Tropanediol Acetals

differ from those in circular muscles of the eye.

The geometry of the amino alcohol portion of cholinergic antagonists based on tropane and piperidine has been shown to influence the antimuscarinic potencies of these esters-at least at sites in the guinea pig ileum-but the order of the effect is smaller than that caused by variations in the acyloxy moiety, and much smaller than that of absolute configuration in the case of amino alcohols esterified with chiral alcohols (e.g., l-tropyl α -methyltropate is 50 times more active than the dextro isomer on rat gut).¹⁸ In sharp contrast, the potencies of cholinergic agonists are greatly dependent upon the configuration and structure of the amino alcohol portion of the molecule as witnessed by the relative activities of (R)- and (S)- β -methylacetylcholine¹⁹ and cisand trans-2-acetoxycyclopropyltrimethylammonium iodide.²⁰ Hence the results presented here support the view that cholinergic agonists and their antagonists occupy different receptors^{17,21} although evidence of competitive interactions between agonist-antagonist pairs points to their sharing a common anionic site.

Acknowledgments. We thank the Defence Research Board of Canada for financial support and Dr. M. M. A. Hassan for assistance in experiments on the reduction of 1,2,5-trimethyl-4-piperidone, a ketone kindly supplied by Dr. N. S. Prostakov. We also thank Riker Pharmaceutical Co. Ltd., and Poulenc Ltd., for gifts of orphenadrine hydrochloride and ethopropazine hydrochloride, respectively.

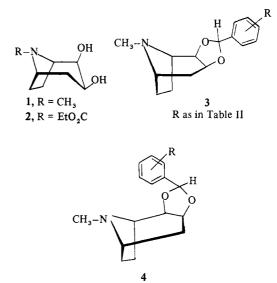
References

(1) C. K. Kieberman and L. Limpach, Ber., 25, 927 (1897).

(2) L. Gyermek, Nature (London), 171, 788 (1953); Acta Physiol.

Acad. Sci. Hung., 4, 341 (1953).

- (3) R. B. Burtner and J. W. Cusic, J. Amer. Chem. Soc., 65, 262 (1943).
- (4) J. H. Biel, H. L. Friedman, H. A. Leiser, and E. P. Sprengler, *ibid.*, 74, 1485 (1952); J. H. Biel, E. P. Sprengler, H. A. Leiser, J. Horner, A. Drukker, and H. L. Friedman, *ibid.*, 77, 2250 (1955).
- (5) L. G. Abood, A. Ostfield, and J. H. Biel, Arch. Int. Pharmacodyn., 120, 186 (1959).
- (6) A. F. Casy and W. K. Jeffery, Can. J. Chem., in press.
- (7) J. G. Cannon, J. Org. Chem., 25, 959 (1960).
- (8) O. Kovacs, G. Fodor, and I. Weisz, Helv. Chim. Acta, 37, 892 (1954).
- (9) S. B. Coan, B. Jaffe, and D. Papa, J. Amer. Chem. Soc., 78, 3701 (1956).
- (10) J. H. Biel, L. G. Abood, W. K. Hoya, H. A. Leiser, P. A. Nuhfer, and E. P. Kluchesky, *J. Org. Chem.*, 26, 4096 (1961).
- (11) M. A. Hassan and A. F. Casy, Org. Magn. Res., 2, 197 (1970), and references cited therein.
- (12) H. O. Schild, Brit. J. Pharmacol., 2, 189 (1947).
- (13) B. Karlen, Acta Pharm. Suecica, 7, 169 (1970).
- (14) R. W. Brimblecombe and D. M. Green, *Int. J. Neuropharmacol.* 7, 15 (1968).
- (15) W. R. Buckett and C. C. Haining, Brit. J. Pharmacol., 24, 138 (1965).
- (16) R. D. Stolow, D. I. Lewis, and P. A. D'Angelo, *Tetrahedron*, 26, 5831 (1970).
- (17) B. W. J. Ellenbrock, R. J. F. Nivard, J. M. Van Rossum, and E. J. Ariëns, J. Pharm. Pharmacol., 17, 393 (1965).
- (18) G. Maffi and G. Bianchi, *Nature (London)*, 185, 844 (1960).
- (19) A. H. Beckett, N. J. Harper, J. W. Clitherow, and E. Lesser, *ibid.*, 189, 671 (1961).
- (20) C. Y. Chiou, J. P. Long, J. G. Cannon, and P. D. Armstrong, J. Pharmacol. Exp. Ther., 166, 243 (1969).
- (21) R. W. Brimblecombe, D. M. Green, and T. D. Inch, J. Pharm. Pharmacol., 22, 953 (1970).


Compounds Affecting the Central Nervous System. 2.¹ Aromatic Acetals of Tropanediols

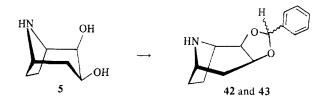
Sol. J. Daum,* Anthony J. Gambino, Mario D. Aceto, and Robert L. Clarke Sterling-Winthrop Research Institute, Rensselaer, New York 12144. Received October 7, 1971

A series of acetals prepared from tropane- 2β , 3β -diol and variously substituted benzaldehydes was found to produce CNS stimulation and to reverse reserpine-induced eyelid ptosis. These acetals formed as pairs which were isomeric about the benzylic C. Configurational assignments were made on the basis of their nmr spectra. The acetals of ecgoninol and pseudoecgoninol were included in this study.

It is always a considerable pleasure to find that a chemical intermediate or a simple derivative of a compound under study has interesting biological activity. $1\alpha H, 5\alpha H$ -Tropane- $2\beta, 3\beta$ -diol (1) was reported recently¹ as an intermediate in the preparation of a "reverse ester" of cocaine. Benzylidene acetals (3 and 4) of this diol, the subject of this paper, are central nervous system stimulants. They were prepared by the reaction of a variety of benzaldehydes with diol 2 followed by reduction of the N-ethoxycarbonyl group to Me.

