

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 3988-3991

SAR of the arylpiperazine moiety of obeline somatostatin sst₁ receptor antagonists

Konstanze Hurth,* Albert Enz, Philipp Floersheim, Conrad Gentsch, Daniel Hoyer, Daniel Langenegger, Peter Neumann, Paul Pfäffli, Dieter Sorg, Robert Swoboda, Annick Vassout and Thomas Troxler*

Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland

Received 26 March 2007; revised 24 April 2007; accepted 25 April 2007 Available online 30 April 2007

Abstract—The SAR of over 50 derivatives of octahydrobenzo[g]quinoline (obeline)-type somatostatin sst₁ receptor antagonist **1** is presented, focusing on the modification of its arylpiperazine moiety. Sst₁ affinities in this series cover a range of five orders of magnitude with the best derivatives displaying subnanomolar sst₁ affinities and >10,000-fold selectivities over the sst₂ receptor subtype as well as promising pharmacokinetic properties. © 2007 Elsevier Ltd. All rights reserved.

The initial structure-activity relationship of highly active, non-peptidic, obeline-type somatostatin sst₁ receptor antagonists and their in vitro pharmacological profile is presented in the preceding paper.¹ The focus of our medicinal chemistry derivatization program was on the arylpiperazine moiety of lead molecule 1 (example 2a in Ref. 1) with the goal to raise the sst₁ receptor affinities to a subnanomolar level while improving on selectivities toward the somatostatin sst_2 receptor (a detailed rationale is given in the preceding paper¹) without compromising on the favorable drug-like properties of 1 (no 'rule-of-5' violations, $c \log P$ 3.4, molecular weight 421, PSA 49 Å²). From our earlier work on structurally related somatostatin ligands² it was anticipated that an efficient finetuning of somatostatin receptor binding properties is achievable by introducing structurally and electronically diverse aryl piperazine moieties. In a second step, additional criteria (e.g., in vitro or in vivo ADME properties) served for selection among a subset of highly active and selective compounds.

Representative examples for the derivatization of the arylpiperazine moiety in 1 are shown in Tables 1–3. As in the preceding paper,¹ radioligand binding data to rat somatostatin sst₁ and sst₂ receptors are given. The assay is performed in rat cortex membranes using $[^{125}I]$ SRIF-14 in the presence of 120 mM NaCl.³ The synthesis of all compounds listed in Tables 1–3 is outlined in Supporting Information.

The optimization program started by replacement of the 2-pyridyl moiety in 1 ($pK_d \text{ sst}_1 = 7.76$, selectivity over sst₂ ca. 600-fold) with other heteroaryl moieties: while the regioisomeric 4-pyridyl compound and the corresponding pyridazine and pyrimidine derivatives were considerably less active and selective (Table 1, entries 2–4), introduction of a 4-cyano substituent gave a clear gain in sst₁ affinity (entry 5, $pK_d \text{ sst}_1 = 8.45$); other substituents in 3-, 4- or 6-position were however less favorable (entries 6–8). Going from the 2-pyridine to a 2-pyridone moiety led to an improved affinity, with the *N*-methyl derivative 10 showing a superior profile ($pK_d \text{ sst}_1 = 8.74$, selectivity over sst₂ > 6000-fold) over the

Keywords: Somatostatin sst₁ receptor antagonist; Octahydro[g]quinoline (obeline).

^{*} Corresponding authors. Tel.: +41 61 3244027; fax: +41 61 3246760 (K.H.); e-mail: konstanze.hurth@novartis.com

