This article was downloaded by: [Fordham University] On: 19 December 2012, At: 04:05 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

A New Class of Dihydropyridine Thioglycosides via Piperidinium Salts

Adel M. Attia^a & Galal H. Elgemeie^b

^a Department of Chemistry, Faculty of Education, Kafr El-Sheikh, Egypt

^b Department of Chemistry, Faculty of Science, Helwan University, Ain-Helwan, Cairo, Egypt Version of record first published: 17 Aug 2006.

To cite this article: Adel M. Attia & Galal H. Elgemeie (2003): A New Class of Dihydropyridine Thioglycosides via Piperidinium Salts, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 33:13, 2243-2255

To link to this article: http://dx.doi.org/10.1081/SCC-120021503

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SYNTHETIC COMMUNICATIONS[®] Vol. 33, No. 13, pp. 2243–2255, 2003

A New Class of Dihydropyridine Thioglycosides via Piperidinium Salts

Adel M. Attia¹ and Galal H. Elgemeie^{2,*}

 ¹Department of Chemistry, Faculty of Education, Kafr El-Sheikh, Egypt
²Department of Chemistry, Faculty of Science, Helwan University, Ain-Helwan, Cairo, Egypt

ABSTRACT

A first reported method for preparation of a new class of thioglycosides via reaction of piperidinium salts of dihydropyridinethiones with 2,3,4,6-tetra-O-acetyl- α -D-gluco- and galactopyranosyl bromides has been studied. Comparison with the products obtained from silylated thiopyridines is made.

2243

DOI: 10.1081/SCC-120021503 Copyright © 2003 by Marcel Dekker, Inc. 0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Correspondence: Galal H. Elgemeie, Department of Chemistry, Faculty of Science, Helwan University, Ain-Helwan, Cairo, Egypt; E-mail: rughe@rusys.cg.net.

STA.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2244

Attia and Elgemeie

In recent reports from our laboratory, we described the preparation of different novel functionalized pyridinethione glycosides, which revealed antagonistic activity.^[1-4] In an ealier brief communication we had already reported the use of dihydropyridinethione glycosides as a substrates or inhibitors in the protein glycosylation process.^[5] These common features, encouraged us to develop a new straightforward route for synthesis of these compounds. In the present report, we describe the synthesis of dihydropyridine thioglycosides through reaction of piperidinuim salts of dihydropyridinethiolates with α -halogeno sugars. As far as we know this is the first coupling reaction of this type to be reported for glycoside formation. Thus, it has been found that cyanothioacetamide 1 reacted with chalcones 2 in ethanol containing equivalent amounts of piperidine at room temperature to give the corresponding piperidinuim salts of 1,4-dihydropyridine-2-thiones 4. The structure of 4 was established on the basis of their elemental analysis and spectral data. Compounds 4 reacted with 2,3,4,6tetra-O-acetyl- α -D-gluco- and galactopyranosyl bromides 5 in acetone at 0° C to give in a high yields the corresponding S-glucosides **9a–c** or S-galactosides **9d–f**, respectively. It was suggested that the $cis(\alpha)$ sugar reacts by a simple SN_2 reaction to give the β -glycoside product. The structure of the reaction products 9a-f were established and confirmed by their elemental analyses and spectral data (MS, IR, ¹HNMR, ¹³C NMR). Thus, the analytical data for **9a** revealed a molecular formula $C_{32}H_{32}N_2SO_9$ (M⁺620). The ¹H NMR spectrum showed the anomeric proton as a doublet at $\delta\delta$ 6.26 with spin-spin coupling constant of 10.37 Hz which corresponds to the diaxial orientation of H-1' and H-2'protons indicating the β -configuration, while the other six glucose protons resonated at δ 4.18–5.72. The four acetyl groups appeared as four singlets at δ 1.70–2.08. The ¹³C NMR spectrum of **9a** contained a signal at $\delta\delta$ 80.7 corresponding to the C-1' atom of the β -configuration. Five signals appearing at δ 62.1, 68.6, 69.4, 73.5, and 75.5 were assigned to C-6', C-4', C-2', C-3', and C-5', respectively. After deprotection of compounds **9a–f** with a saturated solution of ammonia in methanol at 0°C the final glycosides 10a-f were obtained in almost quantitative yields, the structures of which have been established on the basis of elemental analyses and spectral data. Thus, the analytical data for 10a reveal the molecular formula $C_{24}H_{24}N_2SO_5$ (M⁺452). The ¹H NMR spectrum shows the anomeric proton as a doublet at δ 5.84 (J 10.22 Hz) indicating the presence of only the β -D-configuration. The signals of the other six glucose protons appear as a multiplet at δ 3.18–3.89, while the signals of the four hydroxy groups of the glucose moiety are observed at δ 4.42–5.20 (exchangeable by D₂O). The ¹³C NMR spectrum of **10a** is characterized by a signal at δ 83.3 corresponding to the C-1' atom of β -D-glucopyranose. Another five

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Dihydropyridine Thioglycosides

