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ABSTRACT

Reaction of 4-bromo-NH-1,2,3-triazoles 2 with alkyl halides in the presence of K2CO3 in DMF produced the corresponding 2-substituted 4-bromo-
1,2,3-triazoles 5 in a regioselective process. Subsequent Suzuki cross-coupling reaction of these bromides provided an efficient synthesis of
2,4,5-trisubstituted triazoles 3. In addition, reduction of the bromotriazoles by hydrogenation furnished an efficient synthesis of 2,4-disubstituted
triazoles 8.

The triazole moiety serves as an important structural element
in many biologically active products.1 The copper(I)-
promoted 1,3-dipolar azide-alkyne cycloaddition provides
a poweful method to access 1,4-disubstituted 1,2,3-triazoles,2

while ruthenium-catalyzed cycloaddition produces 1,5-di-
substituted 1,2,3-triazoles.3 A general method for the prepa-
ration of 2-substituted triazoles, however, is lacking.4

Recently, we have developed a route to 2-aryl-1,2,3-triazoles

through a regioselective N-2 arylation of 4,5-dibromo-NH-
triazole5 in which the 4,5-dibromo substitution pattern
suppresses N-1 arylation. With these findings in hand, we
explored the scope of this bromo-directed N-2 alkylation of
triazoles 2, as outlined in Scheme 1.
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2,4-Disubstituted triazoles 8 can be accessed by alkylation of
monosubstituted triazoles 1, but typically, a mixture of 8 and 8a is
produced with no regioselectivity (Scheme 1).6 We envisioned that
an additional, removable substituent, in particular, a bromine atom,
would suppress the N-3 alkylation in a manner similar to that
demonstrated by Shi and co-workers.7 As a result, the product of
N-2 alkylation, 5, would be favored. Subsequent reduction of 5
would produce the 2,4-disubstituted triazole 8, while further
elaboration of the bromo substituent by cross-coupling chemistry,
for example, would provide an efficient route to 2,4,5-trisubstituted
triazoles 3, as illustrated in Scheme 1.

Triazoles 1a-d were prepared by the copper-catalyzed 1,3-
dipolar cycloaddition of the corresponding terminal alkynes and
trimethylsilyl azide.8 Bromination of 1a-d with NBS in
isopropyl acetate produced 2a-d in excellent yields (Scheme 2).

An initial evaluation of the regioselectivity began with triazole
2a and tert-butyl R-bromoacetate (4c) as electrophile. Screening
of reaction conditions revealed that choices of solvents had a
significant impact on regioselectivity (Table 1). With K2CO3 as
base, the alkylation reaction was completed in 5 h in THF at room
temperature to produce a 70:30 mixture of 5c to (6c+ 7c). Whereas
both acetonitrile and acetone gave a better ratio of 80:20, dipolar
solvent DMF improved the ratio to 86:14. When the same
alkylation was performed at a lower temperature of -10 °C in
DMF that changed the reaction kinetics by slowing down the
alkylation, the ratio of 5c to (6c + 7c) was further improved to

91:9. No alkylation products were observed with CH2Cl2 and
MTBE as solvents.

The scope of the alkylation reaction was tested with four
bromo-NH-1,2,3-triazoles 2a-d and five typical alkyl bromides
4a-f, as summarized in Table 2. The reaction was performed

Table 2. N-2 Alkylation of 2 with Alkyl Bromides 4

entry 2 4 5:6:7a yield of 5 (%)b,c

1 2a 4a 88:8:4 83 (5a)
2 2a 4b 91:6:3 87 (5b)
3 2a 4c 91:5:4 85 (5c)
4 2a 4d 92:6:2 88 (5d)
5 2a 4e 85:8:7 80 (5e)
6 2b 4a 93:5:2 89 (5f)
7 2b 4b 94:6:<1 87 (5g)
8 2b 4c 93:5:2 90 (5h)
9 2c 4a 94:6:<1 90 (5i)

10 2c 4b 95:3:2d 88 (5j)
11 2c 4d 93:4:3d 88 (5k)
12 2c 4e 89:7:4d 83 (5l)
13 2d 4a 87:8:5 83 (5m)
14 2d 4b 89:7:4 84 (5n)
15 2d 4c 90:6:4 82 (5o)
a Ratio determined by both HPLC and proton NMR, which was

consistent with isolated yields of 5, 6, and 7. b Reactions usually took 5-7
h to complete with 4a and 4b at rt and 5-10 h to complete with 4c, 4d,
and 4e at -10 °C. c 90-96% isolated yields for 5 + 6 + 7 by flash
chromatography on silica gel. d Inseparable mixture of 6 + 7.

