Organic & Biomolecular Chemistry

View Article Online

PAPER

Check for updates

Cite this: Ora, Biomol, Chem., 2021 **19**, 645

Hydroxymethylation of guinolines via iron promoted oxidative C-H functionalization: synthesis of arsindoline-A and its derivatives*

Herein, we report a mild and efficient hydroxymethylation of quinolines via an iron promoted cross-dehy-

Bangarigalla Shantharjun,^{a,b} Damera Vani,^{a,b} Ramanjaneyulu Unnava,^a Mummadi Sandeep^{a,b} and Kallu Rajender Reddy 🕩 *^{a,b}

desirable.

utilized for the synthesis of alkaloid arsindoline-A and its derivatives

Received 6th November 2020, Accepted 8th December 2020

drogenative coupling reaction under external acid free conditions. Various hydroxyalkyl substituted quinolines were achieved in excellent yields with well tolerated functional groups. Importantly, a few of the DOI: 10.1039/d0ob02212h hydroxylmethylated guinolines were further transformed into respective aldehydes, and were successfully

rsc li/obc

Introduction

Methanol is one of the most important raw materials in both organic chemistry and drug discovery. It is also used as a common solvent and reagent in synthetic organic chemistry and is a sustainable feedstock for value-added chemicals, pharmaceuticals and materials.¹ In addition, it has been successfully used as a C1 source for various organic transformations such as methylation, methoxylation, formylation and hydroxymethylation.² Among these transformations, hydroxymethylation of azaarenes has attracted remarkable interest from medicinal chemists due to the common occurrence of hydroxymethyl(alkyl)units in various important pharmaceutically active compounds (Fig. 1).³⁻⁵ Along similar lines, N-heterocycles are also key scaffolds in several biologically active natural products and pharmaceutical agents.⁶ Owing to the significance of these units, the hydroxymethylation of N-heteroarenes has gained much attention in modern synthetic chemistry.

Despite the significance of hydroxymethylated heteroarenes, only a few reports on their synthesis have been documented so far. For example, in 1971, Minisci and co-workers proposed a method for the introduction of the hydroxymethyl group into 4-methylquinoline by employing (NH₄)₂S₂O₈ as an oxidant and H₂SO₄ as an additive under thermal conditions.⁷ Interestingly, Togo et al. reported a metal free hydroxymethyl-

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/ d0ob02212h

ation of quinolines by using Na₂S₂O₈ in a mixture of methanol

and water at 70 °C.⁸ Later, Wang's group described a silver promoted hydroxyalkylation of quinolines by utilizing Selectfluor

as an oxidant under reflux conditions.9 Recently, Lei et al. demonstrated a visible-light-induced protocol for the synthesis

of hydroxy alkylated quinoline derivatives in the presence of Selectfluor and TFA as an additive.¹⁰ However, these methods

suffer from the requirement of relatively expensive reagents/

catalysts and the need for longer reaction times. In addition,

the Minisci-type of transformation always requires external

acid additives and extensive high energetic conditions. Hence,

eco-friendly/green-chemistry protocols for the development of

hydroxyalkylated heterocycles using inexpensive, environmen-

tally benign and easy handling reagents would be highly

bond functionalization is a powerful strategy for the construction of C-C and C-hetero atom bonds.¹¹ This promising strat-

egy is more economic and doesn't require pre-functionalized

starting materials. In continuation of our efforts towards the development of iron-catalyzed/-mediated organic transform-

ations,¹² herein, we wish to report an efficient iron mediated

rapid hydroxyalkylation of heteroarenes, in which H₂O₂ is used

as a cheap and mild oxidant under external acid free con-

On the other hand, iron-catalyzed/-mediated oxidative C-H

Fig. 1 Examples of bioactive compounds possessing hydroxyalkyl groups.

^aCatalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India. E-mail: rajender@iict.res.in, rajenderkallu@gmail.com; Fax: (+91)-040-2716-0921

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, U.P., India

Scheme 1 Hydroxy alkylation of heteroarenes.

ditions. Notably, this reaction was complete within 10 minutes at room temperature (Scheme 1).

Results and discussion

To find the optimum reaction conditions, we initiated our investigation with 2-methylquinoline (1a) as the model substrate in excess quantity of methanol (2a), which acted as both as a hydroxymethylating agent and solvent. First, we performed the reaction of 1a and excess amount of 2a in the presence of Fe(ClO₄)₂·xH₂O (1.0 equiv.) and TBHP (70% in water, 2.0 equiv.) as an oxidant at room temperature for 10 min, giving the desired product (2-methylquinolin-4-yl)methanol (3a) in 66% yield (Table 1, entry 1), whereas the use of H_2O_2 (50% in water) instead of TBHP increased the yield of the product (3a) up to 78% (Table 1, entry 2). Encouraged by these results, a series of iron salts, namely, FeCl₂, FeBr₂, FeSO₄ and $Fe(acac)_2$, were examined for this reaction. But they were found to be ineffective for this transformation, and provided very low yields (Table 1, entries 3-6). Furthermore Fe^{III} catalysts resulted in low yields (Table 1, entries 7-9). Among all the tested iron catalysts, Fe(ClO₄)₂·xH₂O showed the best results for this transformation. Other metal salts like CuCl₂, Cu $(ClO_4)_2$, PdCl₂ and Co $(ClO_4)_2$ proved to be inadequate for this protocol (Table 1, entries 10-13). Meanwhile, the reaction could not be induced in the presence of other oxidants, for instance DTBP, DCP, PhI(OAc)₂ and O₂ (Table 1, entries 14-17). Furthermore, the absence of either $Fe(ClO_4)_2 \cdot xH_2O$ or H_2O_2 did not produce the desired product (Table 1, entries 18 and 19).

These results explain that both $Fe(ClO_4)_2 \cdot xH_2O$ and H_2O_2 are necessary for this transformation. In addition, the reaction under reflux conditions resulted in 59% yield (Table 1, entry 20). Although the reaction time was prolonged up to 12 h, a satisfactory increment in the yield was not observed (Table 1, entry 21). Based on the optimization studies, we conclude that 1.0 equivalent of $Fe(ClO_4)_2 \cdot xH_2O$ and 2.0 equivalents of H_2O_2 (50% in water) at room temperature are the optimal conditions for this transformation.

