

Palladium-Triethylborane-Triggered **Direct and Regioselective Conversion of** Allylic Alcohols to Allyl Phenyl Sulfones

Srivari Chandrasekhar,* Vannada Jagadeshwar, Birudaraju Saritha, and Cheryala Narsihmulu

Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad-500 007, India

srivaric@iict.res.in

Received March 21, 2005

A combination of Pd(OAc)₂ (5 mol %), PPh₃ (10 mol %), and Et₃B (200 mol %) promotes the formation of allyl phenyl sulfones from the allylic alcohols directly with excellent yields under mild conditions. The activation of an alcohol group is not necessary which is achieved in situ. The conjugated dienols also were equally effective for the said transformation.

The presence of a phenyl sulfonyl group in a scaffold provides access to multiple diversity.1 This diversitydriven functionality naturally attracts wide application. The phenyl sulfone group has the ability to stabilize an adjacent carbanion and allows new bond formation reactions. Its utility is enhanced in an "allylic" environment. The allyl sulfone can now become an electrophile² and also become an equivalent to a 1,3- or 1,1-dipole, as perfectly exemplified by Trost et al.³ The phenyl sulfone group was also utilized as a precursor for the radical/ radical ion source by using SmI₂⁴ and other appropriate reagents.⁵ The allyl phenyl sulfones are also an excellent source for regio- and diastereoselective diene synthesis via a Julia olefination procedure.⁶ The phenyl sulfonyl group is usually introduced by S_N2 displacement of an alcohol via a halide or mesylate. Alternatives to this are oxidations of existing phenyl sulfides, rearrangement of

SCHEME 1

$$\begin{array}{c} Pd \ (OAc)_{2} \ (5 \ mol\%) \\ Ph_{3}P \ (10 \ mol\%) \\ \hline \\ R \longrightarrow OH \quad \xrightarrow{Et_{3}B \ (200 \ mol\%)} R \\ \hline \\ R = aryl, \ alkyl \\ \hline \\ DMF, \ 80 \ ^{\circ}C \\ \end{array}$$

allylsulfinates, displacement of nitro groups, and so forth.8 Surprisingly, there is no direct one-step conversion of allyl alcohol to allyl phenyl sulfone, which is highly desirable keeping in mind some of the disadvantages involved in the halogenation, mesylation, nitration, and other activation protocols of allyl alcohols. Tamaru et al. have achieved one-step activation and addition of allyl alcohol moieties onto active methylene groups and indoles under a similar set of conditions. 10

In this note, we report the general and direct conversion of allyl alcohol to allyl phenyl sulfone using Pd(OAc)₂ (5 mol %), PPh₃ (10 mol %), Et₃B (200 mol %), and sodium phenylsulfinate (150 mol %) in hot DMF (80 °C) (Scheme 1). Attempts to trigger this reaction with few easily accessible Lewis acids such as BF₃·OEt₂, AlCl₃, and ZnCl₂ did not result in the formation of desired product.

We first explored the reaction of cinnamyl alcohol (Table 1, entry 1) with sodium phenylsulfinate under the influence of Et₃B, Pd(OAc)₂, and PPh₃ to observe a smooth conversion to the corresponding phenyl sulfone **1a** in a yield of over 80%. To justify the addition of Et₃B, an experiment was carried out in the absence of Et₃B to isolate only 15% of the sulfone product **1a** (Table 2).

A few other experiments were also attempted by changing either the solvent or concentration of catalyst, but it was observed that the optimum amounts of Et₃B (200 mol %), Pd(OAc)₂ (5 mol %), and PPh₃ (10 mol %) were essential. In the second instance, the citronellol derivative (Table 1, entry 8) was treated under identical conditions to obtain the corresponding sulfone 8a in excellent yield without any traces of the allylic rearrangement product. A few other cinnamyl alcohol analogues (entries 2-6) were also ideal precursors for the transformation. To expand the horizon of this new method further, the allyl derivatives of the furanose

[†] IICT Communication No. 040606.