2245

signals at δ 60.6, 69.4, 73.3, 77.7, and 81.5 are assigned to C-6', C-4', C-2' C-3', and C-5', respectively. In another experiment, the glycosides 9a-f when refluxed in dry ethanol for 3 min, the corresponding aromatized pyridine thioglucosides **8a-c** and thiogalactosides **8d-f** were obtained. In order to investigate the scope of the formation of these glycosides further we studied the coupling of cyanothioacetamide with 2,3,4,6-tetra-Oacetyl-α-D-gluco- and galactopyranosyl bromides 5 in acetone at room temperature. The reaction proceeded to give the corresponding cyanoacetamidethioglycosides 6. Compounds 6 reacted with chalcones 2 in dry ethanol containing catalytic amounts of piperidine at 60°C to give the glycosides 8. The structures of the reaction products 8a-f were established and confirmed on the basis of their elemental analyses and spectral data (MS, IR, UV, ¹H NMR, ¹³C NMR). Although the coupling of piperidinium salts 4 with the glycosyl bromides could also give the corresponding N-glycosides 7, the formation of the S-glycosides 8 were proved using the ¹³CNMR spectroscopy which revealed the absence of the thione carbon at δ 178 and appearance of C-2 carbon^[6,7] at δ 160 of the same value of the corresponding S-methyl derivative 11. When glycosides 8 were treated with methanolic ammonia at room temperature, the free glycoside derivatives 16a-f were obtained, the structures of which were established on the basis of elemental analysis and spectral data. With these two dihydropyridine and pyridine thioglycosides as models, it was decided to synthesize these compounds with the silvlation method and comparing the products for stereochemical considerations. Thus, in a simple experimental procedure treatment of the piperidinium salts 4 with dilute hydrochloric acid at 30°C converted it to the corresponding pyridine-2(1H) thiones 12. The latter compounds were reacted with hexamethyldisilazane in the presence of ammonium sulfate to give the corresponding 2-trimethylsilylthiopyridines 14, which was subsequently treated with peracetylated sugars 15 in the presence of redistilled SnCl₄ to afford the S-glycosyl compounds 8, which were shown to be the same as those obtained from the reaction of $\mathbf{6}$ with $\mathbf{2}$ or from oxidation of by their melting points and spectral data. A suggested mechanism for the formation of the S-glycosides 8 by condensation of silvlated bases 14 with peracetylated sugars in the presence of Lewis acid catalyst is illustrated in Chart 3. In summary, we have achieved a novel synthesis of interesting nonclassical dihydropyridine thioglycosides and their corresponding aromatized forms by the reaction of the piperidinium salts of dihydropyridinethiones with α -halosugars, the nature of the products depends on thermodynamic factors. These nucleosides can be utilized as an excellent starting material for the synthesis of other carbohydrate derivatives and for further biological evaluation studies.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2246

Attia and Elgemeie

Chart 1.

Dihydropyridine Thioglycosides

2247

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

CH₃I 5 room temp. acetone / room temp. н+ room temp CN CN CH₃I KOH / CH2CI2 Ph ้ร SCH3 11 12 HMDS 2 EtOH / Pip. (NH₄)₂SO₄ Δ AcO OAc OAc ÇΝ Ŕ CN *,*NΗ 15 AcO 8 SnCl₄ / CH₃CN ѕсн₃ Ph S-Si(CH₃)₃ 13 14 CH₃I .CN NH₃ / CH₃OH 1 Ph HO R² QН òн 16 10, 16 R² R^2 \mathbb{R}^1 8,9 Ar R¹ Ar phenyl OAc Н phenyl OH Η а a 2-furanyl Н OAc 2-furanyl OH b Н b 2-thienyl с OAc H с 2-thienyl OH Η d phenyl Н OAc d phenyl Н OH 2-furanyl Н OAc 2-furanyl Н OH e e f 2-thienyl Η f OAc Н OH 2-thienyl

Chart 2.

EXPERIMENTAL

Melting points are uncorrected. Aluminum-coated silica gel 60 F_{254} (Merck) sheets were used for thin layer chromatography. IR spectra were collected in the transmission mode on a pye Unicam Spectra-1000 spectrometer. ¹H and ¹³C NMR spectra were measured in (CD₃)₂SO using SiMe₄ as internal reference on a Varian 400 MHz spectrometer. Mass spectra were recorded by EI on a Varian Mat 311A spectrometer and FAB on a kratos MS 50 spectrometer.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2,3,4,6-Tetra-*o*-acetyl-β-Dglycopyranosylthiocyanoacetamides (6a,b)

To a solution of thiocyanoacetamide **1** (0.01 mol) in aqueous potassium hydroxide [0.56 g (0.01 mol) in 6 mL of distilled water], a solution of 2,3,4,6-tetra-*O*-acetyl- α -D-gluco or galactopyranosyl bromide **5** (0.11 mol) in acetone 20 mL was added. The reaction mixture was stirred at room temperature until completion (TLC, 1 h), using chloroform: ether 9:1 v/v

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Dihydropyridine Thioglycosides

2249

(Rf 0.74–0.76 region), then evaporated under reduced pressure and the residue was washed with distilled water to remove the formed potassium bromide. The resulting product was dried and crystallized from chloroform–petroleum ether 40–60 at 0° C to give the yellow products **6**.

