Manganese Chloride as an Efficient Catalyst for Selective Transformations of Indoles in the Presence of a Keto Carbonyl Group

Minghao Li,^{a,c} Jie Yang,^{a,c} and Yanlong Gu^{a,b,*}

^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou 730000, People's Republic of China

^c M. Li and J. Yang contributed equally to this work.

Received: March 24, 2011; Published online: June 16, 2011

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adcs.201100211.

Abstract: Catalysis by manganese chloride tetrahydrate was found to be effective for the selective transformation of indoles, with which the desired acid-catalyzed reaction could be promoted and, at the same time, a side reaction that also needs assistance of acid, the electrophilic reaction of indole with the co-existing keto carbonyl group, does not occur. Some acid-catalyzed reactions, such as the ring-opening reaction of 2-alkoxy-3,4-dihydropyran with indole, and transesterification of β -keto ester

Introduction

In the context of green chemistry, the implementation of methodologies giving selective access to elaborate scaffolds, while combining molecular diversity with eco-compatibility, is a great challenge for organic chemists.^[1] Many research projects have, therefore, been driven forward by one particular motivation: easy access of complex molecules in combination with the potential to site-selectively introduce chemical functionalities.^[2] The importance of this area has been well documented by one of the twelve principles of green chemistry, reduce derivatives. Although many methodologies for chemoselective control in various reactions have been well established by means of catalysis with enzymes or organic and organometallic compounds, the reported methods often involve practical difficulties due to high costs of catalyst, limited substrate scope or lack of green properties.^[3] Therefore, new catalytic systems are being continuously exwith an alcohol that contains a C-3 unsubstituted indole fragment, could be performed smoothly by using manganese chloride as catalyst. A new multicomponent reaction of indole, 3,4-dihydropyran and β -keto ester was also developed with catalysis by manganese chloride.

Keywords: acid catalysis; indoles; manganese chloride; selective transformations; tandem reactions

plored in search of improved efficiencies and cost-effectiveness.

The indole ring system exists ubiquitously in naturally occurring products, and many indole-containing compounds exhibit important biological and pharmaceutical activities.^[4] The synthesis and derivatization of indoles has, therefore, been a major area of focus for organic chemists over the years.^[5] As an electronrich heteroaromatic system, indole has often been used as a model substrate in electrophilic aromatic substitutions. Generally, the most reactive position of indole in these reactions is the C-3 site. Although the high reactivity can render indoles readily applicable in many reactions, when an electrophile that contains two or more reactive sites was used, how to control the reaction selectivity has become a great challenge.

In this paper, we report an efficient catalyst for catalytic selective transformations of indoles in the presence of a keto carbonyl group. It is well known that, in the presence of acid catalyst, the keto carbonyl group will undergo an electrophilic reaction with

1551

^a Institute of Physical Chemistry and Industrial Catalysis, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Sciences and Technology, 1037 Luoyu Road, Hongshan Division, Wuhan, Hubei Province 430074, People's Republic of China Fax: (+86)-(0)27-8754-4532; e-mail: klgyl@hust.edu.cn

indole to form diindolylmethane derivatives. This reaction is particularly favorable to C-3 unsubstituted indoles that contain an electron-donating group. As a result, derivatization of C-3 unsubstituted indole in the presence of a keto carbonyl group is not easy, and generally cannot be performed in the presence of acid. However, we found unexpectedly that MnCl₂ can be used, in the presence of a keto carbonyl group, as a highly selective catalyst for transformations of indoles by means of three acid-catalyzed reactions: (i) ring-opening reaction of 2-alkoxy-3,4-dihydropyran with indole; (ii) transesterification of β -keto ester with an alcohol that contains a C-3 unsubstituted indole fragment; and (iii) an "ABCC"-type four-component reaction of β -keto ester, 3,4-dihydropyran and indole. While the desired reactions proceed well, the keto carbonyl groups involved in the structure of substrates or products remain unaltered although a highly reactive C-3 unsubstituted indole was also involved in the reaction system.

Results and Discussion

Initially, the reaction of 2-alkoxy-3,4-dihydropyran 1a and indole 2a was investigated. This type of electrophilic ring-opening reaction of 2-alkoxy-3,4-dohydropyran has just been reported by us by using thiols or thiophenols as nucleophiles.^[6] Although the reactions of thiol or thiophenol proceeded very well in the presence of many Lewis acid catalysts, when indole was used as nucleophile, control of the reaction selectivity is not easy. For example, the ring-opening reaction of 2-aryl-3,4-dihydropyran with indole can only be performed by using manganese chloride tetrahydrate as catalyst, and other acids were proved to be inappropriate for this reaction.^[7] Inspired by this specific observation, we thus decided to explore the application of this catalyst in organic synthesis. In fact, manganese chloride has been rarely used before as a catalyst in organic synthesis.^[8] For this reason, we wanted to know what this catalyst can contribute for improving current organic synthesis.

Although the reaction of indole with 2-aryl-3,4-dihydropyran has been reported by us,^[7] the ring-opening reaction of 2-alkoxy-3,4-dihydropyran with indole has not been reported yet. Importantly, the latter reaction might be able to generate a double substituted product that is inaccessible with our previous reaction. As indole is a very reactive nucleophile, and also considering the fact that reactivity of 2-alkoxy-3,4-dihydropyran is quite high, it may not easy to control the selectivity of this ring-opening reaction. Therefore, our investigation was started from the reaction of 2-butoxy-3,4-dihydropyran **1a** and an indole **2a**. As shown in Table 1, no reaction occurs in the absence of catalyst (entry 1). When some conventional acids, **Table 1.** Electrophilic ring-opening reaction of dihydropyran**1a** with indole 2a.^[a]

Entry	Catalyst	Solvent	Yield $[\%]^{[0]}$
1	-	CH ₃ NO ₂	0
2	TsOH	CH_3NO_2	28 (23)
3	Sc(OTf) ₃	CH_3NO_2	31 (22)
4	InCl ₃	CH_3NO_2	25 (26)
5	FeCl ₃	CH_3NO_2	10
6	H_3BO_3	CH_3NO_2	21 (17)
7	montmorillonite K10	CH ₃ NO ₂	20
8	Amberlyst-15	CH_3NO_2	16
9	MnCl ₂	CH_3NO_2	40 (81)
10	$Mn(OAc)_2 \cdot 4 H_2O$	CH_3NO_2	trace
11	MnBr ₂	CH_3NO_2	30 (34)
12	$MnCl_2 \cdot 4H_2O$	CH_3NO_2	82
13	$MnCl_2 \cdot 4H_2O$	toluene	trace
14	$MnCl_2 \cdot 4H_2O$	1,4-dioxane	trace
15	$MnCl_2 \cdot 4H_2O$	CH ₃ CN	31
16	$MnCl_2 \cdot 4H_2O$	ClCH ₂ CH ₂ Cl	39
17	$MnCl_2 \cdot 4H_2O$	water	trace
18	MnCl ₂ ·4H ₂ O	-	59

^[b] Yield in brackets was obtained in the presence of 0.8 equiv. water.

such as *p*-toluenesulfonic acid (TsOH), $Sc(OTf)_3$, InCl₃ and FeCl₃ were used as catalysts, **1a** was almost completely consumed at the end of the reaction, and a di(indolyl)methane derivative 3a was obtained from a messy mixture in poor yields (entries 2 to 5). In order to control the reaction selectivity, a weak acid, boric acid, was then examined. And it was found that the starting materials, 1a and 2a, remained unaltered in these cases, as a result, only small amount of 3a was detected (entry 6). Solid acids, such as montmorillonite K10 and Amberlyst 15, were also used in this reaction and no selectivity was observed (entries 7 and 8). Many other acid catalysts were also examined and no positive results were obtained (see Supporting Information). In a later study, anhydrous MnCl₂ was used, and the yield of **3a** reached to 40% (entry 9). Owing to the fact that 1a was completely consumed in this case, efforts to further improve the reaction yield were in vain. Other manganese salts, such as Mn(OAc)₂ and MnBr₂, were also examined and the yields are rather poor (entries 10 and 11). Encouraged by the promising result obtained with anhydrous MnCl₂, manganese chloride tetrahydrate was then ex-

Table 2. Electrophilic ring-opening reaction of the dihydropyrans with indoles catalyzed by MnCl₂ tetrahydrate.

amined. And to our great delight, an 82% of yield was obtained in this case (entry 12). This result implies that a small amount of water is helpful for the progress of the model reaction. We therefore re-examined some of the other catalysts by adding small amount of waters into the reaction system, and as shown in Table 1, nearly the same performances were observed with the exception of anhydrous MnCl₂, which gives an 81% yield with the aid of water (entry 9). Therefore, at this stage, the best catalyst for the model reaction is MnCl₂ tetrahydrate. The solvent also plays a crucial role for the occurrence of the model reaction, and nitromethane was found to be the best one among all the examined solvents in Table 1 (entries 13 to 18).

Having these results in hand, we then examined the substrate generality of the $MnCl_2 \cdot 4H_2O$ -catalyzed electrophilic ring-opening of **1a**-type dihydropyrans with indoles. And as shown in Table 2, many indoles

and dihydropyrans are applicable in this system, and the desired products were obtained in good to excellent yields. It should be noted that the skeleton of the obtained product contains not only a fragment of di-(indolyl)methane, which is, sometimes, biologically active and pharmaceutically interesting,^[9] but also a moiety of a β -dicarbonyl compound that has been widely used in organic synthesis. Although the product could be theoretically synthesized by (i) enolate alkylation or (ii) Michael addition of β -dicarbonyl compound to acrolein and the following selective electrophilic reaction of the formyl group of the product with indole (see Supporting Information), our present method exhibits some advantages including minimization of wastes, simplified operation procedure and easy control of reaction selectivity.

To probe the mechanism of the model reaction, we treated an analogous dihydropyran, **1b**, in nitromethane with 30 mol% of $MnCl_2$ tetrahydrate in the ab-

Scheme 1. Subdivisions of the model reaction and the by-products identified in the reaction systems.

sence of indole. As shown in Scheme 1, an aldehyde, 4a, was obtained in 56% of yield after 11 h of reaction at 80 °C. It should be noted that 4a is the only product in this reaction, and the moderate yield mainly resulted from incomplete conversion of 1b. Following treatment of 4a with 2a in the presence of 30 mol% of MnCl₂ tetrahydrate resulted in the quantitative formation of **3i**. Two other acids, TsOH and Sc(OTf)₃, were also examined in this procedure in the presence of 1.2 equivalents of water. It was found that **1b** was completely consumed in the first step, but, however, 4a was obtained only in a small amount (yield <20%). Two by-products, 4b and 4c were isolated with nearly 30% overall yield from the obtained messy mixture. There are some other by-products that are difficult to isolate in the reaction mixture. Furthermore, TsOH and Sc(OTf)₃ were proved to be non-selective for the formation of 3i in the second step because a messy mixture was formed in these cases.