With these optimal reaction conditions in hand, the scope of the quinolines was investigated and the results are shown in Table 2. Quinolines bearing electron-donating (-Me and -OMe) and electron-withdrawing (-F, -Cl, and -Br) groups were well tolerated in the reaction and afforded the corresponding products (**3a**-**3n**) in good yields. Electron-withdrawing groups on 2-methyl quinolines (**1e**-**1g**) gave **3e**-**3g** in slightly higher yields than electron-donating groups (**3a**-**3d**). Notably,

 Table 1
 Screening of the reaction conditions for the hydroxyl methylation of 2-methyl quinoline^a

	ССТ _N + сн₃он – 1а 2а	Catalyst/ [0] temp 3a	
Entry	Catalyst	Oxidant	Yield ^b (%)
1	Fe(ClO ₄) ₂ ·xH ₂ O	TBHP	66
2	Fe(ClO ₄) ₂ ·xH ₂ O	H_2O_2	78
3	FeCl ₂	H_2O_2	33
4	FeBr ₂	H_2O_2	28
5	FeSO ₄	H_2O_2	Trace
6	$Fe(acac)_2$	H_2O_2	Trace
7	FeCl ₃	H_2O_2	13
8	$Fe(ClO_4)_3$	H_2O_2	18
9	Fe(acac) ₃	H_2O_2	Trace
10	$CuCl_2$	H_2O_2	0^{c}
11	$Cu(ClO_4)_2$	H_2O_2	0
12	PdCl ₂	H_2O_2	0
13	$Co(ClO_4)_2$	H_2O_2	0
14	$Fe(ClO_4)_2 \cdot xH_2O$	DTBP	0
15	$Fe(ClO_4)_2 \cdot xH_2O$	DCP	0
16	$Fe(ClO_4)_2 \cdot xH_2O$	$PhI(OAc)_2$	0
17	$Fe(ClO_4)_2 \cdot xH_2O$	O_2	0
18	—	H_2O_2	0
19	$Fe(ClO_4)_2 \cdot xH_2O$	_	0
20	$Fe(ClO_4)_2 \cdot xH_2O$	H_2O_2	59 ^a
21	$Fe(ClO_4)_2 \cdot xH_2O$	H_2O_2	76^e

^{*a*} Reactions were performed with **1a** (1.0 mmol), catalyst (1.0 equiv.), and oxidant (2.0 equiv.) in methanol **2a** (2.0 mL) at rt for 10 min. ^{*b*} Isolated yields. ^{*c*} 0% yield means no reaction. ^{*d*} Under reflux conditions. ^{*e*} Reaction time increased to 12 h.

Table 2 Scope of the quinoline derivatives^{a,b}

 a Reaction conditions: 1 (1.0 mmol), 2 (2.0 mL), H₂O₂ (2.0 equiv.), Fe (ClO₄)₂·xH₂O (1.0 equiv.), rt, 10 min. b Isolated yields.

2-phenyl substituted quinoline **1h** smoothly furnished the respective product (**3h**) in excellent yield. 7-Fluoro-2-methylquinoline and 8-chloro-2-methylquinolines (**1i** and **1j**) reacted well and gave the corresponding products (**3i** and **3j**) in good yields. However, 2-chloroquinoline (1k) gave the desired product 3k in 23% yield. Furthermore, unsubstituted quinoline (1l) gave three regioisomers, namely, quinolin-2-ylmethanol (3la), quinolin-4-ylmethanol (3lb) and quinoline-2,4-diyldimethanol (3lc), in 21%, 23% and 19% (overall yield 63%) yield respectively. Moreover, these isomers were separated by column chromatography. Similarly, 8-methylquinoline (1m) and benzo[*h*]quinoline (1n) gave a mixture of regioisomers (3ma-3mc) in 85% and (3na-3nc) 67% overall yields respectively. 2-Phenyl pyridine (1o) also produced two regioisomers (3oa and 3ob) in 37% overall yield. Subsequently, 2,6-diphenyl pyridine (1p) furnished the desired product (3p) in low yield.

Furthermore, we also extended our investigation to explore the possibility of this strategy using higher alcohols (like ethanol 2b, propanol (2c), butanol (2d), isobutanol (2e), and hexanol (2f)) other than methanol and the results are summarised in Table 3. In this sequence, the reaction with 2-methyl quinoline 1a in ethanol 2b under the standard conditions failed to give the expected product 4a, and the starting materials remained as such. A longer reaction time (12 h) also failed to give product 4a. Gratifyingly, switching over to other oxidants, like TBHP (2.0 equiv.) instead of H_2O_2 , under the same reaction conditions gave the desired product 4a in 66% yield. In order to improve the yield of the reaction, the reaction time was prolonged to 12 h, and we observed a trace amount of acylated quinoline (4a') along with the desired product (4a). Furthermore, reactions with 2-phenyl quinoline and 8-chloro-2-methyl quinoline (1h and 1j) in ethanol 2b afforded 4b and 4c in 57% and 52% yields, respectively. Later, substituted quinolines with propanol 2c produced 4d-4f in 34-42% yields. Similarly, 4-methyl/ 2,6-dimethyl quinolines (1b/1c) with butanol 2d gave the corresponding products 4g-4h in low yields. These results explain that increasing the chain lengths of alcohols decreases their reactivity for this transformation. Furthermore, the reaction of 2-methyl quinoline 1a with a branched alcohol, iso-butanol 2e, successfully afforded the product 4i in 33% yield. Similarly, reaction with hexanol gave 4j in 31% yield.

Moreover, due to the easy availability of the starting materials and the operational simplicity of this protocol, we performed a gram scale reaction with 2-methylquinoline **1a** in

Table 3 Scope of various alcohols^{a,b}

^{*a*} Reaction conditions: 1 (1.0 mmol), 2 (2.0 mL), TBHP (2.0 equiv.), Fe (ClO₄)₂·xH₂O (1.0 equiv.), rt, 15 min. ^{*b*} Isolated yields.

Scheme 2 Gram scale synthesis.

methanol **2a** under the optimized conditions and obtained **3a** in 69% yield (Scheme 2).

Quinoline bearing a formyl group at the 4-position is a key intermediate for the synthesis of various bioactive compounds¹³ and sensing agents,¹⁴ for example, arsindoline-A alkaloid, which is a representative molecule of anticancer agents.¹⁵

Owing to the importance of this intermediate, some of the 4-hydroxymethyl quinolines 3 were successfully converted into the corresponding 4-formyl quinolines 5 using the Dess-Martin oxidant.

Furthermore, the formyl group (compound 5) was involved in a mineral acid (conc. H_2SO_4 (1.0 equiv.) mediated condensation reaction with indole (6) in H_2O at room temperature for 1 h, giving the arsindoline-A alkaloid 7a in 83% yield and its derivatives 7b and 7c in 73 and 76% yields, respectively (Table 4).

