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Abstract: The cyclization of 1,3-bis(trimethylsilyloxy)-1,3-buta-
dienes with halo-substituted enones afforded 3-difluorochlorometh-
yl-, 3-difluorobromomethyl-, 3-dichloromethyl-, and 3-trichloro-
methylphenols with very good regioselectivity. The hydrolysis of
the dichloromethyl group gave functionalized 3-formylphenols,
which are not readily available by other methods.
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Mixed trihalomethylarenes constitute a small, but impor-
tant group of fluorinated and chlorinated arenes which are
of considerable relevance in medicinal chemistry.1 For ex-
ample, chlorodifluoromethylarenes have been shown to
act as tyrosine kinase inhibitors.2 Chlorodifluoromethyl-
substituted benzene derivatives have been prepared by re-
action of arenes with bis(chlorodifluoroacetyl)peroxide.3

In addition, the UV-mediated reaction of difluoromethyl-
arenes with chlorine has been reported.4 Chlorodifluo-
romethylarenes are also available by reaction of
(ethylthio)difluoromethylarenes with BrF3

5 and by fluori-
nation of trichloromethylarenes (using Olah’s reagent or
KF in ionic liquids).6 Bromodifluoromethylarenes have
only scarcely been reported in the literature to date. They
have been prepared by reaction of tribromomethylarenes
with SbF3,

7 and by UV-mediated bromination of difluo-
romethylarenes (using bromine8 or NBS9). Dichlorometh-
yl-substituted arenes have been reported to show
antiasthmatic activity,10 irreversible inhibition of yeast a-
glucosidase,11 and antibiotic activity.12 Most syntheses of
dichloromethylarenes rely on the chlorination of an alde-
hyde group using chlorine/triphenyl phosphite,13 PCl5,

14

SOCl2,
15 or Ni/Cu/CCl4.

16 In addition, the reaction of
arenes with dichlorocarbene has been reported.17 Known
methods for the synthesis of di- or trihalomethylarenes are
limited, despite their utility, by several drawbacks such as
harsh reaction conditions, extremely long reaction times
(up to 42 d),8 and low chemo-14,15 or regioselectivity.3,17

Some years ago, Chan and coworkers developed18 an ele-
gant approach to salicylates based on formal [3+3]
cyclizations19 of 1,3-bis(trimethylsilyloxy)-1,3-buta-
dienes.20 Recently, we reported the application of this
method to the synthesis of trifluoromethyl-substituted

arenes.21 Herein, we report, for the first time, the synthesis
of difluorochloromethyl-, difluorobromomethyl-, dichlo-
romethyl-, and trichloromethyl-substituted phenols. The
3-dichlorophenols were transformed into preparatively
functionalized 3-formylphenols which are not readily
available by other methods. In contrast to the halogena-
tion reactions outlined above, our approach to 3-halo-
methylphenols relies on a building block strategy.
Noteworthy, the starting materials, 3-(halomethyl)prop-2-
en-1-ones, are readily available by condensation of enol
ethers with halomethylacetic acid derivatives.

The reaction of difluorochloroacetic anhydride (2a) with
ethylvinyl ether (1a) afforded the known22 enone 3a
(Scheme 1, Table 1). The reaction of acid chlorides 2b–d
with enol ethers 1a,b gave the difluorobromomethyl-,
dichloromethyl-, and trichloromethyl-substituted enones
3b–e. The synthesis of 3d has been previously reported.23

Scheme 1 Synthesis of 3a–e. Reagents and conditions: (i) TiCl4,
CH2Cl2, –78 to 20 °C.