	$pK_d r sst_2^a$	5.15 ± 0.01	5.14 ± 0.08	5.46 ± 0.17	5.00 ± 0.04	5.37 ± 0.01	5.24 ± 0.03	4.68 ± 0.03	
OME H OLE N	$pK_d r sst_1^a$	6.45 ± 0.16	8.44 ± 0.06	8.77 ± 0.09	8.56±0.05	7.97 ± 0.04	8.91 ± 0.05	7.06 ± 0.03	
	R	ZZZ	0.Z	zQz	ю́.Х	z`z	z z z	N N N	
	Compound	17	18	19	20	21	22	23	
	$pK_{ m d} \; { m r} \; { m sst}_2{ m a}$	4.93 ± 0.11	4.96 ± 0.11	5.26 ± 0.02	5.28 ± 0.09	5.28 ± 0.06	5.68 ± 0.04	5.26 ± 0.05	4.85 ± 0.03
	$pK_{d} r sst_{1}{}^{a}$	8.12 ± 0.09	8.74 ± 0.02	7.06 ± 0.04	8.06 ± 0.04	6.16 ± 0.07	7.58 ± 0.03	6.54 ± 0.12	8.24 ± 0.05
	R	U IZ	-z		S-	⊂z	x x)=z	z z z
	Compound	6	10	П	12	13	14	15	16
	$pK_{d} r sst_{2}^{a}$	4.99 ± 0.06	4.75 ± 0.06	4.60 ± 0.03	4.56 ± 0.06	4.99 ± 0.13	4.70 ± 0.14	4.93 ± 0.15	5.18 ± 0.14
	$pK_d r sst_l^a$	7.76 ± 0.12	5.73 ± 0.02	7.28 ± 0.10	6.33 ± 0.04	8.45 ± 0.18	6.98 ± 0.07	6.25 ± 0.12	6.98 ± 0.03
	R	z	<pre>Z</pre>	N. N.	z >=z	CN	CF ₃	CF ₃ O ₂ SO	N OCH ₂ Ph
	Compound	-	2	ი	4	Ŋ	Q	F	œ

Table 1. Binding affinities of octahydrobenzo[g]quinoline derivatives 1-23 (arylpiperazines, not phenylpiperazines) to rat sst1 and sst2 receptors

K. Hurth et al. / Bioorg. Med. Chem. Lett. 17 (2007) 3988-3991

^a Mean \pm SEM. Number of experiments: n = 3-5.

Table 2. Binding affinities of octahydrobenzo[g]quinoline derivatives **24–46** (phenylpiperazines) to rat sst₁ and sst₂ receptors

Compound	R′	$pK_d r sst_1^a$	$pK_d r sst_2^a$
24	2-F	7.75 ± 0.11	4.73 ± 0.04
25	3-F	8.48 ± 0.05	4.67 ± 0.06
26	4-F	8.47 ± 0.05	4.58 ± 0.10
27	2-CN	8.70 ± 0.19	5.13 ± 0.01
28	4-CN	8.09 ± 0.05	5.00 ± 0.11
29	2-NO ₂	8.89 ± 0.11	4.96 ± 0.03
30	3-NO ₂	8.88 ± 0.02	5.17 ± 0.06
31	4-NO ₂	9.15 ± 0.31	5.11 ± 0.01
32	3-CF ₃	7.63 ± 0.07	4.88 ± 0.10
33	4-CF ₃	6.56 ± 0.03	5.29 ± 0.12
34	4-OH	6.20 ± 0.04	4.61 ± 0.05
35	4-COMe	6.82 ± 0.01	5.06 ± 0.02
36	4-CO ₂ Me	6.79 ± 0.12	4.83 ± 0.12
37	4-CONH ₂	5.82 ± 0.11	4.78 ± 0.03
38	4-CONEt ₂	5.77 ± 0.13	4.70 ± 0.05
39	4-CO ₂ Na	4.09 ± 0.17	3.60 ± 0.26
40	4-SO ₂ Me	6.20 ± 0.02	5.06 ± 0.03
41	$4-SO_2NH_2$	6.23 ± 0.17	5.04 ± 0.10
42	3,4-F ₂	9.13 ± 0.04	4.78 ± 0.06
43	2-CN-3-F	8.55 ± 0.06	4.78 ± 0.03
44	2-CN-4-NO ₂	8.49 ± 0.08	5.36 ± 0.05
45	2-NO ₂ -4-CF ₃	6.96 ± 0.04	5.31 ± 0.07
46	2-SO ₂ Me-4-NO ₂	8.76 ± 0.06	5.28 ± 0.08

^a Mean \pm SEM. Number of experiments: n = 3-6.

parent pyridone 9 (p K_d sst₁ = 8.12, selectivity over sst₂ 1550-fold). The introduction of annelated six-membered rings (entries 11–17) revealed the narrow SAR within this series: for example, isomeric pyridopyrazines 16 and 17 that differ only by the position of one nitrogen atom show a difference in sst₁ affinity by nearly two orders of magnitude (p K_d sst₁ = 8.24 for 16 vs 6.45 for 17). Among the benzoxadiazole and benzothiadiazole derivatives (entries 18–22) compound 22 displays highest affinity and selectivity (p K_d sst₁ = 8.91, selectivity over sst₂ > 4600-fold). The corresponding imidazopyridazine derivative 23, however, proved less promising (p K_d sst₁ = 7.06).

