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ABSTRACT: A novel series of biaryl amides was identified as RORγt inhibitors through core replacement of a starting hit 1. SAR 

exploration on the biaryl moiety led to discovery of potent RORγt inhibitors with good oral bioavailability and CNS penetration. 

Compounds 9a and 9g demonstrated excellent in vivo efficacy in EAE mice dose dependently with once daily oral administration. 

T helper (Th) 17 cells, a lineage of CD4+ effector T cells charac-

terized by the production of IL-17A and IL-17F, are pathogenic in 

human autoimmune inflammatory diseases including multiple 

sclerosis (MS).[1-4] The presence of IL-17 was detected in MS 

lesions, and Th17 cells were observed in the infiltrations of mouse 

experimental autoimmune encephalomyelitis (EAE) central nerve 

system (CNS).[5,6] Differentiation and function of Th17 cells are 

controlled by the transcription factor retinoic acid receptor-related 

orphan receptor-gamma-t (RORγt).[7-9,11] It has been shown that 

the genetic deficiency of RORγt in mice severely impaired Th17 

cell differentiation and conferred resistance to EAE.[10] RORγt 

inhibitors has potential utility in reducing the activity of Th17 

cells and therefore can be developed as therapeutic agents for the 

treatment of Th17 cell mediated autoimmune diseases.[12-18] 

A few small molecule RORγt inhibitors have been reported in 

literature.[19] Digoxin,[20] SR1001[21] and Ursolic acid[22] were first 

reported to inhibit RORγt and ameliorate EAE in mice via  intra-

peritoneal administration. Other small molecular RORγt inhibi-

tors[23-31] were later disclosed. Recently, we reported discovery of 

thiazole ketone amides (e.g., 2) and thiophene ketone amides (e.g., 

3) as novel RORγt inhibitors based on a high throughput screen-

ing (HTS) hit 1 (Figure 1).[32] These ketones, especially the thio-

phene ketones, showed good RORγt activities but were poorly 

orally bioavailable and lack of CNS penetration that is believed to 

be important for developing an effective oral MS drug. In this 

paper, we report the discovery of novel biaryl amides as first po-

tent, orally bioavailable and CNS penetrant RORγt inhibitors 

which demonstrated EAE in vivo efficacy dose dependently via 

oral administration.  

The lack of CNS penetration of thiazole/thiophene ketones was 

attributed to their ketone moiety as the non-ketone thiazole amide 

1 is CNS penetrant with a brain-to-blood ratio (Br/Bl) of 1.5 in a 

mouse CNS study (i.p., 2mg/kg).[33] Encouraged by the CNS data 

of 1, we conducted thiazole core replacement with a number of 

different aromatic rings (4a-4i), aiming to identify a suitable scaf-

fold for multi-property optimization (Table 1). Among the five-

membered ring analogs, 2,4-substituted thiophene 4c showed the 

best RORγt potency in the FRET assay.[32,34] The heteroatom such 

as oxygen and nitrogen on the ring decreased (4a) and even abol-

ished (4d, 4f, 4h) RORγt activities. For the six-membered ring 

analogs, para-substituted aryl amide (4i) showed better RORγt 

potency than the meta-substituted one (4g). Because of its reason-

able RORγt potency, good CNS penetration (Br/Bl = 2.0), and 

improved ligand efficiency (LE) and lipophilic ligand efficiency 

(LLE) (0.33 and 2.3 for 4i compared to 0.29 and 1.9 for 1, respec-

tively)35 and easy modification/diversification, the aryl amide 4i 

was used as the new chemistry starting point for optimization. 

 

Figure 1. Structures of RORγt inhibitors (1-3) 

In order to explore SAR of the biaryl moiety of the amide, a ver-

satile synthesis of the general structures of biaryl amides was 

developed (Scheme 1).[36] Biaryl amines 7 were prepared from 

either bromoanilines 5 through Suzuki coupling with aryl boronic 

acids, or from reaction of aryl bromides with aniline boronic es-

ters 6, obtained from 5. Coupling 7 with acids A, or acid chlorides 

B, or perfluorophenyl esters C afforded the desired biaryl amides 

8 or 9. The biaryl amides could also be prepared by first coupling 

of 5 with A to form amides 10, which were converted to the target 

compounds directly via Suzuki coupling, or via its boronic ester 

intermediate 11. 