On the basis of these results, we can conclude that the model reaction is susceptible to both catalyst and water. Kobayashi and his co-workers have accomplished a classification of many Lewis acids according to their activities in organic reactions.^[10] In the ranking of Kobayashi, anhydrous MnCl₂ was considered as an inactive one. Therefore, we believe that the acid strength of MnCl₂ might be responsible for the high selectivity. When water was added into the reaction system, it might play two functions involving (i) facilitating the formation of reaction intermediate, and (ii) tuning the Lewis acidity of MnCl₂ to be suitable for the reaction. Out of these considerations, we thus proposed a possible mechanism for the model reaction in Scheme 2. In the beginning of the reaction, the dihydropyran substrate 1a was activated with the aid of MnCl₂ catalyst to form a cyclic oxocarbenium ion intermediate (I). This step was generally catalyzed by a Lewis acid.^[11] Although formation of a linear oxocarbenium ion might be also possible through a cleavage of the C-O bond in the ring, but compared with the cyclic one, it should be much less stable because of the lack of a conjugation effect. Once (I) was formed, it tended to react with water to form an aldehyde (IV) that can further interact with indole to generate 3a. In view of the fact that 40% of the yield was obtained under anhydrous conditions, we thus suspect that the other way to 3a is also possible, in which water was not involved. Out of this consideration, another reaction pathway was also proposed in Scheme 2. Interaction of (I) with indole might form an intermediate (II).^[12] In the presence of MnCl₂, (II) underwent cleavage of the C-2-O bond to form a ring-opening intermediate (III) that tended to react with the next indole to generate the final product **3a**.^[13]

It should be noted that mechanism of the present ring-opening reaction is different from that of our previous report in which a monotransthioacetalization occurs and the aldehyde intermediate might not be formed.^[6] No matter what kind of mechanism the reaction follows, we can confirm at this stage that manganese chloride tetrahydrate has indeed a specific ability for distinguishing the reactivity difference be-

Scheme 2. Plausible mechanism for the model reaction.

tween three kinds of carbonyl groups including aldehyde-carbonyl, ketone-carbonyl and ester-carbonyl, and thus is capable of controlling the reaction selectivity. Inspired by this fact, we suspect that other nucleophiles that are able to react with an aldehyde could also be used in this type of reaction. As shown in Scheme 3, in the presence of catalytic amount of MnBr₂ or MnCl₂, 1,3-cyclohexanedione and 2-methylfuran could react readily with a **1a**-type dihydropyran. Particularly, in the case of 1,3-cyclohexanedione, the generated products underwent a dehydration step to form a cyclized skeleton.

The above-mentioned ring-opening reactions have demonstrated that manganese chloride tetrahydrate has a specific ability for selectively promoting the transformation of indole. In order to further extend the use of this specific ability of manganese chloride tetrahydrate, we then investigated other organic reac-

Adv. Synth. Catal. 2011, 353, 1551-1564

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

tions. The transesterification of β -keto esters with an alcohol has been extensively investigated by using acids or bases as catalysts.^[14] When acid catalysts were used, extra efforts have to be made for inhibiting some side reactions because the keto carbonyl groups in β -keto esters are normally reactive under acidic conditions toward some nucleophiles.^[15] Particularly, when N-(2-hydroxy)ethylindole 9a was used as an alcohol, as the generated product 10a contains both a keto carbonyl group and a reactive C-3 unsubstituted indole fragment, controlling of the reaction selectivity could be a hard task for us. As we expected, various conventional acids, such as H₂SO₄, TsOH, Sc(OTf)₃, Bi(OTf)₃, Y(OTf)₃, SnCl₄, FeCl₃, InCl₃ and ZnCl₂, were found to be ineffective for this transesterification although substrate 2b was almost completely consumed in the most cases (Table 3, entries 1 to 9). The

Table 3. Transesterification of 9a with 2b in different conditions.^[a]

^[a] Solvent: 2.5 mL, **9a**: 1.2 mmol, **2b**: 1.0 mmol.

DMSO

 $<\!5$

^[b] 20.0 mg solid catalyst were used.

20

^[e] Yield in brackets was obtained by adding 0.4 equiv. water.

 $MnCl_2 \cdot 4H_2O$

15

poor efficiencies of these catalysts mainly resulted from a lack of selectivity to **10a**. Solid catalysts, such as montmorillonite K10 and Amberlyst 15, were also used, and no clear selectivity was obtained (entries 10 and 11).

In the later study, MnCl₂·4H₂O was used as catalyst, and in this case, the yield of **10a** reached 90% (entry 12). This result implies that $MnCl_2 \cdot 4H_2O$ has a unique ability to catalyze the reaction of 9a and 2b without affecting the chemical stability of the keto carbonyl group of 10a or 2b. Other manganese salts, such as $Mn(OAc)_2$ and $MnBr_2$, were also examined, and only moderate yields were obtained (entries 13 and 14). Anhydrous MnCl₂ also worked well, but the yield of 10a was slightly inferior to that of MnCl₂·4H₂O (entry 15). Interestingly, by adding 0.4 equivalents of water into the anhydrous MnCl₂ system, the reaction yield could be improved to the level of that with MnCl₂·4H₂O. Further investigations revealed that, like in the case of the first model reaction, the solvent also plays a key role in controlling the reaction selectivity, and the best result was obtained by using toluene as medium (entries 16 to 20). It should be noted that, during the reaction, both anhydrous MnCl₂ and MnCl₂·4H₂O are soluble in toluene at the reaction temperature. Therefore, the role of water here is not facilitating formation of a crystal of the catalyst. Although the acid strength of manganese chloride tetrahydrate is not strong, a small amount of water here might play a role in tuning the acid strength of the manganese catalyst to be suitable for the reaction. This point deserves further investigation.

Other β -keto esters were also examined in the transesterification of 2b, and the results are listed in Table 4. All the examined β -keto esters can selectively react with 9a to afford the corresponding products in good to excellent yields. It should be noted that the same reactions under the identical conditionws over two conventional acids, TsOH and Sc(OTf)₃, afforded only small amount of products. In these cases, most of the substrates were consumed at the end of the reaction, and many spots were observed on TLC detection. These results indicated that (i) controlling of the selectivity is the key to render the reaction possible; (ii) the high selectivity of $MnCl_2 \cdot 4H_2O$ for catalyzing the model reaction is not an individual phenomenon, and is efficient for the synthesis of many 10a-type indole derivatives.

In view of the unique ability of $MnCl_2 \cdot 4H_2O$ for both acting as a mild acid catalyst and preventing the electrophilic reaction of the keto carbonyl group with indoles, this catalyst might be capable of promoting the reactions of many keto carbonyl-containing compounds and C-3 unsubstituted indoles. We then investigated a novel multicomponent reaction of **9a**, 3,4-dihydropyran (**11a**) and indoles using $MnCl_2 \cdot 4H_2O$ as

^[c] Proton exchange ability is 4.7 mmol g^{-1} .

^[d] 100 °C.

Table 4. Reaction of **2b** with different β -keto esters catalyzed by MnCl₂·4H₂O.^[a]

Entry	β-Keto ester	Time [h]	Product	Catalyst ^[d]	Yield (%)
1 ^[b]	OOMe	9b	10b	MnCl ₂ Sc(OTf) ₃ TsOH	82 <5 6
2	OOU	9c	10c	MnCl ₂ Sc(OTf) ₃ TsOH	86 15 38
3 ^[c]	O O OEt	9d	10d	MnCl ₂ Sc(OTf) ₃ TsOH	87 10 16
4	OOEt	9e	10e	MnCl ₂ Sc(OTf) ₃ TsOH	81 8 <5
5	MeO OEt	9f	10f	MnCl ₂ Sc(OTf) ₃ TsOH	88 <5 <5

^[a] Toluene: 2.5 mL, β -keto ester: 1.2 mmol, **2b**: 1.0 mmol.

^[b] β -Keto ester/**2b** = 1/3.

^[c] Reaction time: 14 h.

^[d] The catalyst was used with hydrate.

catalyst (Table 5). The reaction proceeded in a cascade pathway involving (i) electrophilic ring-opening reaction of 11a with indole, and (ii) transesterification of the generated hydroxy-functionalized diindolylmethane with 9a. The first step has been investigated by Yadav and his co-workers by using InCl₃ as catalyst.^[16] However, for the model multicomponent reaction, InCl₃ was proved to be ineffective due to extensive formation of many by-products (entry 1). Other acids, such as TsOH, Sc(OTf)₃, Bi(OTf)₃, Amberlyst-15, montmorillonite K10 and H₃BO₃ were also examined, and no yield >40% was obtained (entries 2 to 7). To our delight, the same reaction over MnCl₂·4H₂O catalyst proceeded well and the desired product 12a was obtained in 82% yield (entry 8). Anhydrous MnCl₂ was also examined, and the result is the same as that observed in the first reaction, the yield obtained was slightly inferior (entry 9). Investigation of the substrate scope revealed that many indoles could be used in this reaction, and the corresponding products were obtained in moderate to good yields (entries 10 to 14).

In order to shed light on the reaction mechanism, a ring-opening reaction of **11a** with indole was also examined, and it was found that the reaction proceeded very well in the presence of catalytic amount of $MnCl_2\cdot 4H_2O$. Importantly, subsequeent treatment of the obtained ring-opening product with **9a** afforded **12a** in an excellent yield (see Supporting Information). These results imply that the reaction might proceed indeed through a cascade ring-opening and transesterification pathway. It should also be noted that this multicomponent reaction has never been reported before. This demonstrated that $MnCl_2\cdot 4H_2O$ can really be used as an effective catalyst for selective organic synthesis.

Having these promising results in hand, our interest is naturally moved to how to use the product that was obtained with the manganese chloride tetrahydrate catalyst. In the first model reaction, we are able to synthesize a 1,3-dicarbonyl compound with a fragment of a di(indolyl)methane moiety. It is known that 2-(3-arylpropyl)-β-diketones can undergo a radical cyclization to form the skeleton of tetrahydronaphthalene.^[17] This type of cyclization reaction has been utilized by us for converting the ring-opening product of 2-aryl-3,4-dihydropyran with indole to a valuable product.^[6] Inspired by our previous result, we suspected that this oxidative cyclization reaction should also be effective for converting the 3a-type product. In order to confirm our hypothesis and to verify both of the usefulness of 3a-type products and the effectiveness of manganese chloride tetrahydrate as a catalyst, we thus started a three-step synthesis involving: (i) a domino Knoevenagel/oxo-Diels-Alder reaction of butyl vinyl ether (13a), acetylacetone (14a) and aqueous formaldehyde that generated a dihydropyran 1c in 87% yield; (ii) MnCl₂·4H₂O-catalyzed electrophilic ring-opening of 1c with indole that generated the corresponding product, 3b, in 98% yield, and (iii) Mn-(OAc)₃-promoted radical cyclization of **3b** in acetic acid to afford a novel 2,3,4,9-tetrahydro-1*H*-carbazole derivative 15a in 48% yield. The molecular skeleton of **15a** was known to possess antiangiogenic activity.^[18] Although the method of accessing this skeleton is available, it only works for the synthesis of the unsubstituted one,^[19] but how to modify the skeleton with substituent groups is still a big challenge. The method in Scheme 4 not only offers an alterative route for the synthesis of this skeleton, but is also capable of modifying the structure, and thus is valuable for organic synthesis.