Table I lists the 8-ethoxycarbonyl acetals which were prepared. In each case acetal formation gave essentially equal quantities of 2 products which were isomeric about the benzylic C. The configuration of the Ph group is designated β when it lies on the same side of the molecule as the N and α when the converse is true. The basis for configurational assignment is discussed later. Generally, the isomers with the aromatic ring in the α configuration crystallized spontaneously from the reaction mixtures. Purification of the β isomers was then accomplished by plate or column chromatography.

R as in Table II

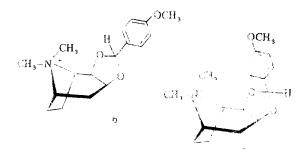

Table	I
-------	---

Compd	x	Isomer α- or β- phenyl	Nmr, ^a δ ppm, O ₂ CH	R _f b	Formula	Analysis	Solvent	Mp, C
			C ₂ H	I,OCON	C - H	X		
8 <i>c</i>	н	α	6.06	0.78d	$C_{17}H_{21}NO_{4}$	C, H, N	Cyclohexane	87–90 (prisms) 85–87 (needles)
9 <i>c</i> ,e	Н	β	5.88	0.73d	$C_{17}H_{21}NO_{4}$	C, H, N		
0 <i>c</i>	p-OCH ₃	α	6.01	0.65^{f}	C.H.NO.	C, H, N	Et ₂ O	97-98
10	p-OCH,	β	5.84	0.54f	C, H, NO	C, H, N	Et O	88-89
28	p-Cl	α	6.02	0.63f	$C_{18}^{18}H_{23}^{23}NO_{5}^{5}$ $C_{17}^{17}H_{20}NO_{4}Cl$	C. H. N	Et,O	101-102
3h	p-Cl	β	5.85	0.53f	C. H. NU CI		*	
4 <i>8</i>	p-F	α	6.02	0.48 <i>i</i>	C, H, NO F	C, H, F	Et.O	98-99
5h	<i>p</i> -F	β	5.84	0.581	C,7H ²⁰ NO ⁴ F C ₁₇ H ₂₀ NO ⁴ F			
6 ^j	$\frac{1}{p-NO_2}$	ά	6.09	0.54 <i>i</i>	C, H, N, O,	C, H, N	Et ₂ O	97-98
7 h	$p - NO_2$	β	5.91	0.45 ⁱ	C, H, N, O,		*	
8 <i>k</i>	p-OCF,	α	6.06	0.53f	C, H, NO, F, J	0 H C		
9 <i>k</i>	p-OCF	β	5.88	0.45^{f}	$C_{18}^{17}H_{20}^{20}NO_{5}F_{3}$ $C_{18}H_{20}NO_{5}F_{3}$	C, H, F		
.01	p-OAc	α	6.07	0.381	C ₁₉ H ₂₃ NO ₆	CHN	E4	90-94
11	p-OAc	β	5,89	0.31 <i>i</i>	$C_{19}H_{23}NO_{5}$	C, H, N	Et,O	90-94
2 c,m	p-OCH ₂ C ₆ H ₅	α	5.95	0.421	$ C_{19}^{18} H_{23}^{20} NO_{6}^{2} \\ C_{19}^{19} H_{23}^{20} NO_{6}^{2} \\ C_{24}^{19} H_{27}^{20} NO_{5}^{2} $	C, H, N	Et.O	113-115
3 <i>c,m,n</i>	p-OCH ₂ C ₆ H	β	5.77	0.37 <i>i</i>	$C_{24}H_{27}NO_{5}$			
40	m-OCH,C,H,	α		0.44 <i>f,p</i>	$C_{24}H_{27}NO_5$			
50	m-OCH ₂ C ₆ H ₅	β		0.41 <i>f</i> , <i>p</i>	C ₂₄ H ₂₇ NO ₅			

^aIn CDCl₃, (CH₃)₄Si, internal standard. ^bSilica gel tlc. ^cIsomers sepd on thick-layer plates. ^dSolvent system (Et₂O-*n*-C₅H₁₂-*i*-PrNH₂, 25:24: 1). ^eShort path distn (0.005-0.01 mm); n^{25} D 1.5350. ^fSolvent system (Et₂O-*n*-C₅H₁₂-*i*-PrNH₂, 47:50:3). ^gCrystallized as a single isomer from crude reaction mixt. ^hPure isomer was not isolated. ⁱSolvent system 100% Et₂O. ^jColumn chromatography (silica gel, Et₂O-*n*-C₅H₁₂-*i*-PrNH₃, 25:72:3). ^kDistd and characterized as a mixt 4:5; α : β isomers (short path distn; 165-173° (0.03-0.04 mm), n^{26} D 1.4907. ^lPrepd from p-acetoxybenzaldehyde;² crystd from Et₂O as a mixt (3:1; α : β Ph isomers). ^mSee Experimental Section for special prep. ⁿBest sample obtained contd 16% of α -Ph isomer. ^oCrude mixt reduced without characterization. ^pThe tlc spots were not assigned to a particular isomer in this case.

Compounds 22 and 23 of Table I are exceptional in that they were prepared from 20 and 21, respectively, through hydrolysis of the Ac groups followed by benzylation of the resulting phenols.

Table II lists the *N*-Me acetals prepared in this study. Most of these were formed from the corresponding *N*-ethoxycarbonyl analogs using LiAlH₄ or AlH₃³ as reducing agents. Production of the secondary amines 42 and 43 required initial hydrolysis of the urethane function of 2 to form diol 5 followed by acetal formation. Phenols 38–41 were formed from the corresponding benzyl ether urethanes


by LAH reduction followed by catalytic debenzylation.