In order to gain insights into the reaction mechanism, we performed a control experiment with 1a and 2a in the presence of the radical scavenger TEMPO under optimized reaction conditions, and product 3a was not obtained (Scheme 3). This result suggests that the reaction proceeds through a radical pathway. Furthermore, the reaction was also examined with different catalytic systems, such as 10 mol% of $Fe(ClO_4)_2 \cdot xH_2O$ and 2.0 equiv. of H₂O₂, at room temperature; we did not observe any desired product, and the starting material (95%) was recovered (Scheme 3b). Similarly, loading of 30 mol% and 50 mol% of catalyst gave low yields (Scheme 3c and d), whereas the use of 75 mol% of $Fe(ClO_4)_2 \cdot xH_2O$ resulted in 58% isolated yield along with 30% of the unreacted starting material (Scheme 3e). These catalytic experiments suggest that the reaction necessarily required a stoichiometric amount of $Fe(ClO_4)_2 \cdot xH_2O.$

Based on previous reports^{9,16} and our own control experimental results, we have proposed a plausible mechanism as shown in Scheme 4. Initially, Fe(II) is oxidised to Fe(III) *via* a single electron transfer (SET) process in the presence of H_2O_2 ,

^{*a*} Reaction conditions for compounds 5 and 7: (i) Compound 3 (1.0 mmol), Dess-Martin (1.2 equiv.), DCM (2.0 mL), rt, 1 h. (ii) Compound 5 (0.5 mmol), indole 6 (1.0 mmol), conc. H_2SO_4 (1.0 equiv.), H_2O (2.0 mL), rt, 1 h. ^{*b*} Isolated yields are provided.

Scheme 3 Control experiments of 3a-3e.

generating a hydroxyl radical and a hydroxyl ion. The corresponding hydroxyl radical abstracts the hydrogen radical from the α -CH of methanol and generates a hydroxymethyl radical (**A**). Meanwhile, Fe(m) coordinates with the *N*-atom of quinoline to form a more electron deficient intermediate (**B**). Afterwards, hydroxymethyl radical (**A**) attacks the 4th position of intermediate **B** to afford the radical cation intermediate **C**. Intermediate **D** is obtained from intermediate **C** *via* the removal of Fe(m). Furthermore, intermediate **D** is oxidised by Fe(m) to generate a cationic intermediate **E**, which is similar to that reported by Wang *et al.* in the Ag-promoted α -C-H arylation of alcohols.⁹ Finally, intermediate **E** readily undergoes rearomatization followed by the loss of a proton, resulting in product **3a**. Probably, the corresponding proton is abstracted by an *in situ* generated hydroxyl anion.

Conclusions

In summary, we have developed a simple, mild and efficient protocol for the hydroxymethylation of *N*-heteroarenes *via* an

iron mediated oxidative CDC strategy under ambient conditions. The main features of the present transformation are that it does not require external acid additives, uses inexpensive and commercially available H_2O_2 as an oxidant, and has shorter reaction time. In addition, various alcohols were also tolerated by this reaction to furnish the respective hydroxylalkylated *N*-heteroarenes. Moreover, we have shown synthetic utility of the isolated hydroxymethylated quinolines for the generation of the corresponding formyl quinolines, which were further employed for the synthesis of bioactive arsindoline-A alkaloid and its derivatives.

Experimental section

All the chemicals and solvents were purchased from Sigma-Aldrich, Alfa Aesar and S. D. Fine Chemicals Pvt. Ltd. India used without further purification. Silica gel and (100-200 mesh) was used for column chromatography, and thin-layer chromatography was performed on pre-coated silica gel 60-F₂₅₄ plates and visualized by UV-light and developed by iodine. The IR values are reported in reciprocal centimeters (cm^{-1}) . All the ¹H and ¹³C {¹H} NMR spectra were recorded on Avance-300, Avance-400, and Avance-500 MHz spectrometers. Chemical shifts (δ) are reported in ppm, using TMS ($\delta = 0$) as an internal standard in CDCl₃. The peak patterns are indicated as follows: bs, broad singlet; s, singlet; d, doublet; t, triplet; dd, doublet of doublets; sep, septet; and m, multiplet. The coupling constants (J) are reported in hertz (Hz). LC-MS measurements were carried out with an Agilent 1200 series (DAD; diode array detector) instrument using a Zorbax (SB-C18, 3.0 mm \times 50 mm \times 1.8 µm) column. Low- and highresolution mass spectrometry was carried out using the electrospray ionisation method.

General procedure and characterization data for the hydroxymethylation of quinolines (3a–3p)

To a stirring solution of quinolines (1) (1.0 mmol) and Fe $(ClO_4)_2 \cdot xH_2O$ (1.0 equiv.) in 2.0 mL of methanol (2a) was added dropwise 2.0 equivalents of 50% H_2O_2 at room temperature. The progress of the reaction was monitored by TLC. After the completion of the reaction (10 min), the reaction mixture was extracted with ethyl acetate and washed with saturated NaHCO₃ and brine solution. The organic layer was dried over Na₂SO₄ and concentrated in vacuum. The mixture was purified by column chromatography over silica gel (100–200 mesh size), and using a hexane/ethyl acetate mixture as the eluent gave the desired products 3.

(2-Methylquinolin-4-yl)methanol (3a). White solid (136 mg, 78% yield), mp 143–145 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.3 Hz, 1H), 7.89 (d, *J* = 9.2 Hz, 1H), 7.67 (t, *J* = 8.4 Hz, 1H), 7.49 (t, *J* = 8.2 Hz, 1H), 7.41 (s, 1H), 5.19 (s, 2H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 147.4, 146.4, 129.3, 128.9, 125.8, 124.1, 122.7, 119.1, 61.4, 25.2. HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₂NO: 174.0913, found: 174.0917.

(4-Methylquinolin-2-yl)methanol (3b). Yellow solid (121 mg, 69% yield), mp 78–80 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.71 (t, J = 8.4 Hz, 1H), 7.55 (t, J = 8.2 Hz, 1H), 7.12 (s, 1H), 4.87 (s, 2H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 146.4, 145.3, 129.5, 129.1, 127.6, 126.1, 123.8, 119.0, 64.0, 18.8. HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₂NO: 174.0913, found: 174.0920.