Substituted *phenyl*piperazines are given in Table 2. While a fluorine atom was best tolerated in the 3-or 4position, not in the 2-position (entries **24–26**) and a cyano group in the 2-position (entries **27** and **28**), introduction of a nitro group in all positions resulted in highly active derivatives (entries **29–31**) with the 4-nitro derivative **31** being one of the best compounds of the whole series (pK_d sst₁ = 9.15, selectivity over sst₂ > 10,000-fold). The detailed in vitro profile of this compound is published elsewhere.^{1,4} Less favorable is a CF₃ group (in 3- or 4-position, entries **32** and **33**) or a 4-hydroxy, -carbonyl, -carboxyl, -sulfonyl or -sulfonamide substitution (**34–41**). Among the disubstituted phenyl derivatives (**42–46**), the 3,4-difluoro derivative **42** showed affinity and selectivity comparable to **31** (pK_d sst₁ = 9.13, selectivity over sst₂ > 22,000-fold). **Table 3.** Binding affinities of octahydrobenzo[g]quinoline derivatives 47-55 (cyclic tertiary amides, not piperazine derivatives) to rat sst₁ and sst₂ receptors

ОМе _н	Ö
	∕ ∕ ″ _{R"}
- Н'	N

	Η'n		
Compound	R″	$pK_d r sst_1^a$	$pK_d r sst_2^a$
47		6.68 ± 0.04	4.46 ± 0.39
48		6.58 ± 0.07	4.65 ± 0.23
49	N CI	7.09 ± 0.06	5.60 ± 0.04
50	N N	7.52 ± 0.05	5.63 ± 0.04
51		6.31 ± 0.03	5.62 ± 0.06
52		6.31 ± 0.01	5.69 ± 0.03
53	N H	7.15 ± 0.04	5.21 ± 0.00
54	[►] N [·] CH ₂ Ph	6.34 ± 0.04	5.04 ± 0.08
55	►N NH	4.98 ± 0.04	4.36 ± 0.10

^a Mean \pm SEM. Number of experiments: n = 2-4.

Derivatives that replace the arylpiperazine moiety by other cyclic secondary amines are given in Table 3. The piperazine ring itself was replaced by a homopiperazine (entries **47** and **48**) or a tetrahydropyridine ring (entries **49–51**). The arylpiperazine moiety was substituted by 1-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one (entry **52**), a popular moiety in the field of peptidic and non-peptidic sst receptor ligands,^{5,6} β-carboline (entry **53**), benzylpiperazine (entry **54**) or unsubstituted piperazine (entry **55**). All these derivatizations led to a dramatic loss in affinity and selectivity and were not followed up any further.

Attempts to develop a QSAR understanding of these results based on different molecular descriptors (dipole moments, volumes, surfaces areas, hydrophilicities, frontier orbital energies, etc., alone or in combinations) and using pertinent methods⁷ were not successful so far. A possible explanation could be that these compounds bind to different parts of the receptor in varying orientations and receptor conformations in spite of their rather high structural analogy, a fact that cannot be further elaborated in absence of structural information on the somatostatin sst₁ receptor.

3991

The derivatives in Tables 1–3 have calculated molecular properties that are in line with oral bioavailability according to the 'rule of 5'. Indeed, compounds **21**, **22**, and **42** show good absorption and brain penetration in mice (brain plasma ratios of 4.8, 1.8 and 7.5, respectively, 1 h after 10 mg/kg oral administration). Compound **31** was analyzed in more detail in rats: it shows an oral bioavailability of ca. 35% and a moderate clearance rate and tissue distribution (CL ca. 5 ml/min, V_{ss} 3–6 l/kg). Brain plasma ratios are 10–15 (90 min after oral administration of 10, 30, and 100 mg/kg); at doses of 1–10 mg/kg po, concentrations in the rat brain are sufficient to fully occupy sst₁ receptors for at least 4 h. Details as well as pharmacological in vivo data will be published elsewhere in due course.