6a. Yield 83%, m.p. 147°C. IR 2230 (CN), 1754 (CO ester of glucose). ¹H NMR 2.01–2.11(4s, 12H, 4CH₃CO), 3.70 (m, 2H, CH₂), 4.17 (m, 2H, 2H-6'), 4.22 (m, 1H, H-5'), 4.79 (t, 1H, H-4'), 4.84 (m, 1H, H-3'), 5.09 (m, 1H, H-2'), 5.22 (d, $J_{1'-2'}$ 10.56 Hz, 1H, H-1'), 7.26 (s, 1H, imine NH). m/z 430 (Found: C, 47.70; H, 5.24; N, 6.68. C₁₇H₂₂N₂SO₉ requires C, 47.44; H, 5.11; N, 6.51%).

6b. Yield 85%, m.p. 168°C. IR 2228 (CN), 1755 (CO ester of galactose). ¹H NMR 1.99–2.09 (4s, 12H, 4CH₃CO), 3.88 (m, 2H, CH₂), 4.09 (m, 2H, 2H-6'), 4.19 (m, 1H, H-5'), 4.55 (t, 1H, H-4'), 4.80 (m, 1H, H-3'), 5.11 (m, 1H, H-2'), 5.27 (d, $J_{1'2'}$ 10.0 Hz, 1H, H-1'), 7.20 (s, 1H, imine NH). *m*/*z* 430 (Found: C, 47.62; H, 5.20; N, 6.72. C₁₇H₂₂N₂SO₉ requires C, 47.44; H, 5.11; N, 6.51%).

3-Cyano-2-(2',3',4',6'-tetra-*O*-acetyl-β-D -glycopyranosylthio)-1,4-dihydropyridines (9a–f)

General coupling procedures. A mixture of 1 (0.01 mol) and 2 (0.01 mol) was dissolved in dry ethanol (5 mL), a (0.01 mol) of piperidine were then added. The reaction mixture was stirred at 0°C for 1 h. The solvent was removed at reduced pressure and the resulting hydrogenated thiopyridines 4 was dissolved in dry acetone (5 mL) and a solution of 2,3, 4,6-tetra-*O*-acetyl- α -D-gluco- or galactopyranosyl bromide 6 5 (0.011 mol) in dry acetone (20 mL) was then added at 0°C. The reaction mixture was stirred until the reaction was judged complete by TLC, using chloroform:ether 4:1 (Rf 0.66–0.70 region), then evaporated under reduced pressure and the residue was crystallized from chloroform- petroleum ether 40–60 at 0°C to give pale yellow crystals.

9a. Yield 72%, m.p. 215°C. IR 2215 (CN), 1748 (CO) cm⁻¹. ¹H NMR 1.70–2.08 (4s, 12H, 4CH₃CO), 4.18 (m, 2H, 2H-6' and 1H, pyridine H-4), 4.38 (m, 1H, H-5'), 5.05 (t, 1H, H-4'), 5.26 (t, H, H-3'), 5.72 (t, 1H, H-2'), 6.26 (d, $J_{1'2'}$ 10.37 Hz, 1H, H-1'), 7.62 (m, 5H, Ar-H), 7.78 (m, 3H, Ar-H and 1H, pyridine H-5), 8.04 (s,1H, NH), 8.40 (m, 2H, Ar-H) ppm. ¹³C NMR 19.9–20.2 (4CH₃), 62.1(C6'), 68.6 (C4'), 69.4 (C2'), 73.5 (C3'), 75.5 (C5'), 80.7 (C1'), 104.2 (C4), 115.1 (C3), 117.2 (CN), 127.8–1158.0 (Ar-C), 159.4 (C2), 169.1–169.6 (4CO) ppm. *m*/*z* 620 (Found: C, 62.08; H, 5.22; N, 4.60. C₃₂H₃₂N₂SO₉ requires C, 61.93; H, 5.16; N, 4.51%).

X17

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2250

Attia and Elgemeie

9b. Yield 73%, m.p. 235°C. IR 2213 (CN), 1747 (CO) cm⁻¹. ¹H NMR 1.61–2.04 (4s, 12H, 4CH₃CO), 4.12 (m, 2H, 2H-6' and 1H, pyridine H-4), 4.35 (m, 1H, H-5'), 5.01(t, 1H, H-4'), 5.22 (t, 1H, H-3'), 5.72 (t, 1H, H-2'), 6.22 (d, $J_{1'-2'}$ 10.44 Hz, 1H, H-1'), 6.84 (q, 1H, furan H-4), 7.79 (m, 3H, Ar-H and 1H, pyridine H-5), 7.90 (d, 1H, furan H-3), 8.09 (d, 1H, furan H-5), 8.16 (s, 1H, NH), 8.27 (d, 2H, Ar-H) ppm. ¹³C NMR 19.9–20.9 (4CH₃), 61.8 (C6'), 68.2 (C4'), 68.8 (C2'), 72.9 (C3'), 75.1(C5'), 80.9 (C1'), 97.6 (C4), 113.1 (C3), 115.8 (CN), 127.6–158.2 (Ar-C), 160.1 (C2), 169.2–169.7 (4CO) ppm. m/z 610 (Found: C,59.29; H, 5.04; N, 4.73. C₃₀H₃₀N₂SO₁₀ requires C, 59.01; H, 4.91; N, 4.59%).