Conclusions

In conclusion, $MnCl_2$ tetrahydrate was proved to be an effective catalyst for selective transformations of indoles in the presence of a keto carbonyl group. Al-

FULL PAPERS

Table 5. Multicomponent reactions of indoles 2c-h, 9a and 11a.^[a]

Entry	Indole	Catalyst	Product	Yield [%]
1	2c	InCl ₃	12a	<5
2	2c	$Sc(OTf)_3$	12 a	<5
3	2c	Bi(OTf) ₃	12 a	<5
4	2c	TsOH	12 a	<5
5	2c	Amberlyst 15	12 a	32
6	2c	montmorillonite K10	12 a	29
7	2c	H ₃ BO ₃	12 a	38
8	2c	MnCl ₂ ·4H ₂ O	12 a	82
9	2c	MnCl ₂	12 a	74
10	2d	$MnCl_{2}\cdot 4H_{2}O$	12b	58
11 ^[b]	2e	$MnCl_{2} \cdot 4H_{2}O$	12c	68
12	2f	$MnCl_{2}\cdot 4H_{2}O$	12d	73
13	2g	$MnCl_{2}\cdot 4H_{2}O$	12e	72
14	2h	$MnCl_2 \cdot 4H_2O$	12f	63

^[a] Nitromethane, 1.5 mL, **9a**: 2.0 mmol, indole: 2.5 mmol, **11a**: 1.0 mmol.

^[b] Reaction time: 17 h.

asc.wiley-vch.de

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

though the side reaction between the keto carbonyl and C-3 unsubstituted indole is normally catalyzed by acid, some acid-catalyzed reactions, such as the ringopening reaction of 2-butoxy-3,4-dihydropyran with indole and transesterification of a β -keto ester with an alcohol that contains a C-3 unsubstituted indole fragment, could be performed smoothly by using MnCl₂·4H₂O as catalyst. A new multicomponent reaction of indole, 3,4-dihydropyran and 9a was also developed with catalysis of MnCl₂·4H₂O. This work also indicated to us that MnCl₂ might be able to play a more important role in homogeneous catalysis than we have expected before. In spite of these promising results, the reasons for the obtained high selectivity by using MnCl₂ as catalyst are still unknown at this stage, this should be the next topic of our study.

Experimental Section

All the chemicals were used as it was received. 2-butoxy-3,4-dihydropyrans were prepared in water according to our reported method starting from olefins, 1,3-dicarbonyl compounds and formaldehyde aqueous solution.^[20] N-(2-Hydroxyethyl)indole was prepared in DMSO from indole and 2-chloroethanol according to a literature method.^[21] All reactions were conducted in a 10-mL V-type flask equipped with triangle magnetic stirring.

Typical Procedure for Electrophilic Ring-Opening Reaction of Dihydropyran 1a with Indole

In a typical reaction, nitromethane (1.0 mL) was mixed with **1a** (60.5 mg, 0.25 mmol), **2a** (73.0 mg, 0.63 mmol) and MnCl₂·4 H₂O (5.0 mg, 10 mol%) under air. The mixture was stirred for 11 h at 90 °C. After reaction, the mixture was cooled to room temperature and the desired product, **3a**, was obtained by preparative TLC using a mixed solution of ethyl acetate and petroleum ether as eluting solvent (the ratio of ethyl acetate/petroleum ether is 1/2); yield: 82.2 mg (82%).

Tests for substrate scope and the reactions with other nucleophiles were all performed according to an analogous procedure with above mentioned.

Procedure for Mechanism Study

In a typical reaction, nitromethane (1.0 mL) was mixed with **1b** (152.2 mg, 0.5 mmol) and MnCl₂·4H₂O (15.0 mg, 30 mol%) under air. The mixture was stirred for 11 h at 80 °C. After reaction, the mixture was cooled to room temperature and the desired product, **4a**, was obtained by preparative TLC using a mixed solution of ethyl acetate and petroleum ether as eluting solvent (the ratio of ethyl acetate/ petroleum ether is 1/4); yield: 69.5 mg (56%).

Then, the obtained **4a** was mixed with nitromethane (1.0 mL), indole (81.9 mg, 0.7 mmol) and $MnCl_2 \cdot 4H_2O$ (18.5 mg, 30 mol%). The mixture was then heated at 80 °C for 11 h. After reaction, the mixture was cooled to room temperature and the desired product, **3h**, was formed in quantitative yield.

Tests for the other catalyst were all performed according to an analogous procedure with above mentioned.

Procedure for Transesterification of 2b

In a typical reaction, toluene (2.5 mL) was mixed with *tert*butyl acetylacetate (189.6 mg, 1.2 mmol), $MnCl_2 \cdot 4H_2O$ (19.8 mg, 0.1 mmol) and *N*-(2-hydroxyethyl)indole **2b** (161.0 mg, 1.0 mmol) under air. The mixture was stirred for 11 h at 110 °C. After reaction, the mixture was mixed with ethyl acetate (6.0 mL), petroleum ether (6.0 mL) and brine (12 mL). After 15 min of stirring at room temperature, the organic phases were combined together and dried with Na₂SO₄. Then, through preparative TLC, the product **3a** was obtained in 90% yield.

The other reactions were performed as an analogous procedure.

Procedure for Three-Component Reaction of 2c, 9a and 11a

In a typical reaction, nitromethane (1.5 mL) was mixed with **9a** (316.4 mg, 2.0 mmol), **11a** (84.1 mg, 1.0 mmol), **2c** (293.0 mg, 2.5 mmol) and MnCl₂·4 H₂O (19.8 mg, 0.1 mmol) under air. The mixture was stirred for 10 h at 100 °C. After reaction, the mixture was mixed with ethyl acetate (6.0 mL), petroluem ethers (6.0 mL) and brine (12 mL). After 15 min of stirring at room temperature, the organic phases were combined together and dried with Na₂SO₄. Then, through preparative TLC, the product **5a** was obtained in 82% yield.

The other reactions were performed as an analogous procedure.

Procedure for Synthesis of 15a

The synthesis was started from the preparation of dihydropyran 1c. In a U-type reaction flask equipped with magnetic stirring, vinyl n-butyl ether, 9a (100.0 mg, 1.0 mmol), was mixed with acetylacetone (10a, 200.1 mg, 2.0 mmol) and formaldehyde aqueous solution (37 wt%, 202.8 mg, 2.5 mmol) under air. The mixture was stirred at 80 °C for 7 h. After reaction, the reaction mixture was cooled to room temperature. After addition of brine (5.0 mL), the aqueous phase was extracted with a mixture of ethyl acetate and heptane (v/v=1/1, 5.0 mL×3). The obtained organic phases were then combined together and dried with anhydrous Na₂SO₄. After evaporation under reduced pressure, the desired product 1c was obtained by silica gel column chromatography using a mixed solution of ethyl acetate and petroleum ether as eluting solvent (the ratio of ethyl acetate/petroleum ether is 1/20); yield: 184.6 mg (87%).

The synthesis of 3b was performed according to the procedure described in the part of ring-opening reaction. Finally, 3b was obtained in 98% yield (317.3 mg).

Radical cyclization of **3b** was performed in acetic acid using a V-type flask as reactor. Thus, acetic acid (2.5 mL) was added into the flask that contain the obtained **3b** (0.85 mmol), and then, manganese triacetate dihydrate (559.6 mg, 2.1 mmol) was added. The mixture was then stirred at 60 °C for 4 h. After reaction, aqueous Na₂CO₃ solution (2N, 15 mL) was added and then the mixture was extracted with a mixture of ethyl acetate and heptane (v/v=1/ 1, 20 mL×3). The obtained organic phases were combined together and dried with anhydrous Na₂SO₄. After evaporation under reduced pressure, **11a** was obtained through a preparative TLC isolation using a mixed solution of ethyl acetate and petroleum ether as eluting solvent (the ratio of ethyl acetate/petroether is 1/5); yield: 151.5 mg (0.41 mmol, 48%).

Characterization Data of Newly Synthesized Products

Ethyl 2-butoxy-6-methyl-3,4-dihydro-2H-pyran-5-carboxylate (1a): Colorless liquid; ¹H NMR (CDCl₃): δ =0.91 (t, J=7.6 Hz, 3 H), 1.28 (t, J=7.2 Hz, 3 H), 1.36 (sext, J= 7.6 Hz, 2 H), 1.53–1.61 (m, 2 H), 1.70–1.80 (m, 1 H), 1.81– 1.90 (m, 1 H), 2.24 (t, J=1.6 Hz, 3 H), 2.26–2.43 (m, 2 H), 3.53 (td, J_a =6.8 Hz, J_b =9.6 Hz, 1 H), 3.80 (td, J_a =6.4 Hz, J_b =9.6 Hz, 1 H), 4.15 (q, J=6.8 Hz, 2 H), 5.02 (dd, J_a = 2.8 Hz, J_b =4.0 Hz, 1 H); ¹³C NMR: δ =13.6, 14.3, 17.7, 19.1, 19.8, 26.0, 31.6, 59.5, 68.3, 97.8, 101.9, 161.4, 168.1; IR: v= 2929, 2935, 2872, 1706, 1629, 1456, 1378, 1456, 1378, 1337, 1272, 1237, 1192, 1170, 1119, 1075, 1011, 984, 863, 769, 600 cm⁻¹; HR-MS (ESI): m/z=242.1529, calcd. for C₁₃H₂₂O₄ [M]⁺: 242.1518.

Ethyl 2-butoxy-6-phenyl-3,4-dihydro-2H-pyran-5-carboxylate (1b): Colorless liquid; ¹H NMR (CDCl₃): $\delta = 0.91$ (q, J = 7.2 Hz, 6H), 1.39 (sext, J = 7.6 Hz, 2H), 1.56–1.64 (m, 2H), 1.81–1.90 (m, 1H), 1.93–2.00 (m, 1H), 2.52 ($J_a = 6.0$ Hz, $J_b = 8.8$ Hz, 2H), 3.59 (dt, $J_a = 6.4$ Hz, $J_b = 9.2$ Hz, 1H), 3.87– 3.95 (m, 3H), 5.18 (dd, $J_a = 2.4$ Hz, $J_b = 3.6$ Hz, 1H), 7.32 (s, 5H); ¹³C NMR: $\delta = 13.7$, 13.9, 18.4, 19.3, 26.0, 31.7, 59.7, 68.5, 98.3, 104.5, 127.6, 128.5, 128.7, 137.2, 159.7, 168.2; IR: v = 3082, 3026, 2935, 2872, 1692, 1634, 1446, 1371, 1339, 1292, 1246, 1153, 1125, 1057, 952, 761, 697 cm⁻¹; HR-MS (ESI): m/z = 327.1567, calcd. for C₁₈H₂₄NaO₄ [M+Na]⁺: 327.1572.