(2,6-Dimethylquinolin-4-yl)methanol (3c). White solid (119 mg, 63% yield), mp 150–152 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.6 Hz, 1H), 7.63 (s, 1H), 7.49 (d, J = 10.4 Hz, 1H), 7.36 (s, 1H), 5.14 (s, 2H), 2.66 (s, 3H), 2.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 146.0, 145.6, 135.6, 131.4, 128.7, 124.1, 121.7, 119.1, 61.5, 25.1, 21.8. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₄NO: 188.1070, found: 188.1069.

(6-Methoxy-2-methylquinolin-4-yl)methanol (3d). Yellow solid (98 mg, 48% yield), mp 163–165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 9.2 Hz, 1H), 7.36–7.32 (m, 2H), 7.14 (d, J = 2.8 Hz, 1H), 5.11 (s, 2H), 3.92 (s, 3H), 2.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃ + DMSO) δ 161.7, 160.9, 150.7, 148.2, 135.1, 129.9, 125.8, 124.2, 106.2, 65.6, 60.3, 29.7. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₄NO₂: 204.1019, found: 204.1019.

(6-Fluoro-2-methylquinolin-4-yl)methanol (3e). White solid (167 mg, 86% yield), mp 162–164 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (dd, J = 9.2, 5.5 Hz, 1H), 7.52 (dd, J = 9.8, 2.8 Hz, 1H), 7.48–7.42 (m, 2H), 5.12 (s, 2H), 2.73 (s, 3H). ¹³C NMR (75 MHz, CDCl₃ + DMSO) δ 159.7 (d, J = 244.5 Hz), 158.2, 146.6 144.5, 144.6, 131.3, 131.2, 124.9 (d, J = 9.4 Hz), 119.9, 118.8 (d, J = 25.5 Hz), 106.9, 106.6, 60.8, 25.1. ¹⁹F NMR (377 MHz, CDCl₃) δ –109.3 (s). HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₁FNO: 192.0819, found: 192.0827.

(6-Chloro-2-methylquinolin-4-yl)methanol (3f). Pale yellow solid (166 mg, 79% yield), mp 158–160 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 9.0 Hz, 1H), 7.87 (d, J = 2.3 Hz, 1H), 7.60 (dd, J = 9.0, 2.3 Hz, 1H), 7.43 (s, 1H), 5.13 (s, 2H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 146.0, 145.3, 131.7, 130.7, 130.2, 124.9, 122.0, 120.0, 61.5, 25.3. HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₁ClNO: 208.0524, found: 208.0529.

(6-Bromo-2-methylquinolin-4-yl)methanol (3g). Pale yellow solid (192 mg, 76% yield), mp 163–165 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 2.1 Hz, 1H), 7.89 (d, *J* = 9.0 Hz, 1H), 7.74 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.43 (s, 1H), 5.13 (s, 2H), 2.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃ + DMSO) δ 159.5, 146.2, 132.4, 130.8, 125.6, 125.4, 120.0, 119.5, 60.7, 25.4. HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₁BrNO: 252.0019, found: 252.0029.

(2-Phenylquinolin-4-yl)methanol (3h). White solid (219 mg, 93% yield), mp 106–108 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.5 Hz, 1H), 7.97–7.87 (m, 2H), 7.72 (d, J = 9.2 Hz, 2H), 7.68–7.61 (m, 1H), 7.47–7.33 (m, 4H), 5.00 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 147.9, 146.9, 139.5, 130.1, 129.5, 129.4, 128.8, 127.6, 126.4, 122.7, 116.1, 61.7. HRMS (ESI): calcd for $[M + H]^+$ C₁₆H₁₄NO: 236.1070, found: 236.1081.

(7-Fluoro-2-methylquinolin-4-yl)methanol (3i). White solid (151 mg, 78% yield), mp 172–174 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 9.2, 6.0 Hz, 1H), 7.67 (dd, J = 10.3, 2.6 Hz, 1H), 7.38 (s, 1H), 7.32–7.28 (m, 1H), 5.16 (s, 2H), 2.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, J = 250.4 Hz),

160.5, 149.0, 146.0, 124.9 (d, J = 9.9 Hz), 121.2, 118.7, 116.0 (d, J = 24.2 Hz), 113.1, 112.9 61.8, 25.4. ¹⁹F NMR (377 MHz, CDCl₃) δ –110.3 (s). HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₁FNO: 192.0819, found: 192.0829.

(8-Chloro-2-methylquinolin-4-yl)methanol (3j). Pale yellow solid (151 mg, 78% yield), mp 141–143 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.82–7.77 (m, 2H), 7.44–7.37 (m, 2H), 5.15 (s, 2H), 2.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 146.3, 144.0, 133.3, 129.5, 125.6, 125.5, 121.9, 120.0, 61.7, 25.8. HRMS (ESI): calcd for $[M + H]^+$ C₁₁H₁₁ClNO: 208.0524, found: 208.0530.

(2-Chloroquinolin-4-yl)methanol (3k). Yellow solid (46 mg, 23% yield), mp 148–150 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.74 (t, J = 8.4 Hz, 1H), 7.61–7.55 (m, 2H), 5.22 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 149.5, 147.7, 130.4, 129.3, 127.1, 124.4, 122.7, 119.2, 61.3. HRMS (ESI): calcd for [M + H]⁺ C₁₀H₉ClNO: 194.0367, found: 194.0369.

Quinolin-2-ylmethanol (3la). Pale yellow oil (34 mg, 21% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.75–7.69 (m, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 4.92 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 145.7, 135.9, 128.8, 127.5, 126.6, 126.5, 125.3, 117.4, 63.2. HRMS (ESI): calcd for [M + H]⁺ C₁₀H₁₀NO: 160.0757, found: 160.0765.

Quinolin-4-ylmethanol (3lb). Pale yellow oil (37 mg, 23% yield); ¹H NMR (300 MHz, CDCl₃) δ 8.10–8.76 (m, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.58–7.50 (t, J = 6.3 Hz, 2H), 5.23 (s, 2H). ¹³C NMR (101 MHz, CDCl₃ + DMSO) δ 160.5, 146.3, 136.1, 136.07, 129.0, 127.9, 127.1, 125.5, 118.2, 64.3. HRMS (ESI): calcd for [M + H]⁺ C₁₀H₁₀NO: 160.0757, found: 160.0765.

Quinoline-2,4-diyldimethanol (3lc). Brown oil (36 mg, 19% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 9.2 Hz, 1H), 7.73 (t, J = 8.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.45 (s, 1H), 5.23 (s, 2H), 4.92 (s, 2H). ¹³C NMR (101 MHz, CDCl₃ + DMSO) δ 161.5, 147.4, 146.0, 128.4, 128.3, 125.1, 124.2, 122.6, 115.3, 64.5, 59.5. HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₂NO₂: 190.0863, found: 190.0865.