⁽¹⁾ For reviews, see: (a) Trost, B. M. Bull. Chem. Soc. Jpn. 1988, 61, 107-124. (b) Solladie, G. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; vol. 6, p 157. (c) Simpkins, N. S. In Sulfones in Organic Synthesis; Pergamon Press: Oxford, 1993. (d) Najera, C.; Yus, M. Tetrahedron 1999, 55, 10547–10568. (e) Procter, D. J. J. Chem. Soc., Perkin Trans. 1 2000, 835-871.

⁽²⁾ Trost, B. M.; Ghadiri, M. R. J. Am. Chem. Soc. 1984, 106, 7260-7261.

⁽³⁾ Trost, B. M.; Schmuff, N. R.; Miller, M. J. J. Am. Chem. Soc. **1980**, 102, 5979-5981.

^{(4) (}a) Chandrasekhar, S.; Yu, J.; Falck, J. R. Tetrahedron Lett. 1994, 35, 5441-5444. (b) Claydent, J.; Julia, M. Chem. Commun. 1994, 2261 - 2262.

^{(5) (}a) Smith, T. A. K.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1 **1989**, 313–317. (b) Padwa, A.; Bullock, W. H.; Dyszlewski, A. D. *J.* Org. Chem. 1990, 55, 955-964. (c) Ponten, F.; Magnusson, G. J. Org. Chem. 1996, 61, 7463-7464.

⁽⁶⁾ Julia, M.; Nel, M.; Saussine, L. J. Organomet. Chem. 1979, 181,

^{(7) (}a) Murakami, T.; Furusawa, K. Synthesis 2002, 4, 479–482. (b) Trost, B. M.; Schmuff, N. R. J. Am. Chem. Soc. 1985, 107, 396-405.

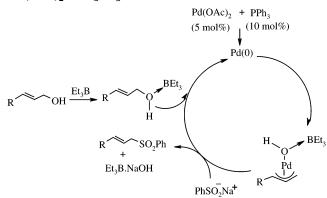
^{(8) (}a) Trost, B. M.; Braslau, R. J. J. Org. Chem. 1988, 53, 532–537. (b) Sato, K.; Aoki, M.; Zheng, X. Q.; Noyori, R. Tetrahedron 2001, 57, 2469–2476. (c) Hiroi, K.; Kitayama, R.; Sato, S. *J. Chem. Soc., Chem. Commun.* **1984**, 303–305. (d) Hiroi, K.; Kurihara, Y. *J. Chem.* Soc., Chem. Commun. 1989, 1778-1780. (e) Ono, N.; Hamamoto, I.; Kawai, T.; Kaji, A.; Tamura, R.; Kakihana, M. Bull. Chem. Soc. Jpn. **1986**, 59, 405-410.

⁽⁹⁾ Kunakova, R. V.; Gaisin, R. L.; Sirazova, M. M.; Dzhemilev, U. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1983, 1, 157–160; Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1983, 32, 133

^{(10) (}a) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. **2005**, 127, 4592–4593. (b) Mukai, R.; Horino, Y.; Tanaka, Chem. Soc. 2003, 127, 4932–4393. (b) Mukai, K., Hoffilo, I., Halfak, S.; Tamaru, Y.; Kimura, M. J. Am. Chem. Soc. 2004, 126, 11138–11139. (c) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2001, 123, 10401–10402. (d) Kimura, M.; Mukai, R.; Tanigawa, N.; Tanaka, S.; Tamaru, Y. Tetrahedron 2003, 59, 7767– 7777. (e) Horino, Y.; Naito, M.; Kimura, M.; Tanaka, S.; Tamaru, Y. *Tetrahedron Lett.* **2001**, *42*, 3113–3116. (f) Tamaru, Y.; Horino, Y.; Araki, M.; Tanaka, S.; Kimura, M. Tetrahedron Lett. 2000, 41, 5705-