1-(2-Butoxy-6-methyl-3,4-dihydro-2H-pyran-5-yl)ethanone (1c): Colorless liquid; ¹H NMR (CDCl₃): $\delta = 0.90$ (t, J = 7.6 Hz, 3H), 1.35 (sext, J = 7.6 Hz, 2H), 1.55 (quint, J = 6.8 Hz, 2H), 1.71–1.84 (m, 1H), 1.85–1.97 (m, 1H), 2.17 (s, 3H), 2.18 (s, 3H), 2.25–2.35 (m, 1H), 2.41–2.52 (m, 1H), 3.53 (td, $J_a = 6.4$ Hz, $J_b = 9.6$ Hz, 1H), 3.78 (td, $J_a = 6.8$ Hz, $J_b = 9.6$ Hz, 1H), 3.78 (td, $J_a = 6.8$ Hz, $J_b = 9.6$ Hz, 1H), 3.78 (td, $J_a = 6.8$ Hz, $J_b = 9.6$ Hz, 1H), 3.78 (td, $J_a = 6.8$ Hz, $J_b = 9.6$ Hz, 1H), 5.04 (t, J = 3.2 Hz, 1H); ¹³C NMR: $\delta = 13.3$, 18.5, 18.8, 20.0, 25.8, 28.8, 31.3, 67.8, 97.0, 109.9, 160.3, 197.7; IR: v = 2959, 2935, 2872, 1676, 1586, 1454, 1428, 1378, 1355, 1278, 1235, 1218, 1171, 1118, 1063, 1009, 963, 932, 863, 659, 581 cm⁻¹; HR-MS (ESI): m/z = 212.1309, calcd. for C₁₂H₂₀NaO₃ [M+Na]⁺: 212.1310.

Methyl 2-butoxy-6-methyl-3,4-dihydro-2H-pyran-5-carboxylate (1d): Colorless liquid; ¹H NMR (CDCl₃): δ =0.91 (t, *J*=7.6 Hz, 3H), 1.35 (sext, *J*=7.6 Hz, 2H), 1.51–1.60 (m, 2H), 1.69–1.79 (m, 1H), 1.81–1.90 (m, 1H), 2.24 (t, *J*= 1.6 Hz, 3H), 2.26–2.41 (m, 2H), 3.53 (td, *J*_a=6.4 Hz, *J*_b= 9.6 Hz, 1H), 3.68 (s, 3H), 3.78 (dt, *J*_a=6.8 Hz, *J*_b=9.6 Hz, 1H), 5.03 (dd, *J*_a=2.4 Hz, *J*_b=3.6 Hz, 1H); ¹³C NMR: δ = 13.6, 17.5, 19.1, 19.6, 25.9, 31.5, 50.6, 68.1, 97.7, 101.6, 161.6, 168.3; IR: v=2957, 2872, 1710, 1630, 1435, 1380, 1339, 1276, 1119, 1079, 1011, 860, 769 cm⁻¹; HR-MS (ESI): *m*/*z*= 251.1243, calcd. for C₁₂H₂₀NaO₄ [M+Na]⁺: 251.1259.

tert-Butyl 2-butoxy-6-methyl-3,4-dihydro-2H-pyran-5carboxylate (1e): Colorless liquid; ¹H NMR (CDCl₃): δ = 0.83 (t, J=7.2 Hz, 3H), 1.28 (sext, J=8.0 Hz, J=2H), 1.40 (s, 9H), 1.49 (quint, J=8.0 Hz, 2H), 1.60–1.70 (m, 1H), 1.71–1.80 (m, 1H), 2.12 (s, 3H), 2.15–2.30 (m, 2H), 3.44 (td, $J_a = 6.8 \text{ Hz}, J_b = 9.6 \text{ Hz}, 1 \text{ H}$), 3.71 (td, $J_a = 6.8 \text{ Hz}, J_b = 9.6 \text{ Hz}, 1 \text{ H}$), 4.91 (dd, $J_a = 2.4 \text{ Hz}, J_b = 4.0 \text{ Hz}, 1 \text{ H}$); ¹³C NMR: $\delta = 13.7, 18.1, 19.1, 19.8, 26.2, 28.2, 31.6, 68.3, 79.2, 97.8, 103.4, 160.3, 167.7; IR: <math>\nu = 2962, 2934, 2873, 1703, 1630, 1456, 1366, 1339, 1299, 1283, 1247, 1175, 1119, 1076, 1011, 865, 771 \text{ cm}^{-1}$; HR-MS (ESI): m/z = 270.1822, calcd. for $C_{15}H_{26}O_4$ [M]⁺: 270.1831.

2-Methoxyethyl 2-butoxy-6-methyl-3,4-dihydro-2Hpyran-5-carboxylate (1f): Colorless liquid; ¹H NMR (CDCl₃): $\delta = 0.91$ (t, J = 7.2 Hz, 3H), 1.35 (sext, J = 7.2 Hz, 2H), 1.56 (quint, J = 6.8 Hz, 2H), 1.69–1.79 (m, 1H), 1.81– 1.89 (m, 1H), 2.24 (s, 3H), 2.28–2.39 (m, 2H), 3.37 (s, 3H), 3.52 (td, $J_a = 6.8$ Hz, $J_b = 9.6$ Hz, 1H), 3.61 (t, J = 4.8 Hz, 2H), 3.79 (td, $J_a = 6.4$ Hz, $J_b = 9.2$ Hz, 1H), 4.23 (dt, $J_a =$ 0.8 Hz, $J_b = 4.0$ Hz, 2H), 5.03 (dd, $J_a = 2.8$ Hz, $J_b = 3.6$ Hz, 1H); ¹³C NMR: $\delta = 13.7$, 17.7, 19.1, 19.9, 25.9, 31.6, 58.8, 62.7, 68.3, 70.6, 97.9, 101.7, 162.0, 168.0; IR: v = 2958, 2935, 2874, 2819, 1707, 1628, 1454, 1403, 1379, 1338, 1289, 1272, 1237, 1196, 1119, 1077, 1011, 984, 863, 768, 539, 496 cm⁻¹; HR-MS (ESI): m/z = 295.1525, calcd. for C₁₄H₂₄NaO₅ [M + Na]⁺: 295.1521.

Ethyl 2-acetyl-5,5-di(1H-indol-3-yl)pentanoate (3a): Yellow solid; mp 44–46 °C; ¹H NMR (CDCl₃): δ =1.17 (t, J=6.8 Hz, 3H), 1.84–2.00 (m, 2H), 2.06 (s, 3H), 2.09–2.22 (m, 2H), 3.41 (t, J=7.2 Hz, 1H), 4.10 (q, J=6.8 Hz, 2H), 4.43 (t, J=7.2 Hz, 1H), 6.75 (dd, J_a=2.0 Hz, J_b=5.2 Hz, 2H), 6.99 (t, J=7.2 Hz, 2H), 7.09 (t, J=7.2 Hz, 2H), 7.18 (d, J=8.4 Hz, 2H), 7.54 (d, J=8.0 Hz, 2H), 7.88 (s, 2H); ¹³C NMR: δ =14.1, 14.3, 27.1, 28.9, 33.3, 34.0, 60.0, 61.5, 111.4, 119.1, 119.1, 119.3, 119.5, 121.7, 122.0, 126.9, 127.0, 136.7, 170.1, 204.0; IR: v=3412, 3118, 3055, 2977, 2932, 2868, 1731, 1707, 1617, 1484, 1455, 1420, 1358, 1339, 1272, 1219, 1150, 1094, 1013, 734, 587 cm⁻¹; HR-MS (ESI): m/z = 425.1822, calcd. for C₂₅H₂₆N₂O₃ [M+Na]⁺: 425.1841.

3-[3,3-Di(1H-indol-3-yl)propyl]pentane-2,4-dione and (E)-3-(1-hydroxyethylidene)-6,6-di(1H-indol-3-yl)hexan-**2-one** (3b): Yellow solid; mp 76–78°C; ¹H NMR (CDCl₃): $\delta = 1.85$ (s, 2H), 1.93 (s, 4H), 1.94–2.10 (m, 2.6H), 2.14–2.24 (m, 1.4 H), 3.50 (t, J = 6.8 Hz, 0.7 H), 4.37 (t, J = 7.2 Hz, 1 H),6.68 (d, J=1.4 Hz, 2H), 6.78 (d, J=1.6 Hz, 0.6 H), 6.94–7.03 (m, 2H), 7.06 (t, J=7.2 Hz, 2H), 7.10–7.19 (m, 2H), 7.49 (d, J = 8.0 Hz, 1.4 H), 7.55 (d, J = 8.0 Hz, 0.6 H), 7.84 (s, 1.4 H),7.96 (s, 0.6 H); 13 C NMR: δ = 22.8, 26.5, 27.2, 29.4, 33.4, 34.2, 36.8, 68.6, 110.7, 111.5, 111.6, 119.1, 119.2, 119.2, 119.2, 119.5, 119.6, 121.8, 121.9, 122.0, 122.0, 126.9, 127.0, 136.7, 136.7, 191.5, 205.4; IR: v=3411, 2922, 1721, 1693, 1618, 1549, 1513, 1487, 1455, 1419, 1357, 1339, 1275, 1244, 1223, 1125, 1095, 1010, 743, 600, 586, 508 cm⁻¹; HR-MS (ESI): m/z = 395.1722, calcd. for $C_{24}H_{24}N_2NaO_2$ $[M + Na]^+$: 395.1735.

2-Methoxyethyl 2-acetyl-5,5-di(1H-indol-3-yl)pentanoate (3c): Yellow solid; mp 71–73 °C; ¹H NMR (CDCl₃): $\delta = 1.80-1.99$ (m, 2H), 2.01 (s, 3H), 2.05–2.20 (m, 2H), 3.23 (s, 3H), 3.40 (d, J = 7.6 Hz, 1H), 3.42–3.46 (m, 2H), 4.15– 4.21 (m, 2H), 4.40 (t, J = 6.8 Hz, 1H), 6.72 (dd, $J_a = 2.0$ Hz, $J_b = 9.6$ Hz, 2H), 6.97 (t, J = 7.2 Hz, 2H), 7.07 (t, J = 7.6 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.95 (bs, 2H); ¹³C NMR: $\delta = 27.1$, 28.9, 33.3, 34.0, 58.9, 59.7, 64.2, 70.2, 111.4, 119.0, 119.1, 119.2, 119.5, 121.7, 122.0, 126.9, 127.0, 136.7, 170.1, 203.9; IR: v = 3411, 3115, 3055, 2931, 2871, 1735, 1711, 1642, 1618, 1548, 1487, 1456, 1421, 1370, 1357, 1339, 1245, 1222, 1201, 1151, 1126, 1096, 1042, 1030, 1012, 744, 597, 425 cm⁻¹; HR-MS (ESI): m/z = 455.1944, calcd. for C₂₆H₂₈N₂NaO₄ [M+Na]⁺: 455.1947.