(8-Methylquinolin-2-yl)methanol (3ma). Brick red solid (35 mg, 19% yield), mp 121–123 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.46–7.40 (m, 1H), 7.27–7.22 (m, 1H), 4.92 (s, 2H), 2.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 145.5, 137.2, 136.4, 130.1, 127.6, 126.1, 125.7, 117.9, 63.9, 17.8. HRMS (ESI): calcd for $[M + H]^+$ C₁₁H₁₂NO: 174.0913, found: 174.0921.

(8-Methylquinolin-4-yl)methanol (3mb). Pale yellow solid (44 mg, 25% yield), mp 134–136 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, J = 4.4 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 7.0 Hz, 1H), 7.54 (d, J = 4.3 Hz, 1H), 7.48–7.43 (m, 1H), 5.22 (s, 2H), 2.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 147.1, 146.1, 137.8, 129.6, 126.5, 125.7, 120.7, 117.9, 61.9, 18.7. HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₂NO: 174.0913, found: 174.0920.

(8-Methylquinoline-2,4-diyl)dimethanol (3mc). Pale yellow solid (84 mg, 41% yield), mp 126–128 °C; ¹H NMR (400 MHz,

CDCl₃) δ 7.74 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 7.0 Hz, 2H), 7.47-7.42 (m, 2H), 7.40 (s, 2H), 5.20 (s, 4H), 4.90 (s, 5H), 2.80 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 147.0, 145.2, 137.1, 129.9, 126.2, 125.0, 120.5, 114.7, 63.9, 61.8, 18.3. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₄NO₂: 204.1019, found: 204.1029.

Benzo[*h*]**quinolin-2-ylmethanol (3na).** Pale yellow oil (49 mg, 23% yield); ¹H NMR (300 MHz, CDCl₃) δ 9.29 (d, J = 8.9 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.94–7.90 (m, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.79–7.66 (m, 3H), 7.40 (d, J = 8.2 Hz, 1H), 5.01 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 144.8, 136.8, 133.9, 130.8, 128.3, 127.9, 127.5, 127.1, 125.5, 125.1, 124.2, 118.8, 64.2. HRMS (ESI): calcd for [M + H]⁺ C₁₄H₁₂NO: 210.0913, found: 210.0922.

Benzo[*h*]**quinolin-4-ylmethanol (3nb).** Yellow oil (60 mg, 28% yield); ¹H NMR (300 MHz, CDCl₃) δ 9.29 (d, J = 9.1 Hz, 1H), 8.94 (d, J = 4.5 Hz, 1H), 7.93–7.88 (m, 1H), 7.82 (s, 2H), 7.78–7.66 (m, 2H), 7.61 (d, J = 4.5 Hz, 1H), 5.23 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.8, 146.1, 145.8, 133.3, 131.6, 128.3, 128.0, 127.8, 127.3, 124.7, 123.7, 120.3, 119.2, 62.0. HRMS (ESI): calcd for [M + H]⁺ C₁₄H₁₂NO: 210.0913, found: 210.0922.

Benzo[*h*]**quinoline-2,4-diyldimethanol** (3nc). Brown oil (40 mg, 16% yield); ¹H NMR (400 MHz, $CDCl_3 + DMSO$) δ 9.22 (d, *J* = 7.8 Hz, 1H), 7.83 (d, *J* = 7.7 Hz, 1H), 7.78–7.71 (M, 2H), 7.66–7.57 (M, 3H), 5.11 (s, 2H), 4.91 (s, 2H). ¹³C NMR (101 MHz, $CDCl_3 + DMSO$) δ 158.4, 148.2, 144.4, 133.3, 131.1, 128.0, 127.7, 127.0, 126.9, 124.5, 122.8, 120.5, 116.3, 64.7, 61.1. HRMS (ESI): calcd for [M + H]⁺ C₁₅H₁₄NO₂: 240.1019, found: 240.1030.

(6-Phenylpyridin-2-yl)methanol (30a). Yellow liquid (26 mg, 14% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04–8.00 (m, 2H), 7.75 (t, *J* = 7.7 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.52–7.41 (m, 3H), 7.16 (d, *J* = 8.2 Hz, 1H), 4.82 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 156.1, 138.8, 137.5, 129.2, 128.8, 126.9, 119.1, 118.8, 63.9. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₂NO: 186.0913, found: 186.0923.

(2-Phenylpyridin-4-yl)methanol (3ob). Yellow liquid (44 mg, 23% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, J = 5.0 Hz, 1H), 7.97–7.92 (m, 2H), 7.69 (s, 1H), 7.48–7.38 (m, 3H), 7.18 (d, J = 6.5 Hz, 1H), 4.75 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 151.0, 149.6, 139.3, 129.1, 128.8, 127.0, 119.7, 118.1, 63.6. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₂NO: 186.0913, found: 186.0923.

(2,6-Diphenylpyridin-4-yl)methanol (3p). White solid (75 mg, 28% yield) mp 103–104 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.15–8.12 (4, 2H), 7.63 (s, 1H), 7.52–7.46 (m, 4H), 7.45–7.40 (m, 2H), 4.78 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 151.4, 139.4, 129.1, 128.7, 127.1, 116.2, 64.0. HRMS (ESI): calcd for $[M + H]^+$ C₁₈H₁₆NO: 262.1226, found: 262.1239.

General procedure and characterization data for the hydroxyalkylated quinolines (4a–4j)

To a stirring solution of quinolines (1) (1.0 mmol) and Fe $(ClO_4)_2 \cdot xH_2O$ (1.0. equiv.) in 2.0 mL of alcohols (2b-f) was dropwise added TBHP (4.0 equiv.) at room temperature. The

progress of the reaction was monitored by TLC. After the completion of the reaction (15 min), the reaction mixture was extracted with ethyl acetate and washed with saturated NaHCO₃ and brine solution. The organic layer was dried over Na₂SO₄ and concentrated in vacuum. The mixture was purified by column chromatography over silica gel (100–200 mesh size), and using a mixture of hexane/ethyl acetate as the eluent gave the desired product 4.

1-(2-Methylquinolin-4-yl)ethan-1-ol (4a). Pale yellow solid (115 mg, 66% yield) mp 109–111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.67–7.59 (m, 1H), 7.44 (dd, J = 8.9, 5.4 Hz, 2H), 5.59 (s, 1H), 2.69–2.58 (m, 3H), 1.67–1.56 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 151.5, 147.7, 129.2, 129.1, 125.6, 123.6, 122.8, 117.6, 65.9, 25.9, 24.6. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₄NO: 188.1070, found: 188.1150.