In conclusion, we have established the SAR of the arylpiperazine moiety of obeline-type somatostatin sst₁ receptor antagonist **1**, leading to compounds with subnanomolar sst₁ affinities, >10,000-fold selectivities over the sst₂ receptor subtype and promising initial PK properties.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2007.04.078.

References and notes

 Troxler, T.; Hoyer, D.; Langenegger, D.; Neumann, P.; Pfäffli, P.; Schoeffter, P.; Sorg, D.; Swoboda, R.; Hurth, K. *Bioorg. Med. Chem. Lett.* 2007 doi:10.1016/j.bmcl.2007. 04.086.

- 2. Pfaeffli, P.; Neumann, P.; Swoboda, R.; Stütz, P. PCT Int. Appl. WO 9854183, 1998; *Chem. Abstr.* **1998**, *130*, 25220.
- Hoyer, D.; Perez, J.; Schoeffter, P.; Langenegger, D.; Schüpbach, E.; Kaupmann, K.; Lübbert, H.; Bruns, C.; Reubi, J. C. *Eur. J. Pharmacol.* 1995, 289, 151.
- Hoyer, D.; Nunn, C.; Hannon, J.; Schoeffter, P.; Feuerbach, D.; Schuepbach, E.; Langenegger, D.; Bouhelal, R.; Hurth, K.; Neumann, P.; Troxler, T.; Pfaeffli, P. *Neurosci. Lett.* 2004, 361, 132.
- Hannon, J. P.; Nunn, C.; Stolz, B.; Bruns, C.; Weckbecker, G.; Lewis, I.; Troxler, T.; Hurth, K.; Hoyer, D. J. Mol. Neurosci. 2002, 18, 15.
- 6. Selected recent examples: (a) Moinet, C; Sackur, C.; Thurieau, C. PCT Int. Appl. WO 2002055510, 2002; Chem. Abstr. 2002, 137, 93746; (b) Hay, B. A.; Cole, B. M.; Ricketts, A. P. US Patent Appl. US 2002091125, 2002; Chem. Abstr. 2002, 137, 94010; (c) Cole, B. M.; Ricketts, A. P.; Hay, B. A. US Patent Appl. US2002091090, 2002; Chem. Abstr. 2002, 137, 94001; (d) Thurieau, C. A.; Poitout, L. F.; Galcera, M.-O.; Gordon, T. D.; Morgan, B. A.; Moinet, C. P.; Bigg, D. PCT Int. Appl. WO 2002010140, 2002; Chem. Abstr. 2002, 136, 167373; (e) Hay, B. A.; Cole, B. M.; DiCapua, F. M.; Kirk, G. W.; Murray, M. C.; Nardone, R. A.; Pelletier, D. J.; Ricketts, A. P.; Robertson, A. S.; Siegel, T. W. Bioorg. Med. Chem. Lett. 2001, 11, 2731; (f) Nunn, C.; Langenegger, D.; Hurth, K.; Schmidt, K.; Fehlmann, D.; Hoyer, D. Eur. J. Pharmacol. 2003, 465, 211; (g) Kato, K.; Terauchi, J.; Suzuki, N.; Takekawa, S. PCT Int. Appl. WO 2001025228, 2001; Chem. Abstr. 2001, 134, 295840; (h) Moinet, C.; Sackur, C.; Thurieau, C. PCT Int. Appl. WO2001007424, 2001; Chem. Abstr. 2001, 134, 147596.
- QSAR methods used: (a) Stewart, J. J. P. MOPAC93: A General Molecular Orbital Package; Stewart Computational Chemistry; Colorado Springs; (b) Connolly, M. L. J. Appl. Cryst. 1983, 16, 548; (c) Walkinshaw, M. D.; Floersheim, P. J. Mol. Struct. 1990, 237, 63; (d) Goodford, P. J. J. Med. Chem. 1985, 28, 849; (e) Geladi, P.; Kowalski, B. R. Anal. Chim. Acta 1986, 185, 1.