Compounds 44 and 45 are C-2 homologs of the above series, being derived from ecgoninol and pseudoecgoninol, respectively. Compound 44 has been reported by Fodor and Kovács⁴ in the form of its benzenesulfonate salt. The acetai of pseudoecgoninol (45) failed to form under the conditions used by these workers.

Examination of the nmr spectra of the α and β aromatic acetals of Table I (nonbasic N) revealed that the benzylic H peaks of the isomeric pairs were well isolated from interference and appeared at characteristic positions which were 0.17-0.18 ppm apart.⁵ The upfield position of the benzylic H of the β -Ph isomer may be the result of a sterically induced ring distortion which moves that H further into the shielding cone of an adjacent 0.⁶ These benzylic H peaks were useful for determination of isomer ratios in mixtures of these isomers. When one isomer of such an α and β pair was converted to the corresponding N-Me analog, there was a significant downfield shift of the benzylic H (0.18 ppm average) whereas the other isomer showed a slight (0.07 ppm average) upfield shift upon similar transformation. A footnote summarizes the shifts observed.[†]

The major shift in the benzylic H accompanying this chemical transformation is associated with a major change in the electronic character of the β face of the molecule and thus the isomer associated with that shift (downfield) may be assigned the β -H and α -Ph configuration.

Confirmation for this configurational assignment is found in the nmr spectra of the methiodides of a pair of these isomeric amines. When the methoxyaromatic group is α and away from the 2 Me groups as in 6, these methyls appear close together at 3.62 and 3.71 ppm. But when this

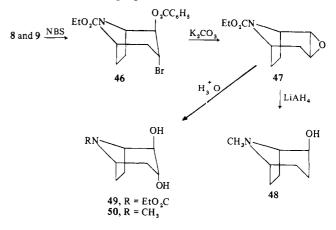
†Shift in benzylic H going from EtO_2CN to CH_3N ($\Delta\delta$, ppm)

Ring substituent	a-Phenvi	8-Phenyl		
н	+0.17	-0.10		
p-OCH ₂	+1.23			
p-C1	+0.14	0.10		
p-F	+0.18	-0.06		
p-NO,	+0.18	-0.01		
p-OCÉ,	÷0.10			

Table II

		Isomer α - or β -		nr, pm						
Compd	x	phenyl	O ₂ CH	CH3	R _f ^a	Formula	Analysis	Solvent	Mp or bp (mm), °C	Refractive index
					CI		C H	ŗ_X		
26 ^b 27 ^{b,c} 28 ^b 29 ^b	Н Н <i>p</i> -ОСН ₃ <i>p</i> -ОСН ₃	α β α β	6.23 5.78 6.24 5.73	2.32e 2.39e 2.30e 2.40e	0.70 ^d 0.73 ^d 0.41 ^f 0.44 ^f	C ₁₅ H ₁₉ NO ₂ C ₁₅ H ₁₉ NO ₂ C ₁₆ H ₂₁ NO ₃ C ₁₆ H ₂₁ NO ₃	C, H, N C, H, N C, H, N C, H, N	Et ₂ O Et ₂ O- pentane	122-130 (0.01-0.003 mm) 114-128 (0.002-0.004 mm) 76-77 47-48	n ²⁵ D 1.5466 n ²⁷ D 1.5474
30 <i>8</i> 31 <i>8,h</i> 32 ⁱ 33 ⁱ	p-C1 p-C1 p-F p-F	α β α β	6.16 5.75 6.20 5.78	2.36 ^e 2.40 ^e 2.34 ^e 2.40 ^e	0.51 <i>f</i> 0.59 <i>f</i> 0.36 <i>f,j</i> 0.45 <i>f,j</i>	C ₁₅ H ₁₈ ClNO ₂ C ₁₅ H ₁₈ ClNO ₂ C ₁₅ H ₁₈ FNO ₂ C ₁₅ H ₁₈ FNO ₂	C, H, C1 C, H, C1 C, H, F	Hexane	63–64 (0.02–0.04 mm) 128–141 (0.01 mm)	n ²⁵ D 1.5535 n ²⁵ D 1.5304
34 k 35 l 36 m 37 l	$p \cdot NO_2$ $p \cdot NO_2$ $p \cdot OCF_3$ $p \cdot OCF_3$	ρ α β α β	6.27 5.90 6.25 5.84	2.36 ^e 2.40 ^e 2.39 ^e 2.44 ^e	0.42 <i>f</i> 0.52 <i>f</i>	$C_{15}H_{18}H_{2}O_{4}$ $C_{15}H_{18}N_{2}O_{4}$ $C_{15}H_{18}N_{2}O_{4}$ $C_{16}H_{18}F_{3}NO_{3}$ $C_{16}H_{18}F_{3}NO_{3}$	C, H, N C, H, F	Et₂O Et₂O	102-103 117.5-119	
38 <i>n</i> 39 <i>q</i> 40 ^r 41 ^r	р-ОН р-ОН <i>m</i> -ОН <i>m</i> -ОН	ρ α α β	5.86 5.62 5.92 5.66	2.200 2.270 2.250 2.290	0.49 <i>P</i> 0.53 <i>P</i> 0.45 <i>P</i> , <i>j</i> 0.49 <i>P</i> , <i>j</i>	$ \begin{array}{c} C_{15} - 1_{15} & 3_{10} & 0_{3} \\ C_{15} H_{19} & NO_{3} \end{array} \right\} $	C, H, N C, H, N C, H, N	Et₂O Et₂O MeCN	218-220 174.5-175.6, 214-216 212-225	
						HN C	o c H	\rangle		
42 <i>s</i> 43 <i>s</i>		$egin{array}{c} lpha \ eta \end{array}$	6.13e 5.87e		0.31 <i>f,i</i> 0.38 <i>f,i</i>	$_{C_{14}H_{17}NO_{2}}^{C_{14}H_{17}NO_{2}}\}$	C, H, N		122-150 (0.025-0.035 mm)	n ²⁵ D 1.5592
					CH	3N CH2-		>		
44 <i>t</i> 45 <i>t</i>		2β-Config 2α-Config				$\substack{\text{C}_{16}\text{H}_{21}\text{NO}_{2}\\\text{C}_{16}\text{H}_{21}\text{NO}_{2}}$	C, H, N C, H, N	Hexane Cyclo- hexane	82.5-85 57-61	$[\alpha]^{25}D + 6^{\circ \nu}$ $[\alpha]^{25}D - 33^{\circ \nu}$