9c. Yield 70%, m.p. 244°C. IR 2211(CN), 1746 (CO) cm⁻¹. ¹H NMR 1.68–2.05 (4s, 12H, 4CH₃CO), 4.15 (m, 2H, 2H-6' and 1H, pyridine H-4), 4.26 (m, 1H, H-5'), 5.05 (t, 1H, H-4'), 5.28 (t, 1H, H-3'), 5.62 (t, 1H, H-2'), 6.18 (d, $J_{1'-2'}$ 10.38 Hz, 1H, H-1'), 7.32 (q, 1H, thiophene H-4), 7.80 (m, 3H, Ar-H and 1H, pyridine H-5), 7.92 (dd, 1H, thiophene H-3), 7.98 (dd, 1H, thiophene H-5), 8.04 (s, 1H, NH), 8.35 (m, 2H, Ar-H) ppm. ¹³C NMR 19.4–19.8(4CH₃), 61.6 (C6'), 68.2 (C4'), 68.9 (C2'), 73.0 (C3'), 75.0 (C5'), 80.2 (C1'), 101.3 (C4), 114.0 (C3), 116.2 (CN), 127.3–158.1 (Ar-C), 159.9 (C2), 168.6–169.1 (4CO) ppm. m/z 626 (Found: C, 57.81; H, 4.97; N, 4.66. C₃₀H₃₀N₂S₂O₉ requires C, 57.50; H, 4.79; N, 4.47%).

9d. Yield 73%, m.p. 148°C. IR 2203 (CN), 1753 (CO) cm⁻¹. ¹H NMR 1.62–2.04 (4s, 12H, 4CH₃CO), 4.16 (m, 2H, 2H-6' and 1H, pyridine H-4), 4.37 (m, 1H, H-5'), 5.04 (t, 1H, H-4'), 5.25 (t, 1H, H-3'), 5.72 (t, 1H, H-2'), 6.28 (d, $J_{1'2'}$ 10.46 Hz, 1H, H-1'), 7.62 (m, 5H, Ar-H), 7.76 (m, 3H, Ar-H and 1H, pyridine H-5), 8.02 (s, 1H, NH), 8.40 (m, 2H, Ar-H) ppm. ¹³C NMR 19.8–20.3(4CH₃), 61.9 (C6'), 68.2 (C4'), 68.8 (C2'), 72.9 (C3'), 75.1 (C5'), 79.9 (C1'), 103.7 (C4), 115.2 (C3), 117.0 (CN), 127.8–158.2 (Ar-C), 160.8 (C2), 169.2–169.6 (4CO) ppm. m/z 620 (Found: C, 62.24; H, 5.30; N, 4.71. C₃₂H₃₂N₂SO₉ requires C, 61.93; H, 5.16; N, 4.51%).

9e. Yield 71%, m.p. 209°C. IR 2212 (CN), 1758 (CO) cm⁻¹. m/z 610 (Found: C, 59.29; H, 4.98; N, 4.78. C₃₀H₃₀N₂SO₁₀ requires C, 59.01; H, 4.91; N, 4.59%).

9f. Yield 72%, m.p. 181°C. IR 2214 (CN), 1750 (CO) cm⁻¹. ¹H NMR 1.68–2.12 (4s, 12H, 4CH₃CO), 4.20 (m, 2H, 2H-6' and 1H, pyridine H-4), 4.54 (m, 1H, H-5'), 5.28 (t, 1H, H-4'), 5.42 (t, 1H, H-3'), 5.76 (t, 1H, H-2'), 6.24 (d, $J_{1'-2'}$ 10.39 Hz, 1H, H-1'), 7.38 (d, 1H, thiophene H-4), 7.75 (m, 3H, Ar-H and 1H, pyridine H-5), 7.96 (d, 1H, thiophene H-3), 8.00 (d, 1H, thiophene H-5), 8.05(s, 1H, NH), 8.42 (d, 2H, Ar-H) ppm. ¹³C NMR 19.9–20.4 (4CH₃), 61.9 (C6'), 66.3 (C4'), 67.9 (C2'), 70.9

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Dihydropyridine Thioglycosides

2251

(C3'), 74.4 (C5'), 80.5 (C1'), 101.4 (C4), 114.2 (C3), 116.6 (CN), 127.8–157.3 (Ar-C), 160.1 (C2), 169.3–169.9 (4CO) ppm. m/z 626 (Found: C, 57.81; H, 4.88; N, 4.70. $C_{30}H_{30}N_2S_2O_9$ requires C, 57.50; H, 4.79; N, 4.47%).

