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Abstract: A new six-step divergent strategy was developed allow-
ing access to pyrrolobenzazepine structures from pyrrole. This strat-
egy was based on a regioselective Friedel–Crafts acylation followed
by a Pictet–Spengler cyclization.
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The pyrrolo[2,3-c]azepine scaffold is an original structure
found in various natural products such as stevensine, hy-
menin, or hymenialdisine (Figure 1). These alkaloids
were extracted from marine sponges belonging to the gen-
era Axinella, Acanthella, Hymeniacidon, and Pseudoax-
inyssa. Their structures were elucidated preliminarily
from spectral studies in comparison with biogenetically
and structurally related sponge metabolites1 and the X-ray
crystal structure of hymenialdisine has already been re-
ported.2

These compounds have shown significant biological ac-
tivities. For example, hymenin possesses potent a-adreno-
ceptor blocking properties,3 and hymenialdisine was
found to be an inhibitor of mitogen-activated protein ki-
nase-1 (MEK-1), cyclin-dependent kinases (CDK-1), or
glycogen synthase kinase-3b (GSK-3b).4

The first total synthesis of hymenialdisine was described
by Annoura et al.5 It was synthesized via the preparation
of a dihydropyrrolo[2,3,c]azepinedione intermediate (ald-
isine) obtained by the condensation of b-alanine methyl

ester with pyrrole-2-carboxylic acid. Recently, Horne et
al. described the synthesis of the pyrroloazepine moiety
based on a four-step strategy starting from pyrrole.6 While
this product class was characterized by the presence of a
caprolactam moiety, we were interested in the synthesis of
amino and amino ketone analogues.

Our synthetic strategy involved, starting from free pyr-
role, two key steps: a regioselective Friedel–Crafts acyla-
tion of the N-protected pyrrole and a Pictet–Spengler
cyclization with various aromatic aldehydes (Scheme 1).
Such a strategy, in combination with the possibility of us-
ing a wide range of commercially available reagents (aryl
aldehydes and aryl acids), should allow the functionaliza-
tion of the aromatic rings and could be suitable for the
preparation of a wide library of compounds.

The first key step of our synthetic approach is the regiose-
lective acylation of the 1-(p-toluenesulfonyl)pyrrole (1)
developed by Varvounis et al.7 In fact, 1-(p-toluenesulfo-
nyl)pyrrole (1), synthesized in phase-transfer conditions,8

could be acylated at C-2 or C-3 position depending on the
Lewis acid used during the reaction. Thus, the acylation of
1-(p-toluenesulfonyl)pyrrole (1) by o-nitrobenzoyl chlo-
ride in the presence of SnCl4 as Lewis acid allowed to ob-
tain the 2-acyl pyrrole derivative as the main product

Figure 1 Stevensine, hymenin, and hymenialdisine structures
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whereas the use of AlCl3 led mainly to the formation of 3-
acyl pyrroles via reaction of organoaluminum intermedi-
ate as recently reported by Huffman (Scheme 2).9

The two regioisomers 2 and 3 were next selectively re-
duced to 4 and 5 by reductive deoxygenation of the aryl
ketone using tert-butylamine borane complex and AlCl3

as described by Lau et al.10 The anilines 6, 7 and 8, 9 were
then obtained starting, respectively, from the nitro or from
the keto compounds by catalytic hydrogenation under at-
mospheric pressure at room temperature. This straightfor-
ward pathway allowed us to synthesize amines 6–9 on
gram scale, starting from free pyrrole, in overall yields be-
tween 37% and 66% (Scheme 2).

The Pictet–Spengler reaction generally refers to conden-
sation of tryptamines or tryptophans with aldehydes or ke-
tones to give the corresponding b-carboline derivatives.11

This reaction is also a powerful method for the prepara-
tion of tetrahydroisoquinoline having been applied to the
racemic or diastereoselective synthesis of aryl and het-
eroaryl tetraisoquinolines.12 This methodology has also
been used in our laboratory to fuse benzazepine ring with
benzo[b]thiophene.13 Recently, Pictet–Spengler reaction
was applied to electron-rich heteroaromatic rings. Thus,
heteroaromatics such as imidazole, thiazole or pyrazole

were investigated as substrates for the Pictet–Spengler cy-
clization.14 These condensations led either to azepine or
pyridine rings fused with the heteroaromatic moiety. To
the best of our knowledge, only a few examples described
the use of the Pictet–Spengler for the condensation of an
amine onto a pyrrole ring to synthesize a pyridine fused
ring.15 Moreover, no example of synthesis of azepine
fused with pyrrole ring using Pictet–Spengler reaction has
been described.

With amines 6–9, we investigated whether these com-
pounds could undergo a Pictet–Spengler-type cyclization
in the presence of an aryl aldehyde (Scheme 3).

First, we studied the cyclization of compound 7 in the
presence of p-cyanobenzaldehyde. In this case, cycliza-
tion may occur either at the C-2 position or at the C-4 po-
sition of the pyrrole ring. A similar case was studied by
Dodd et al.16 for the condensation of methyl-2-amino-3-
[3-N-(benzenesulfonyl)pyrrolyl]propanoate with formal-
dehyde to form tetrahydro-6-azaindole. The authors only
observed the formation of the product resulting from the
condensation at the C-2 position of the pyrrole ring.