^aSilica gel tlc. ^bObtained from LAH redn of single isomer. ^cContains 10% of α -Ph isomer. ^dSolvent system Et₂O-*i*-PrNH₂, 49:1. ^eCDCl₃-internal standard (CH₃)₄Si. ^fSolvent system, Et₂O-*n*-C₈H₁₂-*i*-PrNH₂, 47:50:3. ^gObtained from AlH₃ redn of pure isomer (10-15 min). ^hObtained from thick-layer chromatography on silica gel. ⁱObtained from AlH₃ redn of mixt of isomers (20 min). Isomers were not sepd. ^jIsomers not assigned to R_f values. ^kObtained from AlH₃ redn of single isomer (45 min). ^lObtained from AlH₃ redn of mixt, β isomer not isolated. ^mObtained from AlH₃ redn of mixt. α -Ph isomer crystd from reaction mixt. ⁿObtained from LAH redn of 22 followed by hydrogenolysis with Pd/C. ^ODMSO-d₆, internal standard (CH₃)₄Si. ^pSolvent system THF-*i*-PrNH₂, 97:3. ^qObtained from LAH redn of 23 followed by hydrogenolysis with Pd/C. ^oDtained by LAH redn on mixt of 24 and 25 followed by hydrogenolysis with Pd/C. Did not separate mixt. ^sDistd and characterized as a mixt (see Experimental Section). ^fSee Experimental Section. ^wNo evidence of isomeric mixt at benzyl C. ^v1% in CHCl₃.


aromatic group is β as in 7, it is in a position to shield one of the Me groups so that the methyls appear widely separated at 3.82 and 3.38 ppm.

It is curious that the nmr spectra of the ecgoninol acetals 44 and 45 show single benzylic H peaks. These products may have the thermodynamically more stable equatorial phenyl configurations.

In all the acetals reported here the C-1 and C-5 hydrogens were visible as separated peaks. For example, in the α -Ph isomer 26 these peaks appeared at 3.50 and 3.20 ppm with specific assignment uncertain. In the β -Ph isomer 27 they appeared at 3.58 and 3.20 ppm.

The R_f values of the α isomers in the urethanes of Table I were uniformly greater than those of the β isomers with the exception of the *p*-F isomers 14 and 15 (spots for 24 and 25 were not assigned). However, in the *N*-Me series of Table II the reverse was true in all of the 5 pairs whose tlc spots were identified.

When a mixture of the nonbasic, isomeric acetals 8 and 9 was treated with NBS in the presence of $BaCO_3$, acetal cleavage occurred with formation of a *single* bromoester (81%). Its nmr spectrum supported the positions and configurations of substituents as shown in 46. This is consistent with the observation by Hanessian and Plessas⁷ that "internal O-benzylidene acetals such as those joining vicinal cis-OH groups of a cyclic sugar derivative give isomeric transbromobenzoates." In the present case steric factors direct formation of the single product.

Aqueous alcoholic K_2CO_3 transformed this bromoester into $2\beta_3\beta$ -epoxide 47, the β configuration of which was confirmed by reduction (LAH) to tropan- 2β -ol⁸ (48). Hydrolysis of epoxide 47 gave the desired diaxial diol 49

Table III. Effect of Benzylidenedioxy Tropanes on Reserpine-Induced Ptosis and the Overt Behavior of Mice