3-Cyano-2-(β-D-glycopyranosylthio)-1,4dihydropyridines (10a-f)

General procedure for nucleoside deacylation. Dry ammonia gas was passed into a solution of protected glycosides 9 (0.5 g) in 20 mL of dry methanol at 0°C for 0.5 h. The reaction mixture was stirred until completion as shown by TLC (10–12 h), using chloroform:Methanol 9:1 (Rf 0.62–0.66 region). The resulting mixture was then concentrated under reduced pressure to afford a solid residue that was crystallized from methanol–ether at 0°C to furnish colorless crystals.

10a. Yield 81%, m.p. 173°C. IR 3662–3188 (OH), 2206 (CN) cm⁻¹. ¹H NMR 3.18–3.89 (m, 6H, 2H-6', H-5', H-4', H-3', H-2' and 1H, pyridine H-4), 4.42 (d, 2H, 2'-OH and 3'-OH), 4.98 (d, 1H, 4'-OH), 5.20 (d, 1H, 6'-OH), 5.84 (d, $J_{1'2'}$ 10.22 Hz, 1H, H-1'), 7.58 (m, 5H, Ar-H), 7.80 (m, 3H, Ar-H and 1H, pyridine H-5), 7.91 (s, 1H, NH), 8.28 (m, 2H, Ar-H) ppm. ¹³C NMR 60.6 (C6'), 69.4 (C4'), 73.3 (C2'), 77.7 (C3'), 81.5 (C5'), 83.3 (C1'), 101.8 (C4), 103.3 (C3), 115.5 (CN), 125.4–158.0 (Ar-C), 161.5 (C2) ppm. m/z 452 (Found: C, 63.92; H, 5.44; N, 6.31. C₂₄H₂₄N₂SO₅ requires C, 63.71; H, 5.30; N, 6.19%).

10b. Yield 82%, m.p. 208°C. IR 3680–3220 (OH), 2210 (CN) cm⁻¹. m/z 442 (Found: C, 59.89; H, 5.12; N, 6.50. C₂₂H₂₂N₂SO₆ requires C, 59.72; H, 4.97; N, 6.33%).

10c. Yield 83%, m.p. 230°C. IR 3680–3190 (OH), 2211 (CN) cm⁻¹. ¹H NMR 3.28–3.86 (m, 6H, 2H-6', H-5', H-4', H-3', H-2' and 1H, pyridine H-4), 4.48 (s, 1H, 2'-OH), 5.12 (s, 1H, 3'-OH), 5.24 (s, 1H, 4'-OH), 5.58 (s, 1H, 6'-OH), 5.74 (d, $J_{1'2'}$ 10.39 Hz, 1H, H-1'), 7.34 (m, 1H, thiophene H-4), 7.74 (m, 3H, Ar-H and 1H, pyridine H-5), 7.96 (m, 2H, thiophene H-3, H-4 and 1H, NH), 8.26 (m, 2H, Ar-H) ppm. ¹³C NMR 60.7 (C6'), 69.7 (C4'), 71.7 (C2'), 78.5 (C3'), 81.0 (C5'), 83.9 (C1'), 102.0 (C4), 114.8 (C3), 116.1 (CN), 127.6–158.1 (Ar-C), 162.4 (C2) ppm. m/z 458 (Found: C, 57.95; H, 4.88; N, 6.34. C₂₂H₂₂N₂S₂O₅ requires C, 57.64; H, 4.80; N, 6.11%).

10d. Yield 80%, m.p. 206°C. IR 3730–3240 (OH), 2213 (CN) cm⁻¹. ¹H NMR 3.20–3.96 (m, 6H, 2H-6', H-5', H-4', H-3', H-2' and 1H, pyridine H-4), 4.64 (d, 2H, 2'-OH and 3'-OH), 5.18 (s, 1H, 4'-OH), 5.42 (s, 1H, 6'-OH), 5.76 (d, $J_{1'-2'}$ 10.19 Hz, 1H, H-1'), 7.58 (m, 5H,

 \mathbb{A}

2252

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Attia and Elgemeie

Ar-H), 7.78 (m, 3H, Ar-H and 1H, pyridine H-5), 7.96 (s, 1H, NH), 8.35 (d, 2H, Ar-H) ppm. ¹³C NMR 60.5 (C6'), 68.5 (C4'), 69.9 (C2'), 75.0 (C3'), 78.9 (C5'), 84.4 (C1'), 103.3 (C4), 115.6 (C3), 116.4 (CN), 127.4–152.2 (Ar-C), 161.7 (C2) ppm. m/z 452 (Found: C, 63.93; H, 5.48; N, 6.40. C₂₄H₂₄N₂SO₅ requires C, 63.71; H, 5.30; N, 6.19%).

10e. Yield 80%, m.p. 200°C. IR 3690–3230 (OH), 2212 (CN) cm⁻¹. m/z 442 (Found: C, 60.06; H, 5.12; N, 6.49. C₂₂H₂₂N₂SO₆ requires C, 59.72; H, 4.97; N, 6.33%).