The amine 7 was condensed with p-cyanobenzaldehyde in
refluxing toluene to give intermediate imine with total
conversion (followed by 1H NMR). The formation of the

Scheme 2 Reagents and conditions: (a) TsCl (1.4 equiv), n-Bu4NHSO4 (0.1 equiv), NaOH, CH2Cl2, 0 °C to r.t., 15 h (96%); (b) SnCl4 (1.5
equiv), o-nitrobenzoyl chloride (1.4 equiv), DCE, –10 °C, 2 h (78%); (c) AlCl3 (1.5 equiv), o-nitrobenzoyl chloride (1.4 equiv), DCE, –10 °C,
2 h (62%); (d) t-BuNH2·BH3 (6 equiv), AlCl3 (3 equiv), CH2Cl2, 0 °C to r.t., 15 h (65–70%); (e) Pd/C 10% (0.1 equiv), CH2Cl2, r.t., 4 h (72–
89%).
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imine was relatively fast (60 min) due to the electron-
withdrawing effect of the cyano group. Treatment of the
resulting imine under the conditions described by Kundu
et al.14b [i.e., PTSA (0.1 equiv), toluene, reflux] did not
give any cyclized adduct. However, using Ohwada’s pro-
cedure,17 with five equivalents of TFA in toluene at room
temperature, only one product was observed after one
hour of reaction. The structure of the azepine 11a was elu-
cidated by 1H NMR. In fact, the observation in the 1H
NMR spectrum, of two doublets at d = 6.28 and 7.30 ppm
with a coupling constant of 3.4 Hz indicated the presence
of two vinylic protons onto the pyrrole ring. So, as expect-
ed, the cyclization occurred only at the C-2 position of the
pyrrole ring. Moreover, the regioselectivity of the Pictet–
Spengler condensation was unambiguously confirmed by
X-ray crystallography of a single crystal of the azepine
11a.18

This methodology was extended to the preparation of pyr-
rolobenzazepines 10a–e and 11b–e.19 As already reported
by our group for the synthesis of benzothienobenz-
azepines,13 reaction times for the formation of imines
were relatively short with electron-poor benzaldehyde de-
rivatives (R = CN, NO2, CF3) at room temperature in tol-
uene whereas the use of electron-rich benzaldehydes
(R = OMe) required longer reaction times in refluxing tol-
uene. Treatment of the imine with TFA in the conditions
described by Ohwada17 allowed us to isolate pyrrolo[3,2-
c]benzazepines 10a–e and pyrrolo[2,3-c]benzazepines
11a,b (Table 1).

As can be seen in Table 1, the yields were generally good
to excellent. We only obtained poor yields when p-meth-
oxybenzaldehyde or p-chlorobenzaldehyde were used
(entries 5, 9, and 10). We assumed that the electronic en-
richment of the iminium intermediate, due to the electron-
donating group onto the benzaldehyde, penalized the Pic-

tet–Spengler cyclization which occurred via a SE-type
mechanism.

With keto analogues 8 and 9 (Scheme 3), the imine forma-
tion was not complete. Likewise, the cyclization was more
difficult to complete and required heating (70 °C). Addi-
tion of a desiccant to favor the imine formation (MgSO4)
allowed to increase the yields in cyclized product of about
30% (Table 2).

Although the deprotection of sulfonyl groups could be
achieved by basic hydrolysis with KOH or NaOH20 or by
reduction21 in the presence of Na(Hg) or Na2HPO4, rela-
tively drastic conditions are generally required. Yasuhara

Scheme 3 Pictet–Spengler cyclization of pyrrole derivatives 6–9
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Table 1 Pictet–Spengler Cyclization with Amines 6 and 719

Entry Product R Temp 
(°C)

Yield (%)a

1
2
3
4
5

11a
11b
11c
11d
11e

CN
NO2

CF3

Cl
OMe

20
20
20
20
70

98
83
87
82
38b

6
7
8
9

10

10a
10b
10c
10d
10e

CN
NO2

CF3

Cl
OMe

20
20
20
20
70

83
76
75
35
23b

a 1 M in toluene, addition of TFA (5 equiv).
b 1 M in toluene, addition of TFA (10 equiv).
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and Sakamoto22 described the use of 1 M TBAF in reflux-
ing THF (10 equiv) to deprotect N-tosyl nitrogen heteroar-
omatic compounds. We chose this mild and neutral
method to deprotect all of our compounds. In fact, in our
case, basic hydrolysis is not compatible with base-sensi-
tive functions such as cyano group. Deprotected azepines
14–17 were obtained in good yields (Scheme 4, Table 3).

However, the absence in the 1H NMR spectrum of the
benzylic proton on the deprotected azepine revealed that
we did not obtain the expected azepine but the corre-
sponding imine (Scheme 4). Furthermore, no intermedi-
ary product was detected by TLC during the course of the
deprotection. As far as we know, only one example of this
‘oxidative desulfonation’ of nitrogen heterocycles in the

presence of TBAF was already reported by Bianchi and
Kaufman for the synthesis of a tricyclic lactone.23

A new six-step, highly divergent strategy was developed
allowing access to hymenialdisine analogues starting
from pyrrole. Based on a regioselective Friedel–Crafts
acylation followed by a Pictet–Spengler cyclization, pyr-
rolobenzazepines 14, 15 and the corresponding pyr-
rolobenzazepinones 16, 17 were obtained.
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