1-(2-Methylquinolin-4-yl)ethan-1-one (4a'). Yellow liquid (18 mg, 9% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.73 (t, J = 7.7 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1H), 7.49 (s, 1H), 2.80 (s, 3H), 2.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.6, 158.5, 148.9, 143.2, 129.9, 129.2, 127.4, 125.3, 122.0, 120.8, 30.2, 25.4. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₂NO: 186.0913, found: 186.0913.

1-(2-Phenylquinolin-4-yl)ethan-1-ol (4b). Yellow liquid (144 mg, 57% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.3 Hz, 1H), 7.97 (d, *J* = 6.2 Hz, 2H), 7.82 (s, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.44–7.38 (m, 4H), 5.42 (q, *J* = 6.4 Hz, 1H), 1.55 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 152.3, 148.0, 139.3, 130.1, 129.4, 129.3, 128.7, 127.5, 126.1, 124.2, 122.8, 114.4, 66.1, 24.5. HRMS (ESI): calcd for [M + H]⁺ C₁₇H₁₆NO: 250.1226, found: 250.1360.

1-(8-Chloro-2-methylquinolin-4-yl)ethan-1-ol (4c). White solid (116 mg, 52% yield) mp 124–126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.5 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.46 (s, 1H), 7.39–7.33 (m, 1H), 5.54 (q, *J* = 6.2 Hz, 1H), 2.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 151.5, 144.2, 133.5, 129.2, 125.4, 125.0, 121.9, 118.4, 66.3, 25.9, 24.6. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₃ClNO: 222.0680, found: 222.0759.

1-(2-Methylquinolin-4-yl)propan-1-ol (4d). Yellow liquid (82 mg, 42% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.62 (t, J = 8.2 Hz, 1H), 7.44 (t, J = 8.2 Hz, 1H), 7.39 (s, 1H), 5.33 (dd, J = 7.7, 4.4 Hz, 1H), 2.64 (s, 3H), 2.09–1.91 (m, 1H), 1.89–1.76 (m, 1H), 1.03 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 150.3, 147.8, 129.2, 129.0, 125.5, 123.9, 122.8, 118.4, 71.1, 31.3, 25.3, 10.3. HRMS (ESI): calcd for [M + H]⁺ C₁₃H₁₆NO: 202.1226, found: 202.1291.

1-(6-Fluoro-2-methylquinolin-4-yl)propan-1-ol (4e). Yellow liquid (77 mg, 35% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.94 (m, 1H), 7.53 (d, *J* = 10.2 Hz, 1H), 7.45–7.35 (m, 2H), 5.24–5.16 (m, 1H), 2.66 (s, 3H), 2.00–1.89 (m, 1H), 1.89–1.77 (m, 1H), 1.03 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8 (d, *J* = 247.5 Hz), 158.5, 150.0, 144.8, 131.3, 131.2, 124.5 (d, *J* = 9.1 Hz), 119.2, 119.0 (d, *J* = 25.3 Hz), 107.0, 106.8, 71.3, 31.0, 25.0, 10.3. ¹⁹F NMR (377 MHz, CDCl₃) δ –113.6 (s). HRMS (ESI): calcd for $[M + H]^+ C_{13}H_{15}FNO: 220.1132$, found: 220.1236.

1-(6-Chloro-2-methylquinolin-4-yl)propan-1-ol (4f). Yellow liquid (81 mg, 34% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 7.8, 5.6 Hz, 2H), 7.55 (dd, J = 9.0, 2.3 Hz, 1H), 7.39 (s, 1H), 5.22 (dd, J = 7.7, 4.6 Hz, 1H), 2.65 (s, 3H), 1.99–1.88 (m, 1H), 1.86–1.77 (m, 1H), 1.03 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 148.4, 145.2, 130.4, 129.8, 128.9, 123.6, 121.1, 118.3, 30.1, 24.3, 9.2. HRMS (ESI): calcd for [M + H]⁺ C₁₃H₁₅ClNO: 236.0837, found: 236.0895.

1-(4-Methylquinolin-2-yl)butan-1-ol (4g). Brown liquid (61 mg, 28% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 22.7, 8.4 Hz, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.55–7.48 (m, 1H), 7.20 (s, 1H), 3.72–3.64 (m, 2H), 3.41–3.29 (m, 1H), 2.69 (s, 3H), 2.13–2.04 (m, 1H), 2.03–1.94 (m, 1H), 1.41 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 146.9, 145.2, 129.3, 129.0, 126.9, 125.8, 123.6, 120.7, 60.1, 40.0, 38.2, 20.5, 18.9. HRMS (ESI): calcd for [M + H]⁺ C₁₄H₁₈NO: 216.1382, found: 216.1382.

1-(2,6-Dimethylquinolin-4-yl)butan-1-ol (4h). Brown liquid (85 mg, 36% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.6 Hz, 1H), 7.65 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 7.36 (s, 1H), 5.38 (dd, J = 7.9, 4.3 Hz, 1H), 2.65 (s, 3H), 2.51 (s, 3H), 1.91–1.73 (m, 2H), 1.62–1.44 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 149.9, 146.4, 135.2, 131.2, 128.9, 123.8, 121.8, 118.2, 69.6, 40.4, 25.2, 21.9, 19.2, 14.0. HRMS (ESI): calcd for [M + H]⁺ C₁₅H₂₀NO: 230.1539, found: 230.1539.

2-Methyl-1-(2-methylquinolin-4-yl)propan-1-ol (4i). Brown liquid (71 mg, 33% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.64 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 8.2 Hz, 1H), 7.38 (s, 1H), 5.19 (d, J = 5.2 Hz, 1H), 2.69 (s, 3H), 2.23–2.13 (m, 1H), 1.00 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 149.6, 147.9, 129.3, 129.0, 125.4, 124.2, 123.1, 119.3, 74.8, 34.4, 25.4, 20.1, 16.7. HRMS (ESI): calcd for [M + H]⁺ C₁₄H₁₈NO: 216.1383, found: 216.1429.