The TiCl4-mediated reaction of 3a with 1,3-bis(silyloxy)-
1,3-butadiene 4a, readily available from acetylace-
tone,18,24 afforded 2-acetyl-3-(chlorodifluoromethyl)phe-
nol 5a (Scheme 2).25 During the optimization of this
reaction, it proved to be important that the reaction is car-
ried out in a (highly) concentrated solution. The regiose-
lective formation of 5a can be explained by conjugate
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Table 1 Synthesis of 3a–e

1 2 3 Z R X Y Yield of 3 
(%)a

a a a ClF2CCO2 H F Cl 91

b b b Cl H F Br 71

a b c Cl Et F Br 21

a c d Cl H Cl H 67

a d e Cl H Cl Cl 54

a Yields of isolated products.
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addition of the terminal carbon atom of the 1,3-bis(silyl
enol ether) to the enone, cyclization by attack of the cen-
tral carbon atom onto the carbonyl group, and subsequent
aromatization.

The TiCl4-mediated reaction of 3a–e with 1,3-bis(silyl-
oxy)-1,3-butadienes 4a–h, readily available from the cor-
responding 1,3-dicarbonyl compounds,18,24 gave the 3-
difluorochloromethyl-, 3-difluorobromomethyl-, 3-di-
chloromethyl-, and 3-trichloromethyl-phenols 5a–p
(Scheme 3, Table 2). The structures of all products were
established by spectroscopic methods.

The reduction of 3-(bromodifluoromethyl)phenol 5a, fol-
lowing a procedure reported by Dolbier and co-workers,26

afforded the 3-(difluoromethyl)phenol 6 (Scheme 4).
Noteworthy, the direct synthesis of 6 from 4a and the cor-
responding enone failed.

The 3-dichloromethylphenols 5k–p also represent useful
synthetic building blocks. For example, the 6-formyl-2-
hydroxybenzoate 6 was prepared in good yield by reaction
of 5l with NaOMe and MeOH and subsequent addition of
hydrochloric acid (Scheme 5). Related transformations of

other derivatives also proved to be successful. This trans-
formation is of preparative utility, since functionalized 3-
formyl-phenols are not readily available by other meth-
ods.

In conclusion, we reported a convenient and regioselec-
tive synthesis of 3-difluorochloromethyl-, 3-difluorobro-
momethyl-, 3-dichloromethyl-, and 3-trichloro-
methylphenols. The hydrolysis of the dichloromethyl
group allows for a convenient and regioselective synthesis

Scheme 2 Possible mechanism of the formation of 5a
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Scheme 3 Synthesis of 5a–p. Reagents and conditions: (i) TiCl4,
CH2Cl2, –78 to 20 °C.
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Table 2 Synthesis of 5a–p

3 4 5 X Y R1 R2 R3 Yield of 
5 (%)a

a a a F Cl H H Me 43

a b b F Cl H OMe OMe 50

a c c F Cl H Et OMe 40

b d d F Br H H OEt 55

b e e F Br H nPr OMe 53

b a f F Br H H Me 33

b b g F Br H OMe OMe 67

b f h F Br H Et OEt 47

b g i F Br H H OMe 57

c f j F Br Et Et OEt 48

d a k Cl H H H Me 34

d g l Cl H H H OMe 46

d h m Cl H H H Ph 37

d c n Cl H H Et OMe 50

d b o Cl H H OMe OMe 36b

e d p Cl Cl H H OEt 34

a Yields of isolated products.
b Hydrolysis of the CHCl2 group into CHO.

Scheme 4 Synthesis of 6. Reagents and conditions: (i) Na2S2O4,
NaHCO3, DMF–H2O (4:1), 65 °C, 4 h.
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Scheme 5 Synthesis of 7. Reagents and conditions: (i) 1) NaOMe
(3.0 equiv), MeOH, 48 h, 20 °C; 2) HCl (10%).

OOH

OMei

7 (70%)

OOH

OMe

CHCl2

5l

O

H

D
ow

nl
oa

de
d 

by
: W

E
S

T
 V

IR
G

IN
IA

 U
N

IV
E

R
S

IT
Y

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



1686 M. Lubbe et al. LETTER

Synlett 2008, No. 11, 1684–1686 © Thieme Stuttgart · New York

of functionalized 3-formylphenols. The scope of this
method and applications are currently being studied.
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