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ABSTRACT: Herein, a fast, scalable, and transition-metal-free borylation of alkyl halides (X = I, Br, Cl) enabled by
electroreduction is reported. This process provides an efficient and practical access to primary, secondary, and tertiary boronic esters
at a high current. More than 70 examples, including the late-stage borylation of natural products and drug derivatives, are furnished
at room temperature, thereby demonstrating the broad utility and functional-group tolerance of this protocol. Mechanistic studies
disclosed that B2cat2 serves as both a reagent and a cathodic mediator, enabling electroreduction of difficult-to-reduce alkyl bromides
or chlorides at a low potential.

Alkylboron compounds are highly important synthetic
precursors that can readily be transformed to incorporate

a wide range of valuable functional groups; these borylated
compounds are extensively used in fields such as materials
science and medicinal chemistry.1 In recent decades,
transition-metal catalyzed and photoinduced borylation of
alkyl halides has emerged as a versatile approach for the
synthesis of alkylboron compounds.2 However, each of these
strategies relies mostly on transition-metal catalysts, ligands,
stoichiometric quantities of activators, and/or long reaction
times.2 Therefore, the development of simpler, milder, and
more efficient approaches to the synthesis of alkylboron
compounds is desirable.
Electrochemistry, in which an electron is utilized as a

sustainable and inherently safe redox reagent, represents an
environmentally benign method in organic synthesis.3 More-
over, energetic chemical reductants, transition-metal catalysts,
and ligands that preclude large-scale synthesis can be
eliminated from electrochemical reactions. Therefore, direct
electrochemical borylation of unactivated alkyl halides should

provide a practical and appealing pathway for the construction
of alkylboron compounds.4 Notably, metal-catalyzed hydro-
boration of alkenes is one of the most important methods for
preparing organoboranes;5 in comparison, electrochemical
borylation of alkyl halides features ipso-selectivity as well as
transition-metal-free and sustainable conditions. However,
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Figure 1. Electroreduction of alkyl halides.

Figure 2. (a) CV experiments for different alkyl halides. (b)
Preliminary investigation.
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unactivated alkyl halides, especially the bromides and
chlorides, are unreactive and difficult to reduce. To date,
electroreduction of unactivated alkyl halides has rarely been
explored (Figure 1a).6

Mediators serves crucial roles in enhancing reaction
efficiency, controlling reaction selectivity, and avoiding over-
reduction of products and electrode passivation.3,7 Accord-

ingly, we conceived that the above-mentioned challenges may
be circumvented through a mediator-assisted strategy. With
respect to this point, boron compounds, such as B2cat2, which
not only constitutes vacant p-orbital on the boron atom for
accepting electrons but also possesses good stability, might
offer such an opportunity.7,8 Of note, B2cat2 is also a readily
available boron source, and it can efficiently trap the carbon-
centered radical generated from the reduction of alkyl
halides,2k,n,o thus offering a new channel for the preparation
of alkylboron compounds (Figure 1b).
To probe the feasibility of our proposed assumption, cyclic

voltammetry (CV) experiments were first conducted. Clearly,
the onset potential for B2cat2 reduction is approximately −1.3
V (Figure 2a). This potential is significantly more positive than
the onset potential needed for the reduction of alkyl halides;
for example, the onset reductive potentials for CyI, CyBr, and
1-chloro-3-phenylpropane are around −1.65 V, − 2.1 V, and
−2.6 V, respectively. Furthermore, a controlled potential
experiment showed that alkylboron product 1 was obtained in
38% yield when the potential of the working cathode was set to
−1.7 V (Figure 2b). Notably, the potential selected for this
experiment is more positive than the potential needed for the
reduction of CyBr but is sufficient to directly reduce B2cat2.
These results show that the reduction of B2cat2 occurs

Table 1. Optimization of the Reaction Conditionsa

Entry Variation from conditions Yield (%)b

1 none 83
2 MeCN 59
3 150 mA 82
4 200 mA 77
5 150 mA, under air 80
6 H2O (1.0 equiv) 64
7 Entry 3 without electricity n.d.

aCyBr (0.6 mmol), B2cat2 (4.0 equiv),
nBu4NBF4 (0.3 mmol), DMAc

(6.0 mL), n.d. = not detected. bGC yields using biphenyl as an
internal standard.