1-(2-Methylquinolin-4-yl)hexane-1-ol (4j). Brown liquid (76 mg, 31% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.39 (s, 1H), 5.38 (dd, J = 8.2, 4.0 Hz, 1H), 2.63 (s, 3H), 1.92–1.73 (m, 2H), 1.62–1.40 (m, 2H), 1.39–1.23 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 151.2, 147.5, 129.1, 129.0, 125.6, 123.8, 122.8, 118.3, 69.8, 38.5, 31.7, 25.8, 25.1, 22.6, 14.1. HRMS (ESI): calcd for [M + H]⁺ C₁₆H₂₂NO: 244.1696, found: 244.1813.

General procedure and characterization data for the quinoline-4-carbaldehydes (5)

To a stirring solution of hydroxymethylated quinoline **3a** (1.0 mmol) in 2.0 mL of DCM, Dess–Martin periodinane (1.2 equiv.) was added slowly at 0 °C, and the reaction mixture was stirred at room temperature for 1 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was quenched with saturated sodium thiosulphate solution and extracted with DCM (5.0 mL \times 3). The organic layer was washed with saturated sodium bicarbonate solution, dried with anhydrous Na₂SO₄ and concentrated. The crude product was purified by silica gel column

chromatography over silica gel (100–200 mesh size) and using a hexane/ethyl acetate mixture as the eluent gave the desired product 5.

Quinoline-4-carbaldehyde (5a). White solid (114 mg, 72% yield), mp 79–81 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 1H), 9.21 (d, J = 4.2 Hz, 1H), 9.03 (d, J = 9.5 Hz, 1H), 8.23 (d, J = 9.0 Hz, 1H), 7.83 (m, 2H), 7.75 (t, J = 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.9, 150.5, 149.3, 136.8, 130.2, 130.1, 129.4, 125.9, 124.5, 123.9. HRMS (ESI): calcd for [M + H]⁺ C₁₀H₈NO: 158.0600, found: 158. 158.0601.

2-Methylquinoline-4-carbaldehyde (5b). White solid (117 mg, 68% yield), mp 84–86 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.48 (s, 1H), 8.95 (d, J = 8.5 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.78 (t, J = 8.4 Hz, 1H), 7.71–7.63 (m, 2H), 2.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.0, 159.2, 149.0, 137.1, 130.2, 129.2, 128.3, 127.1, 124.2, 122.3, 25.3. HRMS (ESI): calcd for [M + H]⁺ C₁₁H₁₀NO: 172.0757, found: 172.0757.

6-Chloro-2-methylquinoline-4-carbaldehyde (5c). Pale yellow solid (178 mg, 86% yield), mp 113–115 °C; ¹H NMR (500 MHz, CDCl₃) δ 10.37 (s, 1H), 8.99 (s, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.73–7.66 (m, 2H), 2.85 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.7, 159.5, 147.4, 136.2, 134.7, 131.2, 130.6, 128.5, 123.7, 122.6, 25.2. HRMS (ESI): calcd for $[M + H]^+$ C₁₁H₉ClNO: 206.0367, found: 206.0368.

2,6-Dimethylquinoline-4-carbaldehyde (5d). Pale yellow solid (145 mg, 77% yield), mp 118–120 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.44 (s, 1H), 8.72 (s, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.63–7.57 (m, 2H), 2.83 (s, 3H), 2.58 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.2, 158.0, 147.7, 138.7, 136.5, 132.4, 128.8, 127.2, 123.2, 122.30, 25.1, 22.0. HRMS (ESI): calcd for [M + H]⁺ C₁₂H₁₂NO: 186.0913, found: 186.0913.

General procedure characterization data for the arsindoline-A and its derivatives (7a-c)

To a stirred solution of quinoline-4-carbaldehyde 5 (0.5 mmol) and indole 6 (1.0 equiv.) in H_2O (2 mL), H_2SO_4 (1.0 equiv.) was added dropwise at 0 °C. After the completion of the reaction, the reaction mixture was diluted with water and extracted with DCM twice. The organic layer was washed with saturated sodium bicarbonate solution, dried with anhydrous Na_2SO_4 and concentrated. The crude reaction mixture was purified by column chromatography using EtOAc/hexane as eluents to obtain the product 7.

4-(Di(1*H***-indol-3-yl)methyl)quinoline (7a).** Pale yellow solid (313 mg, 83% yield), mp 108–110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 4.5 Hz, 1H), 8.16 (d, J = 8.3 Hz, 2H), 8.06 (s, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.37 (dd, J = 8.2, 2.8 Hz, 4H), 7.20 (t, J = 7.6 Hz, 2H), 7.16 (d, J = 4.5 Hz, 1H), 7.02 (t, J = 7.6 Hz, 2H), 6.65 (s, 1H), 6.58 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 150.4, 149.8, 148.4, 136.8, 129.9, 129.0, 127.4, 126.8, 126.6, 124.4, 124.2, 122.3, 121.0, 119.6, 119.5, 117.7, 111.3, 35.6. HRMS (ESI): calcd for [M + H]⁺ C₂₆H₂₀N₃: 374.1651, found: 374.1654.

4-(Di(1*H***-indol-3-yl)methyl)-2-methylquinoline (7b).** Brick red solid (286 mg, 73% yield), mp 251–252 °C; ¹H NMR (400 MHz, $CDCl_3$) δ 8.10 (dd, J = 7.9, 4.4 Hz, 2H), 8.02 (s, 2H),

7.64 (t, J = 7.7 Hz, 1H), 7.42–7.34 (m, 5H), 7.21 (t, J = 7.2 Hz, 2H), 7.04 (dd, J = 15.4, 8.4 Hz, 3H), 6.66–6.57 (m, 3H), 2.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃ + DMSO) δ 158.6, 150.3, 147.6, 136.8, 128.8, 128.6, 126.6, 125.6, 125.4, 124.6, 123.9, 121.5, 121.4, 119.0, 118.7, 116.8, 111.4, 35.4, 25.2. HRMS (ESI): calcd for $[M + H]^+ C_{27}H_{22}N_3$: 388.1808, found: 388.1811.

6-Chloro-4-(di(1*H***-indol-3-yl)methyl)-2-methylquinoline (7c).** Brick red solid (324 mg, 76% yield), mp 163–165 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.09–7.99 (m, 4H), 7.57 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.36 (dd, *J* = 12.2, 8.1 Hz, 4H), 7.20 (t, *J* = 7.6 Hz, 2H), 7.09 (s, 1H), 7.02 (t, *J* = 7.3 Hz, 2H), 6.58 (d, *J* = 1.6 Hz, 2H), 6.51 (s, 1H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 149.1, 146.5, 136.8, 130.7, 130.0, 126.7, 124.3, 122.9, 122.6, 122.4, 119.6, 119.5, 117.3, 111.3, 35.6, 25.3. HRMS (ESI): calcd for [M + H]⁺ C₂₇H₂₁ClN₃: 422.1419, found: 422.1412.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

BS and MS are grateful to UGC-India for financial support in the form of a senior research fellowship (SRF). DV and Dr RU sincerely thank DST INSPIRE and SERB-NPDF India for fellowships, respectively. Dr KRR thanks the Director, CSIR-IICT for financial support. Communication No: IICT/Pubs./2020/276.