We investigated the binding mode of compound 4i and its deriva-

tives in RORγt LBD based on the co-crystal structure of a similar 

aryl amide with RORγt LBD (pdb code: 4NIE).[37] The perpendic-

ular confirmation of the two aryl rings in the left hand side (LHS) 

of the amides provided preferred inter-molecular interactions with 

the surrounding hydrophobic residues in the RORγt LBD and was 
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believed to be important for the RORγt binding affinity (Figure 1). 

Subsequently, the substitutions on the ortho-positions of the two 

aryl rings, which force the two aryls to take perpendicular con-

formation, were studied extensively and the key SAR of the biar-

yls was summarized in Table 2. Non-substituted biphenyl amide 

8a showed a RORγ FRET pIC50 of 6.3. Adding a Cl group on 

ortho-position of the central phenyl ring (8b) enhanced RORγt 

activity. Keeping the ortho-Cl on the central phenyl ring, adding a 

hydrophobic group on ortho-position of the terminal phenyl ring 

provided potent RORγt inhibitors (8c-8f) with pIC50s ≥ 8.0 in the 

FRET assay. Biaryl amides 8c-8f also showed good cellular activ-

ities in the Th17 cell differentiation assay (pIC50 > 6.0).[32-34] Ob-

viously, the cLogP of 8c-8f are relatively high (4.4~5.1, from 

ChemBioDraw Ultra 12.0). Replacing -OiPr moiety (8f) with -

CH2NMe2 (8g, cLogP 3.7) or changing the phenyl ring to a pyri-

dine ring (8h, cLogP 4.0) or other hetero-aromatic rings such as 

pyrole (8i, cLogP 3.5) lowered RORγt potency, which also result-

ed in essentially no activity in Th17 cell differentiation assay. 

These findings indicate that the binding pocket where the LHS 

aryl occupies is hydrophobic and unable to tolerate some polar 

moieties. 

 

Compd R 
RORγ FRET pIC50

a 

(% max inhibitionb) 

1  6.0±0.08 (116) 

4a  5.1±0.06 (80) 

4b  6.4±0.06 (105) 

4c  7.1±0.01 (116) 

4d  < 4.6 

4e  6.3±0.04 (120) 

4f  < 4.6 

4g  6.2±0.02 (120) 

4h  < 4.6 

4i  7.0±0.06 (107) 

a
pIC50 value is the average of at least two determinations, the error 

expressed by ±SEM; 
 b
% max inhibition measured against activation 

by the surrogate agonist. 

We then fixed the OCF3 group at ortho-position of the LHS ter-

minal aryl and studied SAR of substitution on the central phenyl 

ring of the amides (Table 2). Adding a hydrophobic group such as 

methyl (8l) or CF3 (8m) on the central phenyl ring increased Th17 

potency while replacing the central phenyl ring with pyridine (8k) 

significantly decreased both RORγt and Th17 potency. Although 

polar groups like carboxylic acid (8o) decreased the RORγt po-

tency dramatically, certain polar groups such as acetyl (8n) were 

found to be tolerated on the central phenyl. Encouraged by this, a 

number of hetero-aromatic rings were introduced on the central 

phenyl and the resulting compounds (e.g., 8p-8q) showed good 

RORγt activity in both FRET and Th17 assays. It is good to see 

that the cLogP of 8p and 8q are relatively lower (3.6 and 3.0, 

respectively), resulting in higher LLE values (4.7 and 5.4, respec-

tively) although their molecular weights are higher. 

Scheme 1. General synthetic procedures for biaryl amides
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Reagents and conditions: (a) Bis(pinacolato)diborane, PdCl2(dppf), KOAc, 

DMF, 100 ° C. (b) tri-tert-butyl phosphine (tetrafluoroboric acid salt), 

Pd2(dba)3, Na2CO3, dioxane, 100 °C, microwave. (c) For acid A, EDC, HOBt, 

DCM; For acid chloride B, triethylamine, DCM; For perfluorophenyl ester C, 

DIPEA, DCM, RT. (d) EDC, HOBt, DCM; or HATU, DIPEA, DCM. (e) 

Bis(pinacolato)diborane, PdCl2(dppf), KOAc, DMF, 100 ° C; or 

Bis(pinacolato)diborane, Pd2(dba)3, tricyclohexylphosphine, KOAc, dioxane, 

90 °C. (f) PdCl2(dppf), Cs2CO3, CH3CN, water, 100 °C, microwave; or 

Pd(PPh3)4, Na2CO3, dioxane, water, 100 °C, microwave. 
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Compd Ar1 Ar2 
RORγ FRET 

pIC50
a (% max 

inhibitionb) 