Figure 3. Reaction conditions: alkyl bromide (0.6 mmol), B2cat2 (4.0 equiv),
nBu4NBF4 (0.3 mmol), DMAc (6.0 mL), Mg plate anode and carbon

cloth cathode, undivided cell, constant current I = 150 mA, 3.0 F/mol, 19 min, room temperature; pinacol (8.0 equiv), Et3N (1.5 mL), 1 h. Isolated
yields are reported. aB2cat2 (8.0 equiv), 7.0 F, 45 min; pinacol (16.0 equiv), Et3N (1.5 mL), 1 h. bB2cat2 (8.0 equiv), 3.0 F, 19 min; pinacol (16.0
equiv), Et3N (1.5 mL), 1 h. c4.0 F, 25 min, 150 mA.
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preferentially, which could mediate electron transfer between
the cathode and alkyl halides.
Subsequently, after extensive evaluation of key parameters

including solvent, electrode, and electrolyte, we discovered that
the desired alkylboron product 1 can be obtained in 83% yield
using magnesium as the anode and carbon cloth as the cathode
(Table 1, entry 1). The cell voltage in this condition is only
around 1.1 V, which implies that a higher current can be
applied for this electroreductive process. We found that the
current can increase even further, from 10 mA to 200 mA, with
only a slight reduction in the product yield (entries 3 and 4),
highlighting the efficient electron transfer between the cathode
and substrate. Even so, cathodic electron transfer is still the
rate-determining step under these conditions. This reaction
could also work well when open to the air (cap removed, entry
5); however, water has a detrimental impact on the reaction
efficiency (entry 6). Finally, electricity was proved to be
essential for this transformation, as no product was detected in
its absence (entry 7). As high current densities are particularly
important for chemical throughput, therefore, this method
provides a fast and practical approach for the synthesis of
alkylborons.
With the optimized reaction conditions in hand, the scope of

alkyl bromides was investigated. As shown in Figure 3, a wide
range of primary, secondary, and tertiary alkyl bromides were
viable in this reaction, furnishing the desired alkyl boronic
esters (1−31) in moderate to excellent yields. Of note, a broad
range of functional groups, including acetal (5), boronate ester
(6), halides (7, 15, 16), trifluoromethyl group (8), esters (9,
10), cyanide (11), arenes and heterocycles (11−23), ethers
(17−20), and carbamate (30), were all compatible with this
transformation, which demonstrates the robustness of this
electrochemical protocol. Both monocyclic and polycyclic
bromides were also transformed efficiently into alkyl boronic
esters in good yields (26−31). Notably, the highly chemo-
selective borylation of an alkyl bromide in the presence of a

chloride was obtained (32). Additionally, Polyboron com-
pounds have emerged as versatile reagents, but straightforward
approaches to their synthesis are limited.9 We describe herein
the preparation of various diborylated and triborylated
compounds by employing dibromides or alkene-bearing
monobromides (33−39), respectively.
We next extended this borylation reaction to alkyl iodides.

This electroreductive borylation occurs with a high preference
for the C−I bond in the presence of various reducible
functional groups, including chloro- (42), alkynyl- (43),
ketone- (44), ester- (45), and nitrile- (46) (Figure 4); the
corresponding products were isolated in moderate to excellent
yields (41%−89% yields). The representative heterocycles
thiophene and carbazole, which usually are sensitive to
oxidative conditions, remained intact after reaction, affording
the desired products 50 and 51 in 76% and 90% yield,
respectively. Cyclic and acyclic secondary iodides were
borylated in 45%−78% yields (1, 26, 52−54). Tertiary alkyl
iodides were also amenable to this protocol, as exemplified by
1-iodoadamantane, which gave product 31 in 87% yield. As an
example of the application of the protocol to diiodides, 1,3-
diiodopropane delivered the diborylated product 6 in 40%
yield.
Encouraged by these results, we further attempted to apply

our developed approach to unactivated alkyl chlorides. More
inert and challenging unactivated alkyl chlorides could also be
boronated in acceptable yields (55−60). Silyl groups (56), aryl
fluoride (58), aryl ether (59), and carbazole (60) examples
were well tolerated. Compared with bromides and iodides,
organochlorides offer the following advantages: (1) abundant
and diverse structures in both commercial and natural sources;
(2) reduced toxicity compared with most available electro-
philes; (3) low sourcing and production costs on a large scale;
and (4) reasonable chemical stability in multistep sequences.10

The synthetic application of our developed method was
further demonstrated by the late-stage borylation of a series of