Methyl 2-acetyl-5,5-bis(5-bromo-1H-indol-3-yl)pentanoate (3d): Yellow solid; mp 60–62 °C; ¹H NMR (CDCl₃): δ =1.81–1.99 (m, 2H), 2.05–2.13 (m, 2H), 2.14 (s, 3H), 3.49 (t, *J*=6.8 Hz, 1H), 3.68 (s, 3H), 4.28 (t, *J*=7.2 Hz, 1H), 6.88 (d, *J*=12.0 Hz, 2H), 7.10 (d, *J*=8.8 Hz, 2H), 7.16 (d, *J*= 8.4 Hz, 2H), 7.59 (d, *J*=4.8 Hz, 2H), 8.23 (bs, 2H); ¹³C NMR: δ =26.9, 29.2, 32.7, 33.9, 52.7, 59.5, 112.3, 113.0, 118.1, 118.3, 121.7, 121.8, 123.1, 124.7, 128.4, 128.4, 135.3, 170.5, 203.8; IR: v=3421, 3401, 3125, 2938, 2869, 1733, 1713, 1566, 1460, 1374, 1360, 1340, 1274, 1219, 1152, 1100, 1049, 885, 797, 648, 586 cm⁻¹; HR-MS: (ESI): *m*/*z*=566.9867, calcd. for C₂₄H₂₂Br₂N₂NaO₃ [M+Na]⁺: 566.9895.

tert-Butyl 2-acetyl-5,5-di (1H-indol-3-yl)pentanoate (3e): Yellow solid; mp 64–66 °C; ¹H NMR (CDCl₃): δ =1.40 (s, 9H), 1.72–2.00 (m, 2H), 2.06 (s, 3H), 2.09–2.26 (m, 2H), 3.33 (t, *J*=7.2 Hz, 1H), 4.42 (t, *J*=7.2 Hz, 1H), 6.73 (s, 2H), 6.99 (t, *J*=7.2 Hz, 2H), 7.09 (t, *J*=6.8 Hz, 2H), 7.18 (d, *J*= 8.0 Hz, 2H), 7.53 (d, *J*=8.0 Hz, 2H), 7.86 (bs, 2H); ¹³C NMR: δ =27.0, 28.0, 28.9, 33.2, 34.1, 61.1, 82.1, 111.4, 119.0, 119.2, 119.2, 119.5, 121.7, 122.0, 127.0, 136.7, 169.4, 204.4; IR: v=3413, 3055, 2976, 2932, 2866, 1729, 1705, 1620, 1549, 1484, 1456, 1420, 1393, 1376, 1339, 1281, 1248, 1142, 1096, 1011, 929, 814, 743, 597 cm⁻¹; HR-MS (ESI): *m/z* = 453.2137, calcd. for C₂₇H₃₀N₂NaO₃ [M+Na]⁺: 453.2154.

Methyl 2-acetyl-5,5-di(1H-indol-3-yl)pentanoate (3f): Yellow solid; mp 98–100 °C; ¹H NMR (CDCl₃): δ =1.80–1.95 (m, 2H), 1.98 (s, 3H), 2.02–2.16 (m, 2H), 3.39 (t, *J*=7.2 Hz, 1H), 3.55 (s, 3H), 4.39 (t, *J*=7.2 Hz, 1H), 6.66 (dd, *J_a*= 2.0 Hz, *J_b*=9.2 Hz, 2H), 6.96 (t, *J*=7.6 Hz, 2H), 7.05 (t, *J*=7.2 Hz, 2H), 7.10 (d, *J*=8.0 Hz, 2H), 7.50 (dd, *J_a*=2.4 Hz, *J_b*=7.6 Hz, 2H), 7.84 (s, 2H); ¹³C NMR: δ =27.2, 29.1, 33.3, 34.1, 52.6, 59.7, 111.6, 119.0, 119.1, 119.2, 119.5, 121.8, 122.1, 126.9, 127.0, 136.7, 170.7, 204.3; IR: v=3410, 3055, 3008, 2953, 2929, 2864, 1735, 1708, 1618, 1487, 1455, 1430, 1357, 1340. 1278, 1243, 1220, 1151, 1095, 1011, 744, 585 cm⁻¹; HR-MS (ESI): *m/z*=411.1661, calcd. for C₂₄H₂₄N₂NaO₃ [M+Na]⁺: 411.1685.

Methyl 2-acetyl-5,5-bis(5-methoxy-1H-indol-3-yl)penta**noate** (3g): Red liquid; ¹H NMR(CDCl₃): $\delta = 1.87-2.01$ (m, 2H), 2.07 (d, J = 2.4 Hz, 3H), 2.10–2.22 (m, 2H), 3.46 (q, J =6.4 Hz, 1 H), 3.62 (d, J=1.6 Hz, 3 H), 3.74 (d, J=2.8 Hz, 6H), 4.35 (q, J=6.4 Hz, 1H), 6.74-6.79 (m, 2H), 6.79-6.84 (m, 2H), 6.99-7.05 (m, 2H), 7.08 (d, J=8.8 Hz, 2H), 8.04 (bs, 1H), 8.09 (bs, 1H); ¹³C NMR (CDCl₃): $\delta = 27.1$, 28.9, 33.0, 34.1, 52.5, 56.0, 59.6, 101.7, 101.7, 111.6, 111.7, 112.1, 118.7, 118.8, 122.8, 122.8, 127.3, 132.0, 153.6, 170.6, 203.9, 204.0; HR-MS (ESI): m/z = 471.1892, calcd. for $C_{26}H_{28}N_2NaO_5 [M + Na]^+: 471.1896.$

Ethyl 2-benzoyl-5,5-di(1H-indol-3-yl)pentanoate (3h): Yellow solid; mp 74–76 °C; ¹H NMR (CDCl₃): $\delta = 1.05$ (t, J = 7.2 Hz, 3H), 2.05–2.18 (m, 2H), 2.18–2.29 (m, 2H), 4.05 (q, J = 7.2 Hz, 2H), 4.31 (t, J = 6.8 Hz, 1H), 4.46 (t, J =7.2 Hz, 1H), 6.71 (d, J = 2.0 Hz, 2H), 6.97 (q, J = 7.2 Hz, 2H), 7.06 (t, J = 7.2 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.44 (t, J = 7.2 Hz, 1H), 7.51 (t, J =8.4 Hz, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.86 (s, 2H); ¹³C NMR: $\delta = 14.1$, 28.0, 33.4, 34.0, 54.4, 61.6, 111.5, 119.1, 119.3, 119.5, 119.5, 121.8, 122.2, 127.0, 127.0, 128.7, 128.8, 133.7, 136.2, 136.7, 136.7, 170.4, 196.0; IR: v = 3408, 3055, 2977, 2962, 2932, 2863, 1728, 1678, 1595, 1453, 1453, 1420, 1340, 1279, 1224, 1187, 1154, 1094, 1012, 743, 691, 588, 489, 420 cm⁻¹; HR-MS (ESI): m/z = 487.2000, calcd. for $C_{30}H_{28}N_2NaO_3$ [M+Na]⁺: 487.1998.

2-acetyl-5,5-bis(6-fluoro-1H-indol-3-yl)penta-Methvl noate (3i): Yellow solid; mp 80-82°C; ¹H NMR (CDCl₃): $\delta = 1.86 - 2.23$ (m, 2H), 2.08 - 2.20 (m, 5H), 3.49 (t, J = 7.2 Hz, 1 H), 3.66 (s, 3 H), 4.36 (t, J=7.6 Hz, 1 H), 6.75 (dt, $J_a=$ $0.8 \text{ Hz}, J_{b} = 9.6 \text{ Hz}, 2 \text{ H}$, 6.86 (d, J = 2.0 Hz, 1 H), 6.88 (d, J =2.0 Hz, 1H), 6.90 (d, J=2.0 Hz, 1H), 6.93 (d, J=2.4 Hz, 1H), 7.35–7.41 (m, 2H), 8.17 (bs, 2H); ¹³C NMR: ¹³C NMR: $\delta = 27.0, 29.1, 33.0, 34.0, 52.6, 59.6, 97.5, 97.7, 107.7, 107.9,$ 119.0, 119.1, 120.0, 120.1, 122.0, 122.1, 123.4, 123.4, 136.5, 136.6, 158.6, 161.0, 170.5, 204.1; IR: 3417, 3126, 3068, 2954, 2934, 2865, 1733, 1711, 1625, 1550, 1497, 1455, 1343, 1303, 1251, 1216, 1140, 1121, 1092, 1045, 951, 837, 805, 606, 478 cm⁻¹; HR-MS (ESI): m/z = 447.1512, calcd. for $C_{24}H_{22}F_2N_2NaO_3 [M+Na]^+: 447.1496.$

Methyl 2-acetyl-5,5-bis(1-methyl-1H-indol-3-yl)pentanoate (3j): Red liquid; ¹H NMR (CDCl₃): $\delta = 1.86-2.06$ (m, 2H), 2.08 (t, J = 1.6 Hz, 3H), 2.12–2.30 (m, 2H), 3.40–3.48 (m, 1H), 3.60 (s, 3H), 3.61 (s, 3H), 3.64 (t, J = 1.6 Hz, 3H), 4.43–4.53 (m, 1H), 6.83 (td, $J_a = 1.6$ Hz, $J_b = 7.6$ Hz, 2H), 6.98–7.08 (m, 2H), 7.12–7.19 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.58 (q, J = 2.8 Hz, 2H); ¹³C NMR: $\delta = 27.3$, 29.0, 32.8, 33.8, 34.0, 52.5, 59.8, 109.4, 118.1, 118.3, 118.7, 119.7, 121.5, 126.5, 127.4, 127.5, 137.4, 170.5, 203.5; IR: v = 3051, 2948, 2877, 2824, 1739, 1714, 1613, 1547, 1483, 1471, 1425, 1371, 1358, 1328, 1242, 1208, 1153, 1077, 1012, 986, 909, 738, 800, 738, 647, 630, 585, 557, 512 cm⁻¹; HR-MS (ESI): m/z =439.1975, calcd. for C₂₆H₂₈N₂NaO₃ [M+Na]⁺: 439.1998.

Ethyl β-oxo-α-(3-oxopropyl)benzenepropanoate (4a): Colorless liquid; ¹H NMR (CDCl₃): $\delta = 1.06$ (t, J = 7.2 Hz, 3H), 2.12–2.28 (m, 2H), 2.45–2.62 (m, 2H), 4.04 (dq, $J_a = 1.2$ Hz, $J_b = 7.2$ Hz, 2H), 4.35 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.50 (t, J = 7.6 Hz, 1H), 7.20 (dd, $J_a = 1.2$ Hz, $J_b = 7.2$ Hz, 2H), 9.67 (s, 1H); ¹³C NMR: $\delta = 13.9$, 21.2, 41.1, 52.6, 61.5, 128.6, 128.8, 133.7, 135.8, 169.6, 194.9, 201.3; IR: $\nu = 3063$, 2981, 2938, 2872, 2831, 2728, 1731, 1685, 1594, 1447, 1369, 1247, 1192, 1164, 1096, 1074, 1024, 1004, 910, 851, 781, 736, 692, 597, 518, 495 cm⁻¹.

5-Oxo-5-phenylpentanal (4b): Colorless liquid; ¹H NMR (CDCl₃): $\delta = 2.08$ (t, J = 7.2 Hz, 2H), 2.60 (dt, $J_a = 1.2$ Hz, $J_b = 6.8$ Hz, 2H), 3.06 (t, J = 6.8 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.56 (tt, $J_a = 2.0$ Hz, $J_b = 7.2$ Hz, 1H), 7.95 (dd, $J_a = 1.6$ Hz, $J_b = 8.8$ Hz, 2H); ¹³C NMR: $\delta = 16.5$, 37.3, 43.1, 128.0, 128.7, 133.2, 136.7, 199.4, 202.0; IR: v = 3058, 2963, 2940, 2725, 1726, 1689, 1595, 1448, 1410, 1372, 1292, 1257, 1231, 1197, 1182, 1098, 1072, 1054, 1029, 999, 938, 917, 735, 691, 567 cm⁻¹.