TABLE 1. Palladium-Triethylborane-Triggered Direct and Regioselective Conversion of Allylic Alcohols to Allyl Phenyl Sulfones

	Substrate		Time	Yield
Entry		Product	(h)	(%)
1	ОН	SO ₂ Ph	12	94
2	Ме	SO ₂ Ph	12	91
3	MeO OH	MeO SO ₂ Ph	12	91
4	Вг	SO ₂ Ph	12	81
5	Р ОН	SO ₂ Ph	12	78
6	ОН	SO ₂ Ph	12	90
7	∩ ОН n = 4	SO_2Ph $n = 4$ 7a	16	79
8	ОН	SO ₂ Ph	16	89
9	O OBn	SO ₂ Ph	16	80
10	O NBoc OH	SO ₂ Ph	16	81
11	OH	SO ₂ Ph	14	92


^a Yields calculated after column chromatography. Products were characterized by ¹H NMR and mass spectrometry.

derivative in entry 9 and amino acid (Garner aldehyde) in entry 10 were treated under the present protocol. Entry 11 describes the displacement reaction on a secondary alcohol that yielded the olefin-migrated prod-

TABLE 2. Palladium-Triethylborane Optimization on Sulfonylation of 3-Phenyl-2-propenol to {[(2E)-5-Phenylpent-2-enyl]sulfonyl}benzene

entry	Pd(OAc) ₂ (mol %)	PPh ₃ (mol %)	Et ₃ B (mol %)	solvent	temp (0 °C)	yield (%)
1	5	10	_	DMF	80	15
2	5	10	50	DMF	80	30
3	5	10	200	THF	65	30
4	5	10	200	$\mathrm{CH_{3}CN}$	80	30

SCHEME 2. Reaction Mechanism for Allylic Sulfonation of Allylic Alcohols Promoted by $Pd(OAc)_2$ - PPh_3/Et_3B

uct 11a in 92% yield exclusively. The products thus obtained would be useful precursors for chiral natural and unnatural products synthesis. Mechanistically, we believe Et₃B coordinates with oxygen and Pd(0), forming a π -allylpalladium species that in turn undergoes an S_N2 displacement with the sodium phenylsulfinate (Scheme 2). 11 Further applications of this method are of present interest in our research group.

Experimental Section

Typical Experimental Procedure. Into a nitrogen-purged flask containing Pd(OAc)₂ (8 mg, 0.03 mmol) and PPh₃ (19 mg, 0.07 mmol) were added successfully DMF (5 mL), cinnamyl alcohol (100 mg, 0.7 mmol), Et₃B (1.49 mL, 1.49 mmol, 1 M solution in THF), and sodium phenylsulfinate (183 mg, 0.7 mmol). The reaction mixture was stirred at 80 °C (see Table 1), during which the reaction was monitored by means of TLC. After dilution with diethyl ether $(2 \times 30 \text{ mL})$, the mixture was washed with water, the organic layer was dried over Na₂SO₄ and concentrated in vacuo, and the residue is purified by column chromatography over silica gel to provide sulfone (180 mg, 94% yield).

Acknowledgment. V.J., B.S., and C.N. thank CSIR, New Delhi, for financial support. We also thank the reviewers for useful suggestions.

Supporting Information Available: Detailed experimental procedures and compound characterization data (1H NMR, ¹³C NMR, and HRMS). This material is available free of charge via the Internet at http://pubs.acs.org.

JO0505728

^{(11) (}a) Kimura, M.; Futamata, M.; Shibata, K.; Tamaru, Y. Chem. Commun. 2003, 234-235. (b) Tsukamoto, H.; Sato, M.; Kondo, Y. Chem. Commun. 2004, 10, 1200-1201. (c) Inomata, K.; Yamamoto, T.; Kotake, H. Chem. Lett. 1981, 1357-1360.