10f. Yield 83%, m.p. 240°C. IR 3690–3290 (OH), 2210 (CN) cm⁻¹. ¹H NMR 3.38–3.95 (m, 6H, 2H-6', H-5', H-4', H-3', H-2' and 1H, pyridine H-4), 4.60 (d, 1H, 2'-OH), 4.72 (t, 1H, 3'-OH), 5.20 (d, 1H, 4'-OH), 5.42 (d, 1H, 6'-OH), 5.76 (d, $J_{1',2'}$ 10.18 Hz, 1H, H-1'), 7.34 (t, 1H, thiophene H-4), 7.73 (m, 3H, Ar-H and 1H, pyridine H-5), 7.92 (m, 2H, thiophene H-3, H-5 and 1H, NH), 8.28 (d, 2H, Ar-H) ppm. ¹³C NMR 60.5 (C6'), 68.5 (C4'), 68.9 (C2'), 74.9 (C3'), 79.9 (C5'), 83.8 (C1'), 100.8 (C4), 114.8 (C3), 115.9 (CN), 127.6–152.2 (Ar-C), 162.6 (C2) ppm. *m*/*z* 458 (Found: C, 57.90; H, 5.02; N, 6.25. C₂₂H₂₂N₂S₂O₅ requires C, 57.64; H, 4.80; N, 6.11%).

3-Cyano-2-(2',3',4',6'-tetra-*O*-acetyl-β-Dglycopyranosylthio)-pyridines (8a–f)

General coupling procedures. Method A. The piperidinium salt of dihydropyridinethiones 4 (0.01 mol) was dissolved in dry acetone (5 mL) and a solution of 2,3,4,6-tetra-*O*-acetyl- α -D-gluco- or galactopyranosyl bromide (0.11 mol) in dry acetone (20 mL) was then added at 30°C. The reaction mixture was stirred until the reaction was judged complete by TLC, using chloroform:ether 9:1 v/v (Rf 0.70–0.72 region), then evaporated under reduced pressure and the residue was crystallized from ethanol to give the yellow products **10a–f**.

Method B. 3-Cyanopyridine-2(1H)-thiones 12 (0.01 mol) were refluxed by stirring under anhydrous condition for 48 h with hexamethyldisilazane 60 mL and $(NH_4)_2SO_4$ (0.02 g). The clear solution obtained was cooled and the solvent was removed in vacuo. The resulting trimethylsilylated pyridines 14 were dissolved in anhydrous acetonitrile (30 mL), and a solution of β -D-glycopyranose pentaacetate 15 (0.011 mol) in acetonitrile (10 mL) was then added with stirring. The mixture was cooled to 0°C and a solution of SnCl₄ (1.6 mL) in acetonitrile (5 mL) was added dropwise and the mixture was stirred until the reaction was judged complete by TLC (4–6 h), then poured into saturated NaHCO₃ solution, and extracted with CHCl₃. The

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Dihydropyridine Thioglycosides

organic layer was dried over MgSO₄, filtered and concentrated to give the crude glycosides that were purified by recrystallization from ethanol.

Method C. 3-Cyano-1,4-dihydropyridine-2-thioglycosides 9 (0.01 mol) were refluxed in ethanol (30 mL) with stirring under anhydrous condition for 3 min The resulting products were collected by filtration and recrystallized from ethanol.

10a. Yield 70, m.p. 202°C. IR 2216 (CN), 1748 (CO) cm⁻¹. ¹H NMR 1.61–2.06 (4s, 12H, 4CH₃CO), 4.06 (d, 2H, 2H-6'), 4.42 (m, 1H, H-5'), 5.03 (t, 1H, H-4'), 5.31(t, 1H, H-3'), 5.80 (t, 1H, H-2'), 6.22 (d, $J_{1'-2'}$ 10.56 Hz, 1H, H-1'), 7.61 (m, 5H, Ar-H), 7.78 (m, 3H, Ar-H), 7.90 (s, 1H, pyridine H-5), 8.44 (m, 2H, Ar-H) ppm. ¹³C NMR 19.4–22.6 (4CH₃), 61.3 (C6'), 66.9 (C4'), 69.3 (C2'), 72.6 (C3'), 74.9 (C5'), 80.1 (C1'), 105.8 (C3), 115.5 (CN), 122.4–154.6 (Ar-C), 161.2 (C2), 168.3–169.4 (4CO) ppm. m/z 618 (Found: C, 62.28; H, 5.09; N, 4.61. C₃₂H₃₀N₂SO₉ requires C, 62.13; H, 4.85; N, 4.53%).

10b. Yield 68%, m.p. 212°C. IR 2215 (CN), 1746 (CO) cm⁻¹. m/z 608 (Found: C, 59.45; H, 4.64; N, 4.82. C₃₀H₂₈N₂SO₁₀ requires C, 59.21; H, 4.60; N, 4.60%).