Th17 

pIC50
a 

8a   6.3±0.30 (90) <5 

8b   7.8±0.04 (109) 5.2 

8c   8.3±0.02 (100) 6.0 

8d   8.2±0.02 (106) 6.7 

8e   8.5±0.10 (98) 7.1 

Table 1. SAR of thiazole core replacements 

 

Table 2. Biaryl SAR of the amides 

S
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8f   8.0±0.00 (120) 7.1 

8g 
  6.0±0.00 (117) <5 

8h   7.2±0.00 (106) <5.3 

8i   6.8±0.07 (115) <5.2 

8j   8.1±0.00 (113) 6.8 

8k   6.4±0.12 (106) 5.1 

8l   8.3±0.04 (112) 7.6 

8m   8.2±0.02 (113) 6.9 

8n 
  8.0±0.08 (101) 5.6 

8o   5.1±0.05 (68) <5 

8p  
 

8.3±0.11 (96) 7.2 

8q  
 

8.4±0.01 (112) >7.5 

8r 
  8.2±0.08 (96) 7.5 

8s   
8.4±0.12 (93) >8.5 

8t   
8.4±0.02 (97) >8.2 

a
pIC50 value is the average of at least two determinations, the error 

expressed by ±SEM (for FRET assay)
 
; 

b
% max inhibition measured 

against activation by the surrogate agonist. 

We next added a second substituent to the central phenyl ring to 

constrain the preferred perpendicular conformation. As expected, 

additional substituent CN (8r), Me (8s) or Cl (8t) boosted RORγt 

activities in both FRET and Th17 assays. 

Compound 8t was used as a tool compound for RORγt biological 

studies because of its excellent in vitro activities as well as good 

oral exposure and CNS penetration.[38] Encouraged by the profile 

of 8t, we incorporated the previous SAR learnings and further 

optimized the LHS biaryl part as well as right hand side (RHS) 

sulfone part of the amides, trying to obtain a molecule with more 

balanced profile (Table 3). Changing the ethyl sulfone in 8t with a 

methyl sulfone (9a) resulted in a similar RORγt potency and CNS 

penetration. However, replacing the methyl sulfone with a prima-

ry sulfonamide (9b) basically eliminate the CNS penetration alt-

hough the RORγt and Th17 potency remained, possibly due to 

introduction of two more H-bond donors as well as increase of 

topological polar surface area (tPSA) in 9b. Switching OCF3 (9a) 

to OCF2 (9c) lowered its CNS penetration. The CNS penetration 

was further decreased when OCF2 (9c) was replaced by a CN 

group (9d). With a Cl group in the para-position of LHS phenyl 

and only one substituent (F, Me, or Cl) in the ortho position of 

central phenyl, compounds (9f-9h) showed good RORγt potency 

and CNS penetration. Compared to methyl sulfone 9h, the ethyl 

sulfone 9i demonstrated the best CNS penetration (Br/Bl = 2.0). 

Clearly, the data of CNS penetration were well correlated to val-

ues of tPSA and/or cLogP. As a result, LLE value is relatively 

low for those biaryl amides with better CNS penetration (Table 3). 

 

Figure 1 Predicted binding mode of compound 4i (brown) and 

structural overlay with a previously published tertiary amine (blue) 

co-crystal structure with RORγt LBD using Surflex-Dock v2.3 in 

Sybyl 8.1.[37] 

Comp

d 

iv, 1 mg/kg
b
 po, 2 mg/kg

c
 

T1/

2 

(h) 

Clb 

(mL/min/kg

) 

Vss 

(L/kg

) 

Cmax  

(ng/mL

) 

DNAUC0~∞ 
(ng.h/mL)/(mg/kg

) 

F 

(%

) 

8d 2.2 17.6 3.2 210.7 713 75 

8e 4.2 11.6 3.8 202.7 1313 
10

2 

9a 9.7 5.5 4.4 213.5 2465 
10

0 

9g 
    

4048
d
 

 
a
Male C57BL/6 mice; 

b
iv formulation:  DMSO: 10% hydroxypropyl-

β-cyclodextrin = 1:99 (w:v); 
c
po formulation: DMSO: 1% methyl-

cellulose (W/V) =1:99; for 9a, DMSO: 10% hydroxypropyl-β-

cyclodextrin;
 d
10 mg/kg (po).  

