle); **13d**_{UDP}- β (\times).

pH ≥ 7.0 and their half life ($t_{1/2}$) increased 30- to 130-fold when temperature was lowered from 40 to 5 °C. The 4-OAc⁻ substituted **13c**_{UDP} is stabilized by the electron-withdrawing acetyl group. It is intriguing to observe the unusually fast hydrolysis of 4-OH-L-rhodinose nucleotide **13d**_{UDP} that has a half life of 15 min at pH 7.0 and 30 °C (Fig. S3). It can be rationalized by the through-space electronic effect of the axial 4-OH that donates electron density to the positively charged ring oxocarbenium,²¹ thus stabilizing the transition state (Scheme 2).

In summary, using L-rhodinose as an example, the highly interesting but elusive 2,3,6-trideoxy sugar nucleotides were synthesized and characterized for the first time. The stability of its 4-OH, 4-OAc, and 4-OCH₃ derivatives in aqueous buffers was investigated and their stability increased with the elevation of pH and decreased when temperature was raised. The 4-OH derivative showed significant instability in aqueous buffer presumably due to the through space participation of the 4-OH electrons in stabilizing the oxocarbenium intermediate.

Acknowledgments

We acknowledge National Science Foundation of China (20702031), Ministry of Science and Technology of China (2009CB918404), E-Institutes of Shanghai Universities (EISU) Chemical Biology Division, and National Comprehensive Technology Platforms for Innovative Drug R&D (2009ZX09301-007) for financial support of this work.

Supplementary data

Supplementary data associated (experimental procedures, characterization of new compounds, and kinetics experiments) with this Letter can be found, in the online version, at doi:10.1016/ j.tetlet.2011.08.132.

References and notes

- 1. Walsh, C. T. Nature **2006**, 443, 285.
- Barton, W. A.; Biggins, J. B.; Jiang, J.; Thorson, J. S.; Nikolov, D. B. Proc. Natl. Acad. Sci. 2002, 99, 13397.
- Leimkuhler, C.; Fridman, M.; Lupoli, T.; Walker, S.; Walsh, C. T.; Kahne, D. J. Am. Chem. Soc. 2007, 129, 10546.
- Thibodeaux, C. J.; Melancon, C. E.; Liu, H. W. Angew. Chem., Int. Ed. 2008, 47, 9814.
- Zhang, C.; Griffith, B. R.; Fu, Q.; Albermann, C.; Fu, X.; Lee, I. K.; Li, L.; Thorson, J. S. Science 2006, 313, 1291.
- 6. Marlow, A. L.; Kiessling, L. L. Org. Lett. 2001, 3, 2517.
- 7. Oberthur, M.; Leimkuhler, C.; Kahne, D. Org. Lett. 2004, 6, 2873.
- 8. Peltier, P.; Daniellou, R.; Nugier-Chauvin, C.; Ferrieres, V. Org. Lett. 2007, 9, 5227.
- 9. Wagner, G. K.; Pesnot, T.; Field, R. A. Nat. Prod. Rep. 2009, 26, 1172.
- 10. Overend, W. G.; Rees, C. W.; Sequeira, J. S. J. Chem. Soc. 1962, 3429.
- 11. Amaya, T.; Takahashi, D.; Tanaka, H.; Takahashi, T. Angew. Chem., Int. Ed. 2003, 42, 1833.
- 12. Namchuk, M. N.; McCarter, J. D.; Becalski, A.; Andrews, T.; Withers, S. G. *J. Am. Chem. Soc.* **2000**, *122*, 1270.
- Jakeman, D. L.; Borissow, C. N.; Graham, C. L.; Timmoons, S. C.; Reid, T. R.; Syvitski, R. T. Chem. Comm. 2006, 3738.
- 14. Zhao, Z.; Hong, L.; Liu, H. W. J. Am. Chem. Soc. 2005, 127, 7692.
- Baig, I.; Kharel, M.; Kobylyanskyy, A.; Zhu, L.; Rebets, Y.; Ostash, B.; Luzhetskyy, A.; Bechthold, A.; Fedorenko, V. A.; Rohr, J. Angew. Chem., Int. Ed. 2006, 45, 7842.
- Fang, J.; Zhang, Y.; Huang, L.; Jia, X.; Zhang, Q.; Zhang, X.; Tang, G.; Liu, W. J. Bacteriol. 2008, 190, 6014.
- 17. Schlessinger, R. H.; Graves, D. D. Tetrahedron Lett. 1987, 28, 4381.
- 18. Wittmann, V.; Wong, C. H. J. Org. Chem. 1997, 62, 2144.
- 19. Caputto, R.; Leloir, L. F.; Cardini, C. E.; Paladini, A. C. J. Biol. Chem. **1950**, 184, 333.
- 20. Bedford, C. T.; Hickman, A. D.; Logan, C. J. Bioorg. Med. Chem. 2003, 11, 2339.
- Miljkovic, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L. J. Org. Chem. 1997, 62, 7597.