5-n-Butyl 1-ethyl 2-benzoylpentanedioate (4c): Colorless liquid; ¹H NMR (CDCl₃): $\delta = 0.92$ (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H), 1.35 (sext, J = 7.6 Hz, 2H), 1.59 (quint, J = 7.2 Hz, 2H), 2.30 (dq, $J_a = 2.0$ Hz, $J_b = 6.4$ Hz, 2H), 2.45 (dt, $J_a = 3.2$ Hz, $J_b = 6.4$ Hz, 2H), 4.08 (t, J = 6.8 Hz, 2H), 4.14 (dt, $J_a = 1.2$ Hz, $J_b = 7.2$ Hz, 2H), 4.50 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.60 (tt, $J_a = 1.2$ Hz, $J_b = 7.6$ Hz, 1H), 8.03 (dd, $J_a = 1.2$ Hz, $J_b = 8.4$ Hz, 2H); ¹³C NMR: $\delta = 13.7$, 14.0, 19.1, 24.0, 30.6, 31.5, 52.8, 61.5, 64.5, 128.7, 128.8, 133.6, 136.0, 169.6, 172.9, 195.0; IR: v = 3063, 2961, 2935, 2873, 1734, 1686, 1638, 1594, 1449, 1370, 1251, 1184, 1156, 1069, 1025, 980, 876, 854, 781, 740, 693, 597 cm⁻¹; HR-MS (ESI): m/z = 320.1629, calcd. for C₁₈H₂₄O₅ [M]⁺: 320.1624.

Methyl 2-acetyl-5,5-bis(5-methylfuran-2-yl)pentanoate (6a): Colorless liquid; ¹H NMR (CDCl₃): $\delta = 1.70$ –1.95 (m, 4H), 2.13 (s, 3H), 2.18 (s, 6H), 3.36 (t, J = 7.2 Hz, 1H), 3.66 (s, 3H), 3.88 (t, J = 7.2 Hz, 1H), 5.80 (s, 2H), 5.87 (d, J =2.8 Hz, 2H); ¹³C NMR: $\delta = 13.5$, 26.0, 28.7, 30.5, 38.7, 52.3, 59.3, 106.0, 106.5, 150.8, 153.0, 170.0, 202.8; IR: $\nu = 3105$, 2952, 2923, 2872, 1743, 1716, 1613, 1564, 1450, 1436, 1358, 1245, 1217, 1148, 1021, 949, 783 cm⁻¹; HR-MS (ESI): m/z =341.1357, calcd. for C₁₈H₂₂NaO₅ [M]⁺: 341.1365.

Ethyl 2-acetyl-4-(1,8-dioxo-2,3,4,5,6,7,8,9-octahydro-*IH-xanthen-9-yl)butanoate* (8a): Yellow liquid; ¹H NMR (CDCl₃): $\delta = 1.27$ (t, J = 7.2 Hz, 3H), 1.64–1.75 (m, 2H), 1.77–2.02 (m, 6H), 2.21 (s, 3H), 2.25–2.37 (m, 4H), 2.45– 2.56 (m, 4H), 3.36 (t, J = 7.2 Hz, 1H), 3.87 (t, J = 8.0 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H); ¹³C NMR: $\delta = 14.1$, 19.9, 27.0, 27.2, 28.9, 29.9, 32.8, 33.5, 59.5, 61.5, 117.1, 117.2, 169.6, 191.1, 192.0, 203.0; IR: $\nu = 3071$, 2957, 2873, 1722, 1650, 1610, 1460, 1426, 1401, 1371, 1328, 1275, 1221, 1183, 1136, 1075, 1017, 955, 914, 863, 826, 759, 744, 607, 523, 502 cm⁻¹; HR-MS (ESI): m/z = 374.1723, calcd. for C₂₁H₂₆O₆ [M]⁺: 374.1729.

2-(1H-1-Indolyl)ethyl acetoacetate (10a): Brown liquid; ¹H NMR (CDCl₃): $\delta = 2.05$ (s, 3 H), 3.29 (s, 2 H), 4.30 (t, J = 5.2 Hz, 2 H), 4.38 (t, J = 4.8 Hz, 2 H), 6.48 (dd, $J_a = 0.8$ Hz, $J_b = 3.2$ Hz, 1 H), 7.05 (d, J = 4.8 Hz, 1 H), 7.09 (dt, $J_a = 1.2$ Hz, $J_b = 8.0$ Hz, 1 H), 7.19 (dt, $J_a = 0.8$ Hz, $J_b = 6.8$ Hz, 1 H), 7.29 (dd, $J_a = 0.4$ Hz, $J_b = 8.0$ Hz, 1 H), 7.60 (d, J = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃): $\delta = 30.2$, 44.8, 49.7, 63.9, 102.0, 109.2, 119.7, 121.2, 121.9, 128.1, 128.7, 136.1, 166.8, 200.4; IR: v = 3102, 3054, 2957, 1745, 1716, 1656, 1614, 1513, 1464, 1444, 1403, 1362, 1334, 1315, 1262, 1249, 1203, 1174, 1150, 1051, 1012, 764, 745, 694, 596, 541, 428 cm⁻¹; HR-MS (ESI): m/z = 268.0938, calcd. for C₁₄H₁₅NNaO₃ [M+Na]⁺: 268.0950.

2-(1H-1-Indolyl)ethyl isobutyrylacetate (10b): Brown liquid; ¹H NMR (CDCl₃): $\delta = 1.03$ (s, 3H), 1.04 (s, 3H), 2.53 (sept, 6.8 Hz, 1H), 3.37 (s, 2H), 4.30 (t, J = 7.6 Hz, 2H), 4.39 (dt, $J_a = 0.8$ Hz, $J_b = 6.0$ Hz, 2H), 6.48 ($J_a = 0.4$ Hz, $J_b =$ 3.2 Hz, 1H), 7.06 (d, J = 3.2 Hz, 1H), 7.08 (dt, $J_a = 0.8$ Hz, $J_b = 8.0$ Hz, 1H), 7.19 (dt, $J_a = 1.2$ Hz, $J_b = 7.2$ Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃): $\delta = 17.9$, 41.3, 44.9, 46.7, 63.8, 101.9, 109.2, 119.7, 121.1, 121.8, 128.1, 128.7, 136.1, 167.2, 206.4; IR: v = 3103, 3055, 2972, 2935, 2876, 1748, 1712, 1651, 1618, 1514, 1464, 1363, 1335, 1315, 1102, 1083, 1046, 1011, 969, 764, 744, 720, 695, 421 cm⁻¹; HR-MS (ESI): m/z = 296.1250, calcd. for C₁₆H₁₉NNaO₃ [M+Na]⁺: 296.1263.

2-(1H-1-Indolyl)ethyl pivaloylacetate (10c): Brown liquid; ¹H NMR (CDCl₃): $\delta = 1.09$ (s, 7.3 H), 1.13 (s, 1.7 H), 3.43 (s, 2 H), 4.31 (t, J = 5.2 Hz, 2 H), 4.39 (t, J = 5.6 Hz, 2 H), 6.47 (d, J = 3.2 Hz, 1 H), 7.07 (d, J = 2.8 Hz, 1 H), 7.10 (d, J =7.6 Hz, 1 H), 7.18 (t, J = 8.4 Hz, 1 H), 7.31 (d, J = 8.4 Hz, 1 H), 7.60 (d, J = 7.6 Hz, 1 H); ¹³C NMR (CDCl₃): $\delta = 26.0$, 43.7, 44.8, 44.9, 63.7, 101.9, 109.3, 119.6, 121.1, 121.8, 128.2, 128.7, 136.1, 167.6, 208.0; IR: $\nu = 3102$, 3055, 2969, 2937, 2909, 2872, 1748, 1706, 1646, 1614, 1513, 1479, 1464, 1400, 1366, 1334, 1316, 1269, 1240, 1203, 1146, 1101, 1082, 1065, 1049, 1009, 932, 909, 765, 743, 720, 566, 553, 424 cm⁻¹; HR-MS (ESI): m/z = 310.1406, calcd. for $C_{17}H_{21}NNaO_3$ [M+ Na]⁺: 310.1419.

2-(1H-1-Indolyl)ethyl butyroacetate (10d): Brown liquid; ¹H NMR (CDCl₃): $\delta = 0.79$ (t, J = 7.6 Hz, 3H), 1.44 (sext, J = 7.6 Hz, 2H), 2.17 (t, J=7.2 Hz, 2H), 3.16 (s, 2H), 4.14 (t, J=5.6 Hz, 2H), 4.25 (t, J=5.2 Hz, 2H), 6.43 (d, J=3.2 Hz, 1H), 6.97 (d, J=3.2 Hz, 1H), 7.05 (t, J=7.6 Hz, 1H), 7.14 (t, J=7.2 Hz, 1H), 7.21 (d, J=4.4 Hz, 1H), 7.56 (d, J=7.6 Hz, 1H); ¹³C NMR (CDCl₃): $\delta=13.6$, 17.0, 44.8, 48.8, 63.8, 101.9, 109.4, 119.7, 121.2, 121.8, 128.3, 128.8, 136.2, 167.1, 202.8; IR: v=3103, 3030, 2964, 2953, 2876, 1747, 1714, 1649, 1618, 1513, 1463, 1403, 1364, 1334, 1316, 1260, 1226, 1205, 1154, 1126, 1073, 1047,764, 743, 720, 583, 570, 423 cm⁻¹; HR-MS (ESI): m/z=296.1247, calcd. for C₁₆H₁₉NNaO₃ [M+Na]⁺: 296.1263.