Several representative compounds were evaluated for their mouse 

PK profile (Table 4).  Biaryl amides 8d, 8e and 9a demonstrated 

good PK profile with oral bioavailabilities of 75%, 102% and 

100%, respectively. Compound 9g was only evaluated via po 

administration and showed excellent oral exposure. 

With good Th17 activity and mouse oral exposure, we then evalu-

ated 9a and 9g in EAE mice where Th17 cells play a critical role 

(Figure 2).[33] Compounds 9a and 9g were orally administered 

once daily at 3 doses (1, 3, 10 mg/kg) to EAE mice from the day 

of immunization. Compared to the control, the treatment with 9a 

or 9g resulted in a delay and significant reduction in clinical se-

verity of EAE in a dose dependent manner. Compared to thiazole 

 

Table 4.  Mouse PK
a
 of the RORγγγγt inhibitors 

 

N
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ketone amide 2 which only showed EAE efficacy up to day 20 at 

100mg/kg twice daily dosing,[32] the biaryl amides 9a and 9g are 

much more efficacious. This could be attributed to their good in 

vitro activities as well as much improved oral exposure and CNS 

penetration. However, it should be noted that although 9g had 

more brain exposure than 9a, it exhibited less efficacy than 9a in 

EAE experiments, indicating that there might be additional factors 

such as “free” brain concentration affecting in vivo efficacy. 

 

 

Figure 3. (a) Treatment efficacy of compound 9a in mouse EAE 

in different doses (1, 3, 10mg/kg, p.o., q.d.). (c) Treatment effica-

cy of compound 9g in mouse EAE in different doses (1, 3, 

10mg/kg, p.o., q.d.). Repeated ANOVA, followed by Dunnett's 

Multiple Comparison Test was ap-

plied,*p<0.05,**p<0.01,***p<0.001. Notes:  

In summary, we have discovered a novel series of biaryl amides 

as RORγt inhibitors. Detailed SAR study on the LHS biaryl moie-

ty of the amides led to discovery of potent RORγt inhibitors with 

Table 3. SAR of the biaryl amides 

N
H

O

S
R2

O O

 

Compd R1 Z X Y R2 
RORγ FRET 

pIC50
a (% max 

inhibitionb) 

Th17 

pIC50
a 

Br/Blc 

(AUCbrain/AUCblood) 
tPSAd cLogPd LLEe 

8t H OCF3 Cl Cl Et 8.4±0.02 (97) >8.2 0.78 (946/1220) 72.5 5.2 3.2 

9a H OCF3 Cl Cl Me 8.3±0.15 (96) 7.4 0.79 (658/835) 72.5 4.7 3.6 

9b H OCF3 Cl Cl NH2 8.5±0.11 (108) 8.1 0.08 (388/4878) 98.5 4.5 4.0 

9c H OCF2 Cl Cl Et 8.5±0.26 (107) 8.0 0.39 (462/1182) 72.5 4.6 3.9 

9d H CN Cl Cl Et 8.2±0.11 (94) 7.1 0.10 (200/1928) 87.0 4.2 4.0 

9e F CN Cl Cl Et 8.4±0.03 (96) 6.8 0.06 (76/1378) 87.0 4.3 4.1 

9f Cl OCF3 F H Me 8.0±0.28 (101) 7.3 1.17 (2354/2017) 72.5 4.7 3.3 

9g Cl OCF3 Me H Me 8.2±0.08 (92) 7.2 1.47 (3517/2397) 72.5 4.5 3.7 

9h Cl OCF3 Cl H Me 8.1±0.09 (98) 7.6 0.98 (1696/1729) 72.5 5.0 3.1 

9i Cl OCF3 Cl H Et 8.2±0.01 (99) 8.1 2.0 (1764/881) 72.5 5.5 2.7 

a
pIC50 value is the average of at least two determinations, the error expressed by ±SEM (for FRET assay)

 
; 

b
% max inhibition measured 

against activation by the surrogate agonist; 
c
brain to blood ratio

33
; 

d
obtained from ChemBioDraw Ultra 12.0; 

e
LLE = pIC50-cLogP.

35 
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excellent oral bioavailability and CNS penetration. The key com-

pounds 9a and 9g demonstrated a dose dependent EAE efficacy in 

mice when administrated orally once a day. Further optimization 

on sulfone moiety of the biaryl amides to balance potency and 

some developability properties such as solubility is on-going. 
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