	Dose, mg/kg	Prevent	ion test	Reversal test			
Compd	ip	MPS ^a	PVb	MPS ^a	PV b	Overt behavior in mice, ip ^e	
26	10	1		2.5	0.06	Locomotor stimulation, biting,	
	30	2.9	0.23	2.5	0.05d	squeaking, tapering off at 30 min	
	50	1.9	0.01^{d}	1.9	0.01d	at 30 and 50 mg/kg	
	Control ^c	3.3		3.4	0101	at bo and bo mg, ng	
27	30	3.3	0.72	2.5	0.10	Questionable mild locomotor	
21	50	2.9	0.33	2.3	0.08	stimulation at 30 min at 30 and	
	Control ^c	3.3	0.55	3.3	0.06		
28-29 mixt		5.5			0.00	50 mg/kg	
20-29 mixt	1			3.4	0.88	At 30 and 50 mg/kg, convulsions,	
	10			2.1	0.03d	tremors, biting, squeaking, hyper-	
	30	2.6	0.23	1.1	0.000 <i>d</i>	excitability. In combination with	
	50	2.6	0.23	1.0	0.002^{d}	reserpine, 3/8 dead at 0.5 hr on	
	Controlc	3.1		3.3		prevention test	
30	1			3.6	0.72	At 30 and 50 mg/kg, convulsions,	
	10			2.8	0.06	tremors, squeaking, and question-	
	30	3.0	0.72	2.4	0.02^{d}	able locomotor stimulation; 1/8	
	50	2.6	0.34	2.4	0.03 <i>d</i>	dead in 3 hr in combination with	
	Control ^c	3.1		3.4		reserpine in prevention and rever-	
32-33 mixt	30	2.0	0.70	2.0	0.10	sal tests	
32-35 mixt		3.0	0.79	3.0	0.19	Hypersensitive to touch at 30 and	
	50	3.0	0.64	2.9	0.19	50 mg/kg	
~ .	Control ^c	3.3		3.4			
34	30	3.1	0.96	2.9	0.27	At 30 and 50 mg/kg, locomotor	
	50	3.0	0.38	2.4	0.05d	stimulation, tremors, biting,	
	Control ^c	3.4		3.3		squeaking, for about 0.5 hr; mild stimulation at 3 and 5 hr; 1/8 dead in 0.5 hr in combination with reserpine on reversal test	
36	1			3.0	0.16	At 50 mg/kg, tremors. In combi-	
	10			2.9	0.10	nation with reservine (reversal	
	30	3.5	0.57	2.8	0.04 <i>d</i>	test), jumping, hyperexcitability,	
	50	3.3	1.00	2.8	0.04 <i>d</i>	locomotor effects	
	Control ^c	3.3	1.00	3.5	0.04	locomotor effects	
38	30	3.1	0.72	2.6	0.13	Mild In an atom thin at 20	
30	50					Mild locomotor stimulation at 30	
		3.1	0.72	2.1	0.006d	and 50 mg/kg	
	Controlc	3.3		3.4			
39	30	3.4	0.72	3.1	0.44	Mild locomotor stimulation at 30	
	50	3.3	0.72	2.9	0.19	and 50 mg/kg	
	Control c	3.3		3.4			
40-41 mixt	30	3.5	0.57	3.0	0.27	No stimulation	
	50	2.6	0.44	2.0	0.01^{d}		
	Control ^c	3.3		3.4			
42-43 mixt	1			3.1	0.79	Mild locomotor stimulation at 30	
	10			2.8	0.06	and 50 mg/kg	
	30	2.9	0.38	2.1	0.02đ	and 50 mg/kg	
	50	2.5	0.08	2.4	0.02^{d}		
			0.00		0.02-		
44	Control ^c	3.3	0.60	3.4	0.10		
44	0.5	3.1	0.50	2.9	0.19	Lethal at 50 mg/kg. 1/5 dead in	
	1	2.9	0.23	2.3	0.01d	0.5 hr at 30 mg/kg; clonic con-	
	10	2.3	0.02 <i>d</i>	1.9	0.01d	vulsions, tremors, biting, squeak-	
	30	1.6	0.01 d	1.4	0.002	ing	
	Control c	3.1		3.3			
45	0.5	3.4	0.32	3.0	0.32	Lethal at 10 mg/kg	
	1	3.4	0.79	2.9	0.32		

^aMean ptosis score. ^bProbability values (PV) were calcd on "2-tailed" probabilities. Values of 0.05 are considered significant. ^c1% gum tragacanth mucilage control. ^dDenotes significantly decreased ptosis score. ^eEffect of compd alone unless otherwise specified.

which, unfortunately, failed to form an acetal under the conditions used for the other acetals in this report. If diol 49 had assumed a boat configuration, the 2 OH groups would have been in close enough proximity for the reaction to occur. Reduction of diol 49 with LAH gave the known N-Me diol 50.⁹

Biological Results. The *N*-Me compounds described were evaluated by means of the reserpine-induced eyelid ptosis test in mice.¹⁰ Overt behavioral changes were also noted (see Table III). In the test for prevention of reserpine-induced ptosis, 44 was the most active (10 mg/kg) followed by 26 (50 mg/kg). None of the other compounds was significantly active. In the test for reversal of reserpine-induced ptosis, 44 was again the most active (1 mg/kg). Mixture 28-29 was active at 10 mg/kg followed by 26, 30, 36, and 42-43 which were active at 30 mg/kg. Compounds 34, 38, and 40-41

were active at 50 mg/kg. Antireserpine activity was accompanied by overt signs of stimulation such as locomotor activity, squeaking, and biting. Compound **45**, the C-2 epimer of **44**, was the most lethal of all the compounds tested.

Experimental Section ‡

Preparation of Benzal Acetals of Ethyl (\pm)-2 β ,3 β -Dihydroxy-1 α H,-5 α H-nortropane-8-carboxylate (2). A soln of 27.3 g (0.13 mole) of

‡All melting points are uncorrected. Nmr spectral measurements were made on Varian A-60 or HA-100 spectrophotometers using CDCl₃ as solvent unless otherwise indicated. $(CH_3)_4Si$ was used as the internal standard. Ir spectra were detd on a Model-21 Perkin-Elmer infrared spectrophotometer. Brinckmann Instruments silica gel grade PF₂₅₄ was used in 1-mm thickness for prep chromatog. Where analyses are indicated only by symbols of the elements, analytical results obtained for these elements were within ±0.4% of the theoretical values.

diol 2, 14.0 g (0.13 mole) of PhCHO, and 1.0 g of p-TsOH \cdot H₂O in 1.1 l. of C₆H₆ was heated under reflux for 18 hr with a Dean-Stark H₂O sep in the system. Solid NaHCO₃ was added followed by H₂O. The layers were sepd and the C₆H₆ was washed with satd NaCl and dried (Na₂SO₄). Evaporation of solvent afforded 41.6 g of a strawcolored liquid. Tlc showed 2 major spots having R_f 0.73 and 0.78 (silica gel, Et₂O-pentane-*i*-PrNH₂; 25:24:1). Preparative chromatography on 80 thick-layer plates (20 × 40 cm, 8 passes with Et₂Opentane-*i*-PrNH₂, 25:73:2) afforded 17.0 g (44%) of a less polar compd characterized as ethyl (±)-2 β , 3 β -benzylidenedioxy-1 α H, 5 α Hnortropane-8-carboxylate (α -Ph isomer) (8).

The more polar band eluted from the plates afforded 17.0 g (44%) of ethyl (\pm)-2 β ,3 β -benzylidenedioxy-1 α H,5 α H-nortropane-8-carboxylate (β -Ph isomer) (9). See Table I for further data.