2-(1H-1-Indolyl)ethyl 2-benzoylacetate (10e): Brown liquid; ¹H NMR (CDCl₃): $\delta = 3.83$ (s, 2H), 4.26 (t, J= 5.2 Hz, 2H), 4.38 (t, J=5.6 Hz, 2H), 6.44 (q, J=1.2 Hz, 1 H), 6.99 (d, J = 3.2 Hz, 1 H), 7.08 (dt, $J_a = 1.2$ Hz, $J_b =$ 6.8 Hz, 1 H), 7.16 (t, J=8.0 Hz, 1 H), 7.27 (d, J=8.4 Hz, 1 H), 7.31–7.42 (m, 2 H), 7.51 (t, J=6.8 Hz, 1 H), 7.59 (d, J= 8.0 Hz, 1 H), 7.77 (dd, $J_a = 1.6$ Hz, $J_b = 8.8$ Hz, 2 H); ¹³C NMR (CDCl₃): $\delta = 44.9$, 45.6, 64.0, 102.0, 109.3, 119.7, 121.2, 121.8, 128.2, 128.6, 128.9, 134.0, 135.8, 136.1, 167.4, 192.4; IR: v=3056, 2954, 1745, 1685, 1617, 1600, 1462, 1451, 1411, 1362, 1333, 1316, 1266, 1208, 1188, 1146, 1102, 1082, 1048, 1012, 1001, 744, 723, 689, 427 cm⁻¹; HR-MS (ESI): m/z = 330.1095, calcd. for C₁₉H₁₇NNaO₃ [M+Na]⁺: 330.1106. 2-(1H-1-Indolyl)ethyl 2-(4-methoxybenzoyl)acetate (10f): Brown liquid; ¹H NMR (CDCl₃): $\delta = 3.79$ (s, 3H), 3.81 (s, 2H), 4.30 (t, J=5.6 Hz, 2H), 4.40 (t, J=5.6 Hz, 2H), 6.44 (d, J=2.8 Hz, 1H), 6.83 (td, $J_a=2.0$ Hz, $J_b=9.2$ Hz, 2H),

(d, J = 2.8 Hz, 1H), 6.85 (td, $J_a = 2.0$ Hz, $J_b = 9.2$ Hz, 2H), 7.02 (d, J = 3.2 Hz, 1H), 7.09 (t, J = 8.0 Hz, 1H), 7.17 (t, J = 8.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.75 (td, $J_a = 2.0$ Hz, $J_b = 8.8$ Hz, 1H); ¹³C NMR (CDCl₃): $\delta = 44.9$, 45.4, 55.6, 63.9, 101.9, 109.2, 114.1, 119.7, 121.1, 121.8, 128.2, 128.7, 128.9, 130.9, 136.1, 164.1, 167.6, 190.8; IR: v = 3102, 3055, 3009, 2958, 2937, 2841, 1744, 1676, 1601, 1577, 1512, 1463, 1421, 1362, 1318, 1263, 1217, 1174, 1148, 1117, 1083, 1026, 994, 838, 810, 765, 745, 639, 609, 569, 445, 425 cm⁻¹; HR-MS (ESI): m/z = 360.1206, calcd. for $C_{20}H_{19}NNaO_4$ [M+Na]⁺: 360.1212.

ε-(*IH-Indol-3-yl*)-*IH-indole-3-pentyl acetoacetate* (12a): Brown liquid; ¹H NMR (CDCl₃): $\delta = 1.34-1.43$ (m, 2 H), 1.63 (quint, J = 6.8 Hz, 2 H), 2.09 (s, 3 H), 2.16 (dd, $J_a = 7.6$ Hz, $J_b = 15.6$ Hz, 2 H), 3.30 (s, 2 H), 4.03 (t, J = 6.8 Hz, 2 H), 4.40 (t, J = 7.6 Hz, 1 H), 6.79 (d, J = 2.4 Hz, 2 H), 7.00 (dt, $J_a =$ 0.8 Hz, $J_b = 7.6$ Hz, 2 H), 7.10 (dt, $J_a = 0.8$ Hz, $J_b = 7.6$ Hz, 2 H), 7.20 (d, J = 8.4 Hz, 2 H), 7.54 (d, J = 8.0 Hz, 2 H), 7.88 (s, 2 H); ¹³C NMR (CDCl₃): $\delta = 24.4$, 28.4, 30.1, 33.8, 35.2, 49.9, 65.4, 111.2, 118.9, 119.4, 119.8, 121.6, 121.6, 126.9, 136.5, 167.3, 201.2; IR: v = 3417, 3056, 2934, 1713, 1618, 1454, 1421, 1338, 1294, 1244, 1221, 1151, 1125, 1094, 1046, 930, 909, 739, 596, 585, 420 cm⁻¹; HR-MS (ESI): m/z =425.1827, calcd. for C₂₅H₂₆N₂NaO₃ [M+Na]⁺: 425.1841.

ε-[*IH*-(*4*-*Chloro*)*indol*-*3*-*y*]*J*-*IH*-(*4*-*chloro*)*indole*-*3pentyl acetoacetate* (**12b**): Brown liquid; ¹H NMR (CDCl₃): δ =1.50–1.60 (m, 2H), 1.66 (quint, *J*=6.8 Hz, 2H), 1.99 (q, *J*=7.6 Hz, 2H), 2.15 (s, 3H), 3.37 (s, 2H), 4.08 (t, *J*=6.4 Hz, 2H), 5.64 (t, 6.4 Hz, 1H), 6.58 (d, *J*=2.4 Hz, 2H), 6.97 (dd, *J*_a=5.6 Hz, *J*_b=7.6 Hz, 4H), 7.10 (dd, *J*_a=2.6 Hz, *J*_b= 6.8 Hz, 2H), 8.21 (d, *J*=2.0 Hz, 2H); ¹³C NMR (CDCl₃): δ =24.3, 28.4, 30.2, 33.3, 37.8, 50.0, 65.5, 110.0, 120.3, 121.1, 122.1, 123.1, 123.6, 126.3, 138.1, 167.4, 201.6; IR: v=3420, 3176, 3127, 3065, 2939, 2865, 1740, 1715, 1618, 1558, 1477, 1427, 1362, 1338, 1188, 1149, 1040, 982, 938, 911, 819, 779, 746, 555, 547, 492, 475, 411 cm⁻¹; HR-MS (ESI): m/z = 493.1053, calcd. for C₂₅H₂₄Cl₂N₂NaO₃ [M+Na]⁺: 493.1062.

ε-[*IH*-(*5*-*Bromo*)*indol*-*3*-*y*]*J*-*IH*-(*5*-*bromo*)*indole*-*3pentyl acetoacetate* (12c): Brown liquid; ¹H NMR (CDCl₃): δ =1.27–1.38 (m, 2H), 1.60 (quint, *J*=6.8 Hz, 2H), 2.04–2.12 (m, 2H), 2.15 (s, 3H), 3.38 (s, 2H), 4.03 (t, *J*=6.8 Hz, 2H), 4.22 (t, *J*=7.6 Hz, 1H), 6.88 (d, *J*=2.0 Hz, 2H), 7.10 (d, *J*= 8.4 Hz, 2H), 7.16 (dd, *J_a*=1.6 Hz, *J_b*=8.4 Hz, 2H), 7.61 (d, *J*=1.6 Hz, 2H), 8.20 (d, *J*=2.0 Hz, 2H); ¹³C NMR (CDCl₃): δ =24.3, 28.2, 30.2, 33.8, 34.6, 50.0, 65.4, 112.2, 112.8, 118.9, 121.8, 122.9, 124.5, 128.5, 135.2, 167.3, 201.4; IR: v=3418, 3123, 3075, 2936, 2862, 1732, 1716, 1642, 1622, 1566, 1455, 1415, 1359, 1317, 1277, 1268, 1175, 1151, 1097, 1037, 883, 866, 795, 766, 755, 584, 421 cm⁻¹; HR-MS (ESI): *m*/*z*= 581.0025, calcd. for C₂₅H₂₄Br₂N₂NaO₃ [M+Na]⁺: 581.0051.

ε-[*IH*-(*I*-*Methyl*)*indol*-*3*-*y*]*J*-*IH*-(*I*-*methyl*)*indole*-*3pentyl acetoacetate* (12d): Brown liquid; ¹H NMR (CDCl₃): δ =1.38–1.50 (m, 2H), 1.68 (quint, *J*=6.8 Hz, 2H), 2.11 (s, 3H), 2.20 (dd, *Ja*=7.6 Hz, *Jb*=15.6 Hz, 2H), 3.29 (s, 2H), 3.63 (s, 6H), 4.07 (t, *J*=6.8 Hz, 2H), 4.44 (t, *J*=7.6 Hz, 1H), 6.82 (s, 2H), 7.01 (dt, *J_a*=0.8 Hz, *J_b*=8.0 Hz, 2H), 7.15 (dt, *J_a*=0.8 Hz, *J_b*=8.0 Hz, 2H), 7.22 (d, *J*=8.0 Hz, 2H), 7.58 (d, *J*=8.0 Hz, 2H); ¹³C NMR (CDCl₃): δ =24.7, 28.7, 30.2, 32.7, 33.9, 36.0, 50.1, 65.5, 109.3, 118.6, 118.9, 119.7, 121.4, 126.3, 127.6, 137.4, 167.3, 200.9; IR: v=3054, 3026, 2935, 2865, 2825, 1740, 1716, 1622, 1548, 1471, 1421, 1372, 1327, 1242, 1151, 1098, 1039, 1013, 972, 911, 945, 798, 737, 549, 539, 418, 410 cm⁻¹; HR-MS (ESI): *m*/*z*=453.2159, calcd. for C₂₇H₃₀N₂NaO₃ [M+Na]⁺: 453.2154.

ε-[*IH*-(5-*Methoxy*)*indol*-3-*yl*]-*1H*-(5-*methoxy*)*indole*-3pentyl acetoacetate (12e): Brown liquid; ¹H NMR (CDCl₃): δ =1.36–1.47 (m, 2H), 1.61–1.71 (m, 2H), 2.13 (s, 3H), 2.14– 2.20 (m, 2H), 3.33 (s, 2H), 3.74 (s, 6H), 4.06 (t, *J*=6.8 Hz, 2H), 4.32 (t, *J*=7.6 Hz, 1H), 6.77 (dd, *J_a*=2.4 Hz, *J_b*= 8.4 Hz, 2H), 6.87 (d, *J*=2.0 Hz, 2H), 7.01 (d, *J*=2.4 Hz, 2H), 7.13 (d, *J*=8.8 Hz, 2H), 8.04 (s, 2H); ¹³C NMR (CDCl₃): δ =24.4, 28.4, 30.1, 33.8, 34.9, 50.0, 55.9, 65.4, 101.8, 111.3, 111.8, 119.4, 122.5, 127.4, 131.8, 153.4, 167.3, 201.2; IR: v=3417, 2937, 2860, 2831, 1736, 1716, 1622, 1585, 1477, 1452, 1415, 1359, 1210, 1171, 1104, 1038, 921, 835, 799, 773, 750, 733, 628, 543, 415 cm⁻¹; HR-MS (ESI): *m/z*= 485.2043, calcd. for C₂₇H₃₀N₂NaO₅ [M+Na]⁺: 485.2052.

ε-*[1H*-(*6*-*Fluoro*)*indol*-*3*-*yl]*-*1H*-(*6*-*fluoro*)*indole*-*3pentyl acetoacetate* (**12f**): Brown liquid; ¹H NMR (CDCl₃): δ =1.32–1.43 (m, 2H), 1.58–1.70 (m, 2H), 2.08–2.18 (m, 5H), 3.36 (s, 2H), 4.05 (t, *J*=6.8 Hz, 2H), 4.32 (t, *J*=7.6 Hz, 1H), 6.74 (dt, *J_a*=2.4 Hz, *J_b*=9.6 Hz, 2H), 6.88 (d, *J*= 2.4 Hz, 2H), 6.92 (dd, *J_a*=2.4 Hz, *J_b*=9.6 Hz, 2H), 7.38 (dd, *J_a*=5.2 Hz, *J_b*=8.8 Hz, 2H), 8.12 (d, *J*=1.6 Hz, 2H); ¹³C NMR (CDCl₃): δ =24.3, 28.4, 30.1, 33.8, 34.9, 50.0, 65.4, 97.3, 97.6, 107.5, 107.8, 119.7, 120.0, 120.1, 121.7, 121.8, 123.5, 136.4, 136.5, 158.6, 160.9, 167.3, 201.4; IR: v=3417, 3217, 3125, 3066, 2938, 2862, 1735, 1715, 1622, 1552, 1495, 1454, 1410, 1140, 1092, 1036, 952, 910, 837, 801, 732, 605, 486, 477, 420 cm⁻¹; HR-MS (ESI): *m/z*=461.1658, calcd. for C₂₅H₂₄F₂N₂NaO₃ [M+Na]⁺: 461.1653.