10c. Yield 69%, m.p. 219°C. IR 2210 (CN), 1754 (CO) cm⁻¹. ¹H NMR 1.72–2.08 (4s, 12H, 4CH₃CO), 4.16 (m, 2H, 2H-6' and 1H, H-5'), 4.80 (t, 1H, H-4'), 5.12 (t,1H, H-3'), 5.78 (t, 1H, H-2'), 6.28 (d, $J_{1'-2'}$ 10.32 Hz, 1H, H-1'), 6.98 (dd, 1H, thiophene H-4), 7.46 (m, 3H, Ar-H), 7.81 (m, 1H, thiophene H-3), 7.96 (m, 1H, thiophene H-5 and 1H, pyridine H-5), 8.38 (m, 2H, Ar-H) ppm. m/z 624 (Found: C, 57.90; H, 4.62; N, 4.68. C₃₀H₂₈N₂S₂O₉ requires C, 57.69; H, 4.48; N, 4.48%).

10d. Yield 71%, m.p. 161°C. IR 2214 (CN), 1748 (CO) cm⁻¹. ¹H NMR 1.58–2.12(4s, 12H, 4CH₃CO), 4.08 (m, 2H, 2H-6'), 4.58 (t, 1H, H-5'), 5.26 (t, 1H, H-4'), 5.42 (d, 1H, H-3'), 5.68 (dd, 1H, H-2'), 6.25 (d, $J_{1'-2'}$ 10.62 Hz, 1H, H-1'), 7.58 (m, 5H, Ar-H), 7.78 (m, 3H, Ar-H), 7.92 (s, 1H, pyridine H-5), 8.40 (m, 2H, Ar-H) ppm. *m*/*z* 618 (Found: C, 62.21; H, 5.14; N, 4.70. C₃₂H₃₀N₂SO₉ requires C, 62.13; H, 4.85; N, 4.53%).

10e. Yield 68%, m.p. 213°C. IR 2218 (CN), 1750 (CO) cm⁻¹. ¹H NMR 1.68–2.05 (4s, 12H, 4CH₃CO), 4.08 (m, 2H, 2H-6'), 4.26 (m, 1H, H-5'), 4.92 (t, 1H, H-4'), 5.14 (t, 1H, H-3'), 5.68 (t, 1H, H-2'), 6.18 (d, $J_{1'-2'}$ 9.98 Hz, 1H, H-1'), 6.88 (d, 1H, furan H-4), 7.26 (m, 3H, Ar-H), 7.62 (d, 1H, furan H-3), 8.02 (m, 1H, furan H-5 and 1H, pyridine H-5), 8.30 (d, 2H, Ar-H) ppm. m/z 608 (Found: C, 59.34; H, 4.78; N, 4.84. C₃₀H₂₈N₂SO₁₀ requires C, 59.21; H, 4.60; N, 4.60%).

10f. Yield 70%, m.p. 198°C. IR 2218 (CN), 1750 (CO) cm⁻¹. m/z 624 (Found: C, 57.88; H, 4.56; N, 4.68. C₃₀H₂₈N₂S₂O₉ requires C, 57.69; H, 4.48; N, 4.48%).

2253

YY

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2254

Attia and Elgemeie

3-Cyano-**2-**(β-D-glycopyransosylthio)pyridines (16a–f)

General procedure. Dry ammonia gas was passed into a solution of protected glycosdies **8** (0.5 g) in 20 mL of dry methanol at 0°C for 0.5 h. The reaction mixture was stirred until completion as shown by TLC (8–12 h), using chloroform:methanol 9:1, v/v (Rf 0.66–0.68 region). The resulting mixture was then concentrated under reduced pressure to afford a solid residue that was crystallized from methanol to furnish colorless crystals.

16a. Yield 87%, m.p. 220°C. IR 3600–3180 (OH), 2215 (CN) cm⁻¹. m/z 450 (Found: C, 64.24; H, 4.98; N, 6.40. C₂₄H₂₂N₂SO₅ requires C, 64.00; H, 4.88; N, 6.22%).

16b. Yield 85%, m.p. 238°C. IR 3600–3220 (OH), 2215 (CN) cm⁻¹. ¹H NMR 3.28–3.84 (m, 6H, 2H-6', H-5', H-4', H-3' and H-2'), 4.42 (t, 1H, 2'-OH), 5.12 (d, 2H, 3'-OH and 4'-OH), 5.58 (d, 1H, 6'-OH), 5.72 (d, $J_{1'-2'}$ 10.12 Hz, 1H, H-1'), 6.80 (m, 1H, furan H-4), 7.58 (m, 3H, Ar-H), 7.75 (d, 1H, furan H-3), 8.00 (m, 2H, furan H-5 and pyridine H-5), 8.28 (m, 2H, Ar-H) ppm. m/z 440 (Found: C, 60.12; H, 4.62; N, 6.60. C₂₂H₂₀N₂SO₆ requires C, 60.00; H, 4.54; N, 6.36%).