Reduction of the N-Ethoxycarbonyl Group to N-Methyl. Method A. LiAlH₄. A soln of 24 g (0.079 mole) of a mixt of ethyl (\pm) -2 β ,3 β -benzylidenedioxy-1 α H,5 α H-nortropane-8-carboxylate α and β -Ph isomers in anhyd Et₂O was added dropwise to a suspension of 6 g (0.16 mole) of LAH in 1 l. of anhyd Et_2O with stirring at room temp. The reaction mixt was heated under reflux for 15 hr, cooled, and treated with 15 ml of H₂O followed by solid Na₂SO₄. The mixt was filtered and the solvent was removed by warming in vacuo. The residue (18.8 g) was distd through a short-path column at 125-140° (0.003 mm) to afford 16.2 g (83% yield) of a mixt of (\pm) -2 β ,3 β -benzylidenedioxy-1 α H,5 α H-tropane α - and β -Ph isomers (26 and 27), n^{25} D 1.5478 (See Table II). The analysis (silica gel, Et₂O-pentane-*i*-PrNH₂, 25:24:1) showed 2 close spots of almost equal intensity when charred with H₂SO₄. Nmr analysis indicated that this was a 3:2 mixt of α - and β -Ph isomers (ratio of peaks at 6.23 and 5.78 ppm). Anal. $(C_{15}H_{19}NO_2) C, H, N.$

Method B. AIH₃. A soln of AlH₃ was prepd by the method of Brown and Yoon³ using 1.74 g (0.046 mole) of LAH and 2.2 g of concd H₂SO₄ in 55 ml of THF. A mixt of ethyl (±)- 2β , 3β -(*p*-fluorobenzylidine)-1 α H, 5α H-nortropane-8-carboxylate α and β isomers (7.2 g, 0.022 mole) in 5.6 ml of THF was added to the AlH₃ soln with stirring at room temp. After 20 min, the reaction was quenched by the addn of 5 ml of a THF-H₂O mixt (1:1). More H₂O was added and the mixt was extd with Et₂O. The Et₂O was washed (satd NaCl), dried (Na₂SO₄), and evapd to afford 5.4 g of an amber oil. Shortpath distn afforded 4.7 g (80% yield) of a mixt of (±)- 2β , 3β -(*p*-fluorobenzylidenedioxy)-1 α H, 5α H-tropane α - and β -aryl isomers (32 and 33). See Table II.

(±)-2 β ,3 β -Benzylidenedioxy-1 α H,5 α H-nortropane, α - and β -Phenyl Isomer Mixture (42 and 43). A soln of 15 g (0.07 mole) of ethyl (±)-2 β ,3 β -dihydroxy-1 α H,5 α H-nortropane-8-carboxylate (2) in 250 ml of H₂O and 250 ml of concd HCl was heated on a steam bath for 5 hr. The reaction mixt was cooled and made alkaline with concd NaOH. The soln was concd by heating *in vacuo*. Extn of the residue after evapn that was extd with Et₂O to give 6.17 g (62% yield) of a solid, mp 159-161°, that was used directly without further characterization.

The solid was converted to an acetal by reaction with 30 ml of benzaldehyde under condns used in the preparation of O,O'-benzylideneecgoninol as described below. Short-path distillation of the crude product afforded 4.5 g (44% yield) of a mixt of 42 and 43 (see Table II for constants).

Mixture of Ethyl (±)-2 β ,3 β -(*p*-Benzyloxybenzylidenedioxy)-1 α H,5 α H-nortropane-8-carboxylate (22 and 23). A soln of 9.5 g (0.026 mole) of acetates (20 and 21) (6:5 mixt of isomers, α : β) in 250 ml of THF containing 1.42 g (0.026 mole) of NaOMe was heated under reflux for 2 hr. A soln of 4.5 g (0.026 mole) of PhCH₂Br in 10 ml of Et₂O was added and the soln was heated under reflux for another 3 hr in which time a large ppt of NaBr formed. The solid was collected on a filter and the filtrate was concd to afford 8 g of oil. Dil NH₄OH and Et₂O were added to the residue. The Et₂O was sepd, washed (dil NaOH followed by satd NaCl), dried (Na₂SO₄), and evapd to yield 6.3 g of a mixt of 22 and 23.

This residue partially crystd from Et_2O and filtn gave 1 g of 22, mp 113-115°. Preparative plate chromatog of the mother liquor [Camag silica gel, 1 pass Et_2O -pentane (1:1) and 4 passes Et_2O] afforded another 0.75 g of 22, mp 111-112°. A more polar band furnished 2 g of oil 23 which, on the basis of nmr analysis, contd approx 16% of 22 (see Table I).

Preparation of Phenol Derivatives 38, 39, 40, and 41. A soln of 1.65 g (4.1 mmoles) of 22 in 100 ml of anhyd Et_2O was added with stirring to 1 g of LAH in 75 ml of THF. The reaction mixt was heated under reflux for 2 hr. After cooling, 3 ml of H_2O was carefully added. The mixt was filtd and the filtrate was concd by warming *in vacuo* to afford 1.45 g of an oil that was dissolved in 300 ml of 95% EtOH. The soln was shaken with 0.15 g of 10% Pd/C under

 3 kg/cm^2 of H₂ for 2 hr. The catalyst was removed and the solvent was evapd by warming *in vacuo* to afford 0.95 g of a residue that solidified. The residue was recryst from Et₂O to give 0.75 g (75%) of 38. See Table II for constants.

O,O'-Benzylideneecgoninol, Isomer Mixture about Benzylic C (44). A suspension of 15.0 g (0.072 mole) of ecgoninol \cdot HCl in 100 ml of PhCHO was heated on the steam bath for 6 hr while a slow stream of HCl gas was bubbled into the mixt. The solid dissolved within 10 min. After 1 hr and again after 4 hr the soln was warmed in a rotary evaporator *in vacuo* in order to remove accumulated H₂O. About 5 ml of PhCHO was removed each time.