1,1'-(4-(1H-indol-3-yl)-2,3,4,9-tetrahydro-1H-carbazole-1,1-diyl)diethanone (15a): Yellow solid, mp 100– 102 °C; ¹H NMR (CDCl₃): δ =2.19–2.25 (m, 2H), 2.27 (s, 3H), 2.29 (s, 3H), 2.34–2.44 (m, 1H), 2.47–2.55 (m, 1H), 4.66 (t, J=4.8 Hz, 1H), 6.51 (d, J=2.0 Hz, 1H), 6.93 (t, J= 7.6 Hz, 1H), 7.19 (sept, J=6.4 Hz, 4H), 7.38 (d, J= 8.4 Hz,1 H), 7.41 (d, J=8.0 Hz, 1 H), 7.68 (d, J=7.6 Hz, 1 H), 7.87 (bs, 1 H), 8.95 (bs, 1 H); ¹³C NMR: δ =27.6, 27.9, 28.4, 28.6, 29.3, 67.9, 111.2, 111.3, 115.4, 118.9, 119.2, 119.4, 119.4, 119.9, 122.0, 122.5, 123.0, 126.5, 126.6, 130.1, 136.6, 136.7, 206.4, 207.3; IR: v=3416, 3053, 2936, 2856, 1715, 1688, 1617, 1489, 1456, 1419, 1356, 1291, 1223, 1179, 1142, 1090, 1010, 973, 750. 694, 592 cm⁻¹; HR-MS (ESI): m/z=393.1588, calcd. for C₂₄H₂₂N₂NaO₂ [M+Na]⁺: 393.1579.

Acknowledgements

The authors thank the National Natural Science Fundation of China for the financial support (20903042). This work was also supported by Specialized Research Fund for the Doctoral Program of Higher Education (20090142120081). The Program for new Century Excellent Talents in the University of China (NCET-10-0383) and Chutian Scholar Program of the Hubei provincial government are also acknowledged. YG thanks also Ms. Ping Liang and all the other stuff members in the Analytical and Testing Center of HUST, for her supportive and constant contributions to our work.

References

- Y. Coquerel, T. Boddaert, M. Presset, D. Mailhol, J. Rodriguez, in: *Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry*, (Ed: B. Pignataro), Wiley-VCH, Weinheim, Germany, **2010**, Chapter 9, pp 187–202.
- [2] For selected reviews, see: a) M. Nahmany, A. Melman, Org. Biomol. Chem. 2004, 2, 1563; b) C.-H. Zhou, J. N. Beltramini, Y.-X. Fan, G. Q. Li, Chem. Soc. Rev. 2008, 37, 527; c) S. Reymond, L. Ferrie, A. Guerinot, P. Capdevielle, J. Cossy, Pure Appl. Chem. 2008, 80, 1683; d) C. P. R. Hackenberger, D. Schwarzer, Angew. Chem. 2008, 120, 10182; Angew. Chem. Int. Ed. 2008, 47, 10030; e) R. A. Shenvi, D. P. O'Malley, P. S. Baran, Acc. Chem. Res. 2009, 42, 530; f) I. S. Young, P. S. Baran, Nature Chem. 2009, 1, 193; g) M. Selva, Pure Appl. Chem. 2007, 79, 1855–1867.
- [3] For selected examples, see: a) M. Selva, P. Tundo, D. Brunelli, A. Perosa, Green Chem. 2007, 9, 463-468;
 b) P. Mäki-Arvela, J. Hajek, T. Salmi, D. Y. Murzin, Appl. Catal. A 2005, 292, 1-49; c) R. Winkler, M. E. A. Richter, U. Knüpfer, D. Merten, C. Hertweck, Angew. Chem. 2006, 118, 8184; Angew. Chem. Int. Ed. 2006, 45, 8016; d) T. Ohshima, T. Iwasaki, Y. Maegawa, A. Yoshiyama, K. Mashima, J. Am. Chem. Soc. 2008, 130, 2944;
 e) S. Riva, Organic Synthesis with Enzymes in Non-Aqueous Media, (Eds.: G. Carrea, S. Riva), Wiley-VCH Verlag, Weinheim, 2008, p 145; f) Y. Gu, A. Karam, F. Jérôme, J. Barrault, Org. Lett. 2007, 9, 3145-3148;
 g) A. Karam, Y. Gu, F. Jérôme, J.-P. Douliez, J. Barrault, Chem. Commun. 2007, 2222-2224.
- [4] a) R. J. Sundberg, *Indoles*, Academic: London, **1996**;
 b) R. K. Brown, in: *Indoles*, (Ed.: W. J. Houlihan), Wiley-Interscience, New York, **1972**.
- [5] For reviews on synthesis of indoles, see: a) G. W. Gribble, in: *Comprehensive Heterocyclic Chemistry II*,

(Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon, Oxford, UK, **1996**; Vol. 2, p 207; b) M. Bandini, A. Melloni, S. Tommasi, A. Umani-Ronchi, *Synlett* **2005**, 1199; c) G. R. Humphrey, J. T. Kuethe, *Chem. Rev.* **2006**, *106*, 2875; d) M. Bandini, A, Eichholzer, Angew. Chem. **2009**, *121*, 9786–9824; Angew. Chem. Int. Ed. **2009**, *48*, 9608–9645; e) J. A. Joule, Indole and its Derivatives, in: Science of Synthesis (Houben-Weyl Methods of Molecular Transformations), Vol. 10 (Ed.: E. J. Thomas), Georg Thieme Verlag, Stuttgart, **2000**, chap 10.13; f) M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev. **2010**, *110*, 2250–2293.

- [6] M. Li, H. Li, T. Li, Y. Gu, Org. Lett. 2011, 13, 1064– 1067.
- [7] M. Li, C. Tang, J. Yang, Y. Gu, Chem. Commun. 2011, 47, 4529–4531.
- [8] a) Y. Yuan, Y. Bian, Appl. Organometal. Chem. 2008, 22, 15-18; b) G. Cahiez, B. Laboue, Tetrahedron Lett. 1992, 33, 4439-4442; c) H. Fujii, K. Oshima, K. Utimoto, Tetrahedron Lett. 1991, 32, 6147-6150; d) M. Bandaru, N. M. Sabbavarpu, R. Katla, V. D. N. Yadavalli, Chem. Lett. 2010, 39, 1149-1151; e) F. F. Yong, Y. C. Teo, Tetrahedron Lett. 2010, 51, 3910-3912; f) Y.-C. Teo, F. F. Yong, C.-Y. Poh, Y.-K. Yan, G.-L. Chua, Chem. Commun. 2009, 6258-6260; g) S.-K. Kang, W.-Y. Kim, Y.-T. Lee, S.-K. Ahn, J.-C. Kim, Tetrahedron Lett. 1998, 39, 2131-2132; h) J. Tang, H. Shinokubo, K. Oshima, Bull. Chem. Soc. Jpn. 1997, 70, 245-251.
- [9] M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, *Chem. Rev.* **2010**, *110*, 2250–2293.
- [10] S. Kobayashi, T. Busujima, S. Nagayama, *Chem. Eur. J.* 2000, *6*, 3491–3494.
- [11] Examples of acid-catalyzed formation of oxocarbenium ions from acetals: a) J. Cossy, H. Rakotoarisoa, P. Kahn, J.-R. Desmurs, *Tetrahedron Lett.* 2000, 41, 7203–7205; b) V. G. Saraswathy, S. Sankararaman, J. Chem. Soc. Perkin Trans. 2 1996, 29–31; c) J. L. Jensen, W. B. Wuhrman, J. Org. Chem. 1983, 48, 4686–4691; d) M.

Sugiura, S. Kobayashi, *Org. Lett.* **2001**, *3*, 477–780; e) for the reactions of *O*-glycosides, see for a review: Y. Du, R. J. Linhardt, *Tetrahedron* **1998**, *54*, 9913–9959.

- [12] Examples of Lewis acid-catalyzed addition of carbon nucleophiles to oxocarbenium ions: a) N. T. Patil, V. S. Raut, R. D. Kavthe, V. V. N. Reddy, P. V. K. Raju, *Tetrahedron Lett.* **2009**, *50*, 6576–6579; b) L. A. F. de Godoy, N. S. Camilo, R. A. Pilli, *Tetrahedron Lett.* **2006**, *47*, 7853–7856.
- [13] a) J. S. Yadav, B. V. S. Reddy, G. Satheesh, A. Prabhakar, A. C. Kunwar, *Tetrahedron Lett.* 2003, 44, 2221–2224; b) D. Chen, L. Yu, P. G. Wang, *Tetrahedron Lett.* 1996, 37, 4467–4470.
- [14] a) M. L. Kantam, A. Ravindra, C. V. Reddy, B. Sreedhar, B. M. Choudary, *Adv. Synth. Catal.* 2006, *348*, 569–578; b) D. Srinivas, R. Srivastava, P. Ratnasamy, *Catal. Today* 2004, *96*, 127–133; c) J. Xiang, A. Orita, J. Otera, *Adv. Synth. Catal.* 2002, *344*, 84–90; d) B. P. Bandgar, L. S. Uppalla, V. S. Sadavarte, *Green Chem.* 2001, *3*, 39–41.
- [15] a) J. Bergman, T. Janosik, E. Koch, B. Pelcman, *Perkin* 1 2000, 2615–2621; b) B. Wang, L. M. Yang, J. S. Suo, *Tetrahedron Lett.* 2003, 44, 5037–5039.
- [16] J. S. Yadav, B. V. S. Reddy, G. Satheesh, A. Prabhakar, A. C. Kunwar, *Tetrahedron Lett.* 2003, 44, 2221–2224.
- [17] a) M. Arisawa, N. G. Ramesh, M. Nakajima, H. Tohma, Y. Kita, *J. Org. Chem.* 2001, 66, 59–65; b) A. Citterio, D. Fancelli, C. Finzi, L. Pesce, R. Santi, *J. Org. Chem.* 1989, 54, 2713–2718.
- [18] G. Giannini, M. Marzi, M. O. Tinti, C. Pisano, *Patent* WO 2002036597, **2002**; *Chem. Abstr.* **2002**, *136*, 355230.
- [19] G. Giannini, M. Marzi, G. P. Moretti, S. Penco, M. O. Tinti, S. Pesci, F. Lazzaro, F. De Angelis, *Eur. J. Org. Chem.* 2004, 2411–2420.
- [20] Y. Gu, R. De Sousa, G. Frapper, C. Bachmann, J. Barrault, F. Jérôme, *Green Chem.* 2009, 11, 1968–1972.
- [21] J. A. Schiffner, T. H. Woeste M. Oestreich, Eur. J. Org. Chem. 2010, 174–182.

1564