Notes and references

- (a) H. Takaya and Y. Sugi, Petrotechnology, 1986, 9, 39–44;
 (b) H. H. Kung and K. Smith, Jahrb. Chem. Ind., 1994, 57, 175–213;
 (c) M. A. J. Duncton, MedChemComm, 2011, 2, 1135–1161;
 (d) C. Liu, J. Wang, L. Meng, Y. Deng, Y. Li and A. Lei, Angew. Chem., Int. Ed., 2011, 50, 5144–5148;
 (e) S. Ogawa and Y. Obora, Chem. Commun., 2014, 50, 2491–2493;
 (f) Z. Sun, G. Bottari and K. Barta, Green Chem., 2015, 17, 5172–5181;
 (g) F.-X. Wang, J.-Y. Du, H.-B. Wang, P.-L. Zhang, G.-B. Zhang, K.-Y. Yu, X.-Z. Zhang, X.-T. An, Y.-X. Cao and C.-A. Fan, J. Am. Chem. Soc., 2017, 139, 4282–4285;
 (h) H. Yi, L. Niu, C. Song, Y. Li, B. Dou, A. K. Singh and A. Lei, Angew. Chem., Int. Ed., 2017, 56, 1120–1124;
 (i) L. Gong, Z. Yang, K. Li, W. Xing, C. Liu and J. Ge, J. Energy Chem., 2018, 27, 1618–1628.
- 2 K. Natte, H. Neumann, M. Beller and R. V. Jagadeesh, Angew. Chem., Int. Ed., 2017, 56, 6384–6394.
- 3 (a) B. F. Howard, *Chem. News*, 1931, 142, 129–133; (b) J. Achan, A. O. Talisuna, A. Erhart, A. Yeka,

- J. K. Tibenderana, F. N. Baliraine, P. J. Rosenthal and U. D'Alessandro, *Malar. J.*, 2011, **10**, 144.
- 4 P. F. Moore, J. W. Constantine and W. E. Barth, *J. Pharmacol. Exp. Ther.*, 1978, **207**, 410–418.
- 5 N. Shobeiri, M. Rashedi, F. Mosaffa, A. Zarghi, M. Ghandadi, A. Ghasemi and R. Ghodsi, *Eur. J. Med. Chem.*, 2016, **114**, 14–23.
- 6 (a) J. P. Michael, Nat. Prod. Rep., 1997, 14, 605–618;
 (b) J. P. Michael, Nat. Prod. Rep., 2002, 19, 742–760;
 (c) S. Kumar, S. Bawa and H. Gupta, Mini-Rev. Med. Chem., 2009, 9, 1648–1654; (d) V. R. Solomon and H. Lee, Curr. Med. Chem., 2011, 18, 1488–1508; (e) R. Musiol, Curr. Pharm. Des., 2013, 19, 1835–1849; (f) L. C. Chou, M. T. Tsai, M. H. Hsu, S. H. Wang, T. D. Way, C. H. Huang, H. Y. Lin, K. Qian, Y. Dong, K. H. Lee, L. J. Huang and S. C. Kuo, J. Med. Chem., 2010, 53, 8047–8058.
- 7 W. Buratti, G. P. Gardini and F. Minisci, *Tetrahedron*, 1971, 27, 3655–3668.
- 8 L. Zhou, N. Okugawa and H. Togo, *Eur. J. Org. Chem.*, 2017, 6239–6245.
- 9 S. Wang, S. Xing, Y. Zhang, Y. Fan, H. Zhao, J. Wang,
 S. Zhangab and W. Wang, *RSC Adv.*, 2019, 9, 41847–41850.
- 10 L. Niu, J. Liu, X.-A. Liang, S. Wang and A. Lei, *Nat. Commun.*, 2019, **10**, 467.
- 11 (a) R. Shang, L. Ilies and E. Nakamura, Chem. Rev., 2017, 117, 9086–9139; (b) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem. Rev., 2011, 111, 1293–1314; (c) N. Yoshikai, A. Mieczkowski, A. Matsumoto, L. Ilies and E. Nakamura, J. Am. Chem. Soc., 2010, 132, 5568–5569; (d) F. Jia and Z. Li, Org. Chem. Front., 2014, 1, 194–214.
- 12 (a) G. Saidulu, R. A. Kumar, T. Anitha, A. Srinivasulu, B. Sridhar, S. T. Liu and K. R. Reddy, *RSC Adv.*, 2014, 4, 55884–55888; (b) G. Saidulu, R. A. Kumar and K. R. Reddy, *Tetrahedron Lett.*, 2015, 56, 4200–4203; (c) R. A. Kumar, A. Srinivasulu, G. Saidulu, P. S. Kumar, B. Sridhar and K. R. Reddy, *Tetrahedron*, 2016, 72, 5794; (d) A. Srinivasulu, B. Shantharjun, R. A. Kumar and K. R. Reddy, *Tetrahedron Lett.*, 2017, 58, 1501–1506; (e) A. Srinivasulu, B. Shantharjun, D. Vani, K. C. Ashalu, A. Mohd, J. Wencel-Delord, F. Colobert and K. R. Reddy, *Eur. J. Org. Chem.*, 2019, 1815–1819.
- 13 W. Li, F. Xu, W. Shuai, H. Sun, H. Yao, C. Ma, S. Xu, H. Yao, Z. Zhu, D.-H. Yang, Z.-S. Chen and J. Xu, *J. Med. Chem.*, 2019, **62**, 993–1013.
- K. L. VanDenburgh, Y. Liu, T. Sadhukhan, C. R. Benson, N. M. Cox, S. Erbas-Cakmak, B. Qiao, X. Gao, M. Pink, K. Raghavachari and A. H. Flood, *Org. Biomol. Chem.*, 2020, 18, 431–440.
- 15 R. R. Jella and R. Nagarajan, *Tetrahedron*, 2013, **69**, 10249–10253.
- 16 F. Minisci, A. Citterio, E. Vismara and C. Giordano, *Tetrahedron*, 1985, **41**, 4151–4170.