Scheme 1

Scheme 2

Table 1. N-2 Alkylation of 2a with R-Bromoacetate 4c

entry solvent temp (°C) time (h) ratioa of 5c: (6c + 7c)

1 THF 20 5 71:29
2 CH3CN 20 2 80:20
3 CH3COCH3 20 2 80:20
4 CH2Cl2 20 5 nrb

5 MTBE 20 5 nrb

6 DMF 20 1 86:14
7 DMF -10 6 91:9

a Ratio determined by both HPLC and proton NMR. b No product
observed.
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using K2CO3 as base in DMF at room temperature for less
reactive bromides 4a and 4b and at -10 to 0 °C for more
reactive 4c-e based on the initial evaluation of reaction
conditions.9 We were pleased to find that in all cases the N-2-
substituted products 5 could be isolated in good to excellent
yields. With the phenyl-substituted NH-triazole 2a, alkylation
generally gave a 10:1 mixture of 5 to (6 + 7). In the alkylation
of 2b and 2c, in which the triazole rings were more electron-
deficient than the parent analogue 2a, the N-2 regioselectivity
was improved to >13:1 of 5 to (6 + 7). In some cases,
regioisomer 7 was not observed (entries 7 and 9, Table 2). With
electron-rich 2d, the N-2 selectivity was slightly lower than that
of the parent compound 2a. In all cases, excellent isolated yields
of combined 5, 6, and 7 were obtained.

The regiochemistry of 6 and 7 was determined by 2D NMR
experiments, as shown in Figure 1. It was also observed that

the chemical shift of the two methylene protons in 7 appeared
at a higher field due to shielding by the aromatic ring.

This successful regioselective N-2 alkylation of NH-1,2,3-
triazole 2 provides an efficient way to access a variety of
substituted triazole derivatives. For example, as shown in
Scheme 3, the bromotriazoles 5 can be reduced under

standard catalytic hydrogenation conditions to produce 2,4-
disubstituted triazoles 8 in excellent yields.

We next investigated the conversion of 5 to 2,4,5 fully
substituted triazoles, using Suzuki cross-coupling methodol-
ogy. As summarized in Table 3, with alkylboronic acids,
the desired 2,4,5 fully substituted triazoles 3 were obtained
in good yields using Chen’s procedure.10 A small amount
of dehalogenated byproduct was also observed under these

unoptimized reaction conditions. With aryl- and vinylboronic
acids, the coupling reaction gave products 3 in excellent
yields.

This regioselective synthesis of 2,4,5-trisubstituted triaz-
oles is remarkably general considering the fact that 1,3-
dipolar cycloaddition requires particular activated, electron-
deficient internal alkynes for the preparation of fully
substituted triazoles, and ruthenium-catalyzed cycloaddition
gives 1,4,5-trisubstituted triazoles.11 With all available transi-
tion-metal-catalyzed cross-coupling reactions, a fundamental
method for carbon-carbon bond formation,12 many different
kinds of poly-substituted triazoles can be prepared efficiently.

Figure 1. Two-dimensional NMR experiments on regioisomers 6
and 7.

Scheme 3

a Isolated yields for all cases.

Table 3. Synthesis of 2,4,5-Trisubstituted-1,2,3-Triazoles

a With 1.2 equiv of boronic acid/5% of Pd(OAc)2/10% of (tBu)3PHBF4/
3.5 equiv of K3PO4/toluene/water/90 °C/2 h for 9a-d and 1.2 equiv of
boronic acid/5% of Pd(PPh3)2Cl2/2 M aq Na2CO3/CH3CN/75 °C/1 h for
9e-h. b Isolated by flash chromatography. c Reactions usually took 1 h to
complete.
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In conclusion, we have developed an efficient synthesis
of poly-substituted triazoles by a regioselective N-2
alkylation of 4-bromo-NH-1,2,3-triazole. The subsequent
debromination of these triazoles by hydrogenation gives

2,4-disubstituted triazoles in excellent yields. Furthermore,
2,4,5 fully substituted triazoles are readily accessible by
elaboration of the versatile bromotriazole intermediates
using cross-coupling conditions.
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