16c. Yield 84%, m.p. 248°C. IR 3660–3200 (OH), 2216 (CN) cm⁻¹. ¹H NMR 3.22–3.74 (m, 6H, 2H-6', H-5', H-4', H-3' and H-2'), 4.62 (m, 2H, 2'-OH and 3'-OH), 4.96 (d, 1H, 4'-OH), 5.22 (d, 1H, 6'-OH), 5.82 (d, $J_{1'-2'}$ 10.08 Hz, 1H, H-1'), 6.92 (m, 1H, thiophene H-4), 7.16 (m, 1H, thiophene H-3), 7.50 (m, 3H, Ar-H), 7.92 (m, 2H, thiophene H-5 and pyridine H-5), 8.30 (m, 2H, Ar-H) ppm. ¹³C NMR 62.2 (C6'), 67.8 (C4'), 69.8 (C2'), 73.6 (C3'), 75.0 (C5'), 83.1 (C1'), 108.5 (C3), 114.7 (CN), 122.2–156.4 (Ar-C), 161.6 (C2) ppm. *m/z* 456; (Found: C, 58.12; H, 4.50; N, 6.38. C₂₂H₂₀N₂S₂O₅ requires C, 57.89; H, 4.38; N, 6.14%).

16d. Yield 89%, m.p. 230°C. IR 3680–3200 (OH), 2213 (CN) cm⁻¹. ¹H NMR 3.24–3.68 (m, 6H, 2H-6', H-5', H-4', H-3' and H-2'), 4.61 (t, 1H, 2'-OH), 5.15 (d, 1H, 3'-OH), 5.28 (t, 1H, 4'-OH), 5.59 (t, 1H, 6'-OH), 5.68 (d, $J_{1'-2'}$ 9.38 Hz, 1H, H-1'), 7.56 (m, 5H, Ar-H), 7.76 (m, 3H, Ar-H), 7.90 (s, 1H, pyridine H-5), 8.28 (m, 2H, Ar-H) ppm. ¹H NMR 3.24–3.81 (m, 6H, 2H-6', H-5', H-4', H-3' and H-2'), 4.60 (d, 1H, 2'-OH), 4.69 (t, 1H, 3'-OH), 5.04 (d, 1H, 4'-OH), 5.43 (d, 1H, 6'-OH), 5.68 (d, $J_{1'-2'}$ 10.06 Hz, 1H, H-1'), 7.59 (m, 5H, Ar-H), 7.86 (m, 3H, Ar-H and 1H, pyridine H-5), 8.29 (m, 2H, Ar-H) ppm. m/z 450 (Found: C, 64.18; H, 5.02; N, 6.48. C₂₄H₂₂N₂SO₅ requires C, 64.00; H, 4.88; N, 6.22%).

16e. Yield 85%, m.p. 233°C. IR 3650–3190 (OH), 2218 (CN) cm⁻¹. m/z 440 (Found: C, 60.29; H, 4.66; N, 6.60. C₂₂H₂₀N₂SO₆ requires C, 60.00; H, 4.54; N, 6.36%).

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Dihydropyridine Thioglycosides

2255

16f. Yield 87%, m.p. 226°C. IR 3680–3220 (OH), 2212 (CN) cm⁻¹. m/z 456 (Found: C, 58.15; H, 4.44; N, 6.30. C₂₂H₂₀N₂S₂O₅ requires C, 57.89; H, 4.38; N, 6.14%).

REFERENCES

- 1. Elgemeie, G.E.H.; Mansour, O.A.; Metwally, N.H. Synthesis and anti-HIV activity of different novel nonclassical nucleosides. Nucleosides & Nucleotides. **1999**, *18*, 113–123.
- Attia, A.M.; Elgemeie. G.E.H. Synthesis of some N-hexopyranosyl-2-pyridones and -2-pyridinethiones. Carbohydr. Res. 1955, 268, 295–300.
- Elgemeie, G.E.H.; Attia, A.M.; Shehada. L.A. Synthesis of some novel condensed pyridine-2(1*H*)-thiones and related glycosides. Tetrahedron 1997, 53, 17441–17448.
- 4. Elgemeie, G.E.H.; Attia, A.M.; Hussain, B.A. A synthetic strategy to a new class of cycloalkane ring-fused pyridine nucleosides as potential anti-HIV agents. Nucleosides & Nucleotides **1998**, *17*, 855–868.
- Scala, S.; Akhmed, N.; Rao, U.S.; Paull, K.; Lan, L.; Dickstein, B.; Lee, J.; Elgemeie, G.E.H.; Stein, W.D.; Bates, S.E. P-Glycoprotein substrates and antagonists cluster into two distinct groups. Mol. Pharmacol. 1977, *51*, 1024–1033.
- Still, I.W.; Plavac, N.; Mackinnon, T.M.; Chauhan, M.S. Carbon-13 nuclear magnetic resonance spectra of organic sulfur compounds. Comparison of chemical shifts for carbonyl and thiocarbonyl compounds in the pyron, thiopyrone, and pyridone series. Can. J. Chem. **1976**, *54*, 280–289.
- Stefaniak, L. Nitrogen-14 and carbon-13 NMR of tautomeric systems of mercapto- and amino-pyridines. Org. Magn. Reson. 1979, 12, 379–382.

Received in the UK July 2, 2002

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.