Figure 4. aReaction conditions: alkyl iodides (0.6 mmol), B2cat2 (4.0 equiv), nBu4NBF4 (0.3 mmol), DMF (6.0 mL), Mg plate anode and carbon
cloth cathode, undivided cell, constant current I = 200 mA, 2.5 F/mol, 12 min, room temperature; pinacol (8.0 equiv), Et3N (1.5 mL), 1 h. Isolated
yields are reported. bReaction conditions: alkyl chloride (0.6 mmol), B2cat2 (4.0 equiv), LiClO4 (0.3 mmol), DMAc:TPPA (3:1, 6.0 mL), Mg plate
anode and carbon cloth cathode, undivided cell, constant current I = 60 mA, 4.0 F/mol, 64 min, room temperature; pinacol (8.0 equiv), Et3N (1.5
mL), 1 h. Isolated yields are reported. c30 mA, 128 min. d20 mA, 193 min.
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natural products and pharmaceutical derivatives (Figure 5a).
Naproxen and ibuprofen, which are nonsteroidal anti-
inflammatory drugs commonly used for the reduction of pain
and inflammation, produced the borylated compounds 61 and
62 in 61% and 73% yields, respectively. (−)-β-Citronellol,
(−)-nopol, dehydroabietic acid, cholesterol, and dehydrocho-
lesterol were all successfully borylated in 44%−80% yields
(63−67). Furthermore, this electroreductive borylation could
readily be scaled up to gram quantities with high efficiency. For
example, 1.41 g of the alkylboronic ester 13 was isolated in
75% yield from its bromide. The alkylboronic ester 41, a key
intermediate in the synthesis of the natural product 7-deoxy-
7,14-didehydrosydonol,11 was prepared on a 7.2 mmol scale
with 57% yield from 1-iodo-4-methylpentane. The cyclo-
hexylboronate ester 1 was synthesized efficiently from
cyclohexyl iodide at a high current up to 1000 mA on a
gram scale. The C−B bond in 1 can be further transformed
into various C−C bonds, C−O bonds, and C−N bonds, as in
previous reports (Figure 5b).12

To gain insight into the reaction mechanism, a series of
experiments were conducted. A radical clock experiment
supported the radical mechanism, as the borylated ring-

opening product 68 was isolated as the major product (Figure
6a). Comparing the 11B NMR spectrum of B2cat2 in CDCl3
with that in a mixed-solvent system of DMAc and CDCl3
reveals that the presence of DMAc led to a chemical shift from
31.0 ppm (a single signal) to 27.6 ppm (a broad signal; for
details, please see the Supporting Information), illustrating the
existence of ligated diboron.13

On the basis of our results and previous studies,2,13 a
plausible mechanism as exemplified for the reaction of alkyl
bromides and B2cat2 is depicted in Figure 6b. The reaction
begins with a single-electron reduction of B2cat2 to generate
the B2cat2 radical anion II, which further helps mediate the
reduction of the alkyl bromide to generate an alkyl radical. The
calculated reaction free energy suggests that the electron
transfer between II and cyclohexyl bromide (1a) is
thermodynamically feasible (ΔGrxn = −22.4 kcal/mol, Figure
6b). The alkyl radical generated through the halogen atom
transfer mechanism is also possible.14 Afterward, there are two
possible ways for the further transformation of the alkyl radical.
In path a, the alkyl radical reacts with complex I, affording an
alkyl boronate ester, and the DMAc-stabilized boryl radical
III/IV, which could either reduce alkyl halides and initiate a

Figure 5. (a) Late-stage borylation of natural products and drug analogues. (b) Gram-scale reactions and diversity of products. aFor details, please
see the Supporting Information.
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slow radical chain process to regenerate the alkyl radical or be
oxidized on the anode to form complex V eventually. In path b,
the alkyl radical reacts with intermediate II through radical−
radical cross-coupling, furnishing alkyl boronate esters, and
complex VI, which might be further stabilized by the metal
cation generated from anode.15 Herein, density functional
theory (DFT) calculations suggest that path a requires an
activation free energy of 9.1 kcal/mol and is exergonic by 22.3
kcal/mol, whereas the radical−radical cross-coupling step in
path b is barrier-less and highly exergonic (ΔGrxn = −55.8
kcal/mol, for details; see the Supporting Information). These
kinetic and thermodynamic characteristics imply that this
borylation reaction occurs rapidly through path b.
In conclusion, an electrochemical borylation of unactivated

alkyl halides at high current was reported for the first time,
which provides a general and practical method for the
preparation of primary, secondary, and tertiary alkyl boronic
esters in good to excellent yields with a good tolerance for a
broad range of functional groups. The particularly unusual
feature of this transformation is that B2cat2 is reduced
preferentially at the cathode, which further mediates the
reduction of alkyl halides.
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Figure 6. (a) Radical clock experiment. (b) Proposed possible mechanism.
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