The soln was cooled and dil with 400 ml each of Et_2O and pentane and the ppt was collected and washed with Et_2O . The ppt was suspended in 400 ml of Et_2O and gaseous NH₃ was added in excess. Removal of pptd NH₄Cl by filtration and conen of the filtrate gave an oil which was distd. A small forerun of PhCHO was followed by the product [16.2 g, bp 150-163° (0.10 mm)] as a viscous oil which solidified. Recryst from 11 ml of cyclohexane afforded 10.4 g (55%) of white spherulites (see Table II). The ir and nmr spectral curves were compatible with the assigned structure. There was no doubling of the NCH₃ or the OCHO signals in the crude or purified product as indication of an isomer mix.

O,O'-Benzilidenepseudoecgoninol, Isomer Mixture about Benzylic C (45). A soln of 14.2 g (0.083 mole) of pseudoecgoninol in 75 ml of PhCHO was treated with gaseous HCl as was done with ecgoninol. One hour elapsed before the pptd pseudoecgoninol HCl redissolved. Work-up as with ecgoninol gave an oil which solidified without distn. Trituration with pentane afforded 15.1 g (70%) of cryst acetal, mp 80.5-85°. Recryst from 30 ml of hexane gave 14.0 g of massive prisms. See Table II for physical and analytical data. The ir and nmr spectra were compatible with the assigned structure. The presence of an isomer mixt was not evidenced by any doubling of NCH₃ or OCHO signals.

(±)-2 β , 3β -(p-Methoxybenzylidenedioxy)-1 α H, 5α H-tropane Methiodide, β -Phenyl Isomer (7). A soln of 30 mg of 22 in 5 ml of Et₂O was treated with 0.5 ml of MeI. After 15 min the pptd solid was collected, dried at 60° (0.7 mm) for 1 hr, and subjected to nmr analysis which supported its assigned structure. Nmr peaks (DMSOd₆) appeared at 3,14 (s, 3, OCH₃), 3.38 (s, 3, NCH₃), 3.82 (s, 3, NCH₃), and 5.73 ppm (s, 1, benzylic H).

(±)- 2β , 3β -(p-Methoxybenzylidenedioxy)- $1\alpha H$, $5\alpha H$ -tropane methiodide, α -phenyl isomer (6), was prepd from 21 as described in the preceding experiment. Nmr peaks (DMSO- d_6) appeared at 3.04 (s, 3, OCH₃), 3.62 (s, 3, NCH₃), 3.71 (s, 3, NCH₃), and 6.24 ppm (s, 1, benzylic H).

Ethyl (±)-3α-Bromo-2β-hydroxy-1αH,5αH-nortropane-8-carboxylate 2-Benzoate (46). A soln of 3.0 g (10 mmoles) of a mixt of 8 and 9 in 150 ml of CCl₄ was treated with 2.0 g (11 mmoles) of NBS and 5 g (24 mmoles) of BaCO₃. The mixt was refluxed for 2.5 hr. The solid (succinimide) was collected on a filter disk and the filtrate was heated *in vacuo* leaving a residue of 4.4 g of crude 46. Recrystallization from pentane afforded 3.1 g (81%) of 46, mp 72-75°. The analytical sample from pentane melted at 77-79°; nmr peaks at δ 7.30-8.20 (5 H, m, arom), 5.35 (1 H, s, CHOBz), 4.65 and 4.50 (2 H, m, NCH), 4.30 (1 H, m, CHBr), 3.40-4.40 (2 H, m, OCH₂CH₃), heated to 80° (2 H, q, OCH₂CH₃) and 0.80-3.10 ppm (9 H, m, CH₃ + CH₂), heated to 80° (3 H, t, CH₃ + 6 H, m, CH₂). Anal. (C₁₇H₂₀NO₄Br) C, H, Br.

Ethyl (±)-2 β , β , β -Epoxy-1 α H, 5α H-nortropane-8-carboxylate (47). A soln of 41.1 g (0.11 mole) of 46 in 660 ml of EtOH was treated with 42.7 g (0.31 mole) of K₂CO₃ in 215 ml of H₂O. After being heated under reflux for 3 hr, the reaction mixt was extd with CHCl₃. The H₂O layer was washed again with CHCl₃-EtOH (2:1). The combined CHCl₃ solns were washed (satd NaCl), dried (Na₂SO₄), and concd *in vacuo* to afford an amber oil. Distn at 110-134° (0.25-0.35 mm) gave 15.6 g of 47(72%); n^{25} D 1.4930. Anal. (C₁₀H₁₅NO₃) C, H, N. This oil crystd. Recrystallization from pentane gave colorless crystals, mp 52.5-53.5°. Anal. (C₁₀H₁₅NO₃) C, H, N. (±)-1 α H, S α H-Tropan-2 β -ol (48). A soln of 0.60 g (3 mmoles)

(±)-1 αH , $5\alpha H$ -Tropan-2 β -ol (48). Å soln of 0.60 g (3 mmoles) of 47 in 50 ml of Et₂O was heated under reflux for 2 hr with 0.60 g (16 mmoles) of LAH. H₂O (1.5 ml) was added and the salts were removed by filtn. The filtrate was concd *in vacuo* to afford 0.35 g (83%) of 48; n^{25} D 1.4880; $pK_a = 9.4$ (reported, n^{25} D 1.4886; $pK_a = 9.62$). The ir spectrum was identical with that of an authentic sample of 48.

Ethyl (±)-2 β ,3 α -Dihydroxy-1 α H,5 α H-nortropane-8-carboxylate (49). A soln of 12.3 g (0.063 mole) of epoxide 47 in 240 ml of CHCl₃ was stirred while 25 ml of CF₃COOH was added quickly. After being stirred at room temp for 1 hr the reaction mixt was added to 200 ml of 0.1 N NaOH. Extn with CHCl₃-EtOH (2:1), drying (Na₂SO₄), and evapn of the solvent by warming *in vacuo* afforded

13.9 g of an oil. The oily residue was dissolved in 180 ml of EtOH and was stirred together with 180 ml of 2 N NH, OH for 1 hr at room temp. Satd NaCl was added and the soln was extd with CHCl₃-EtOH (2:1). Removal of the solvent from the dried (Na₂SO₄) exts by warming in vacuo afforded 12.3 g of an oily residue. Chilling of a soln of this residue in 25 ml of Et₂O gave 4 g of 49, mp 93-98°. The mother liquor was chromatog on 100 g of silica gel. Elution with Et₂O afforded 4.2 g of crude starting material. Elution with 100% THF gave another 3.1 g of 49 (80% yield based on starting material consumed). Recrystallization from Et₂O afforded 4.2 g of 49, mp 113-115°. Anal. (C₁₀H₁₇NO₄) C, H, N. (±)-**Tropane** 2 β , 3α-diol (50). A soln of 0.47 g (22 mmoles) of

49 in 6 ml of THF was added to 0.22 g of LAH in 21 ml of THF and the mixt was heated under reflux for 6.5 hr. A 1:1 mixt (4 ml) of H₂O and THF was added, then more H₂O and the mixt was extd with CHCl₃-EtOH (2:1). The ext was dried (Na₂SO₄) and concd by heating in vacuo to afford 0.41 g of an oil that partially crystd. Recrystallization from C₆H₆ afforded 0.15 g of rhombic crystals of 50,° mp 100-101°, ir (CHCl₃) 3438 and 3628 cm⁻¹ (bonded and nonbonded OH bands).

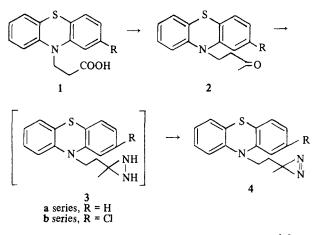
Acknowledgment. Appreciation is extended to Mr. Harry Bentley for his technical assistance, and to Dr. R. K. Kullnig and his associates in the Physical Chemistry Department of this institute for the spectral data.

References

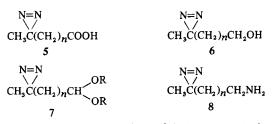
- (1) S. J. Daum, C. M. Martini, R. K. Kullnig and R. L. Clarke, J. Org. Chem., 37, in press. W. Richter, Chem. Ber., 34, 4293 (1901).
- (2)
- (3) H. C. Brown and N. M. Yoon, J. Amer. Chem. Soc., 90, 2936 (1968).
- (4) G. Fodor and O. Kovács, J. Chem. Soc., 724 (1953)
- (5) B. Capon and M. I. Page, Chem. Commun., 1443 (1970).
- (6) E. L. Eliel and Sr. M. C. Knoeber, J. Amer. Chem. Soc., 90, 3444 (1968).
- (7) S. Hanessian and N. R. Plessas, J. Org. Chem., 34, 1053 (1969).
- (8) M. R. Bell and S. Archer, J. Amer. Chem. Soc., 82, 4642 (1960).
- (9) W. A. M. Davies, J. B. Jones, and A. R. Pinder, J. Chem. Soc., 3504 (1960).
- (10) M. D. Aceto and L. S. Harris, Toxicol. Appl. Pharmacol., 7, 329 (1965).

Diazirines. 3.1 Synthesis of a Series of Diazirine-Containing Molecules and **Their Pharmacological Evaluation**

Robert F. R. Church,* Raymond R. Maleike, and Martin J. Weiss


Process and Analytical Research Section, Lederle Laboratories Division, American Cyanamid Company, Pearl River, New York 10965. Received July 30, 1971

Several diazirine-containing congeners of biologically active molecules were synthesized. In addition, as a result of observations of biological activity for some small diazirine-containing molecules not related to compounds with established biological activity, a series of simple diazirines were prepared.


In an earlier report² we described the synthesis of several steroids containing the diazirine group and noted the favorable effect on the anabolic to androgenic ratio of certain of these derivatives. Since there were only a few other reports³ concerning the biological properties of diaziridine and diazirine-containing molecules, we were encouraged to investigate the biological effects of this novel group.

Our initial approach was aimed at the preparation of diazirines congeneric with substances of established utility. Thus, we prepared the phenothiazine diazirine 4a from phenothiazine acid 1a⁴ via ketone 2a.[†] However, repeated attempts to effect the transformation of 2-chloro-N-(3-ketobutyl)phenothiazine 2b, prepared from the corresponding acid 1b, to the more interesting diazirine 4b were unsuccessful. Although the reason for this failure is not known, this result, as well as the meager yield (15%) obtained in the preparation of 4a from 2a, further illustrates the less-thansatisfactory nature, in many instances, of the ketone-todiazirine transformation.[‡]

The unreliable nature of this transformation with more complex molecules persuaded us to shift our approach and base our syntheses on the utilization of relatively simple, otherwise functionalized, diazirine-containing substances. Toward this end we prepared, among others, the acids 5 (n = 2-4), the alcohols 6 (n = 1-3), the acetals 7 (n = 0-2), and the amines 8 (n = 1 and 2). The preparation and properties of these useful simple molecules, as well as selected

derivatives, are described in detail in an earlier paper.^{1,§} By unexceptional procedures, the following diazirine-

containing analogs of clinically useful pharmaceutical agents were obtained: amides 9 and 10, respectively, of psychic stimulants tranylcypramine and amphetamine, the phenyl-

[†]It should be noted that all attempts to isolate the diaziridine 3a, a more pertinent analog of the aminoalkylphenothiazines, were unsuccessful.

[‡]For additional examples see ref 1 and 2.

[§]The use of these compounds for the preparation of cephalosporins containing the diazirine group has been reported; see ref 5.