ISSN 1070-3632, Russian Journal of General Chemistry, 2006, Vol. 76, No. 5, pp. 835–836. © Pleiades Publishing, Inc., 2006. Original Russian Text © A.A. Prishchenko, M.V. Livantsov, O.P. Novikova, L.I. Livantsova, 2006, published in Zhurnal Obshchei Khimii, 2006, Vol. 76, No. 5, pp. 871–872.

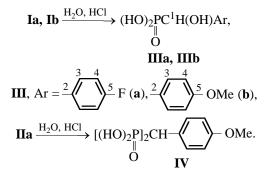
LETTERS TO THE EDITOR

Reaction of Substituted Benzalchlorides with Phosphorous Acid Esters

A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, and L. I. Livantsova

Moscow State University, Vorob'yevy Gory, Moscow, 119992 Russia e-mail: liv@org.chem.msu.su

Received February 7, 2006


DOI: 10.1134/S107036320605029X

Functional methylenediphosphorus compounds are interesting as prospective ligands and biologically active compounds and also they are widely used in organic synthesis [1]. For the synthesis of arylmethylenediphosphonates of new type we studied reactions of triethyl- and tris(trimethylsilyl)phosphites taken in excess with a series of substituted benzalchlorides **A** prepared alongside the methods described esrlier [2]. We found that this reaction proceeds by the scheme of Arbuzov rearrangement only at heating the mixture to $150-160^{\circ}$ C in the presence of zinc chloride as a catalyst and results, depending on the structure of the parent compounds, in formation of substituted phosphonates **I** or diphosphonates **II**. However, we failed to involve unsubstituted benzalchloride to this reaction under similar conditions.

$$(XO)_{2}P(O)C^{1}H(CI)Ar \xleftarrow{(XO)_{3}P}{-XCI} ArCHCl_{2} \xrightarrow{2(EtO)_{3}P}{-2EtCI} [(EtO)_{2}P(O)]_{2}C^{1}HAr,$$
Ia–Ic A IIa, IIb

$$X = Et (Ia, Ib), Me_{3}Si (Ic); Ar = 2 \xrightarrow{3}{4} 5 F (Ia), 2 \xrightarrow{3}{4} 5 (Ib), 2 \xrightarrow{3}{4} 5 OMe (Ic, IIa), 2 \xrightarrow{3}{4} 5 (IIb)$$

The phosphonates **Ia** and **Ic** and diphosphonate **IIa** can be easily hydrolyzed to form phosphonic **III** and diphosphonic **IV** acids, respectively. Under these conditions occurs also cleavage of chlorine–carbon bond.

NMR spectra of compounds I-IV contain typical signals of $PC^{1}H$ and $PC^{1}HP$ fragments and of substituted aromatic fragments.

Diethyl (4-fluorophenyl)chloromethylphosphonate (Ia). A mixture of 3 g 4-fluorobenzalchloride, 7 g of triethylphosphite and 0.1 g of zinc chloride was heated at 150–160°C for 2 h and then was distilled. 3 g of phosphonate **Ia** was obtained, yield 64%, mp 152°C (2 mm Hg), n_D^{20} 1.4885. ¹H NMR spectrum, δ , ppm: 4.75 d (C¹H, ²J_{PH} 12 Hz), 6.82 d (C³H, ³J_{HH} 8 Hz), 7.32 d (C⁴H, ³J_{HH} 8 Hz). ¹³C NMR spectrum, δ_C , ppm: 52.52 d (C¹, ¹J_{PC} 160 Hz), 130.16 t (C², ²J_{PC} = ⁴J_{FC} 3.5 Hz), 130.69 d.d (C³, ³J_{PC} 6 Hz, ³J_{FC} 8 Hz), 115.26 d (C⁴, ²J_{FC} 22 Hz), 162.68 d (C⁵, ¹J_{FC} 248 Hz). ³¹P NMR spectrum, δ_P , ppm: 16.89 s. Found, %: C 46.89; H 5.26. $C_{11}H_{15}ClFO_3P$. Calculated, %: C 47.07; H 5.39.

Compounds **Ib**, **Ic**, and **II** were obtained by similar procedure.

Diethyl (2,3-dimethoxyphenyl)chloromethylphosphonate (Ib). Yield 68%, mp 184 °C (2 mm Hg), n_D^{20} 1.5139. ¹H NMR spectrum, δ , ppm: 5.35 d (C¹H, ${}^2J_{PH}$ 16 Hz), 3.60 s and 3.65 s (OMe), 6.64–7.17 m (C⁵H, C⁶H, C⁷H). ¹³C NMR spectrum, δ_C , ppm: 45.63 d (C¹, ${}^1J_{PC}$ 163 Hz), 55.52 s and 55.73 s (OMe), 121.56 d (C², ${}^2J_{PC}$ 4 Hz), 146.59 d (C³, ${}^3J_{PC}$ 9 Hz), 152.04 s (C⁴), 124.04 s (C⁵), 117.97 s (C⁶), 112.81 d (C⁷, ${}^3J_{PC}$ 3 Hz). ³¹P NMR spectrum, δ_P , ppm: 17.96 s.

Bis(trimethylsilyl) (4-methoxyphenyl)chloromethylphosphonate (Ic). Yield 81%, mp 166 °C (1 mm Hg), mp 65°C. ¹H NMR spectrum, δ, ppm: 0.09 s and 0.19 s (Me₃Si), 4.71 d (C¹H, ²J_{PH} 12 Hz), 3.72 s (MeO), 6.80 d (C³H, ³J_{HH} 8 Hz), 7.36 d (C⁴H, ³J_{HH} 8 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 0.63 s and 0.79 s (Me₃Si), 54.63 d (C¹, ¹J_{PC} 168 Hz), 55.21 s (MeO), 126.90 t (C², ²J_{PC} 3 Hz), 130.21 d (C³, ³J_{PC} 6 Hz), 113.75 s (C⁴), 159.94 s (C⁵). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: -0.79 s.

Tetraethyl (4-methoxyphenyl)methylenediphosphonate (IIa). Yield 78%, mp 202°C (2 mm Hg), $n_{\rm D}^{20}$ 1.4982. ¹H NMR spectrum, δ, ppm: 3.47 t (C¹H, ²J_{PH} 24 Hz), 3.54 s (MeO), 6.63 d (C³H, ³J_{HH} 8 Hz), 7.17 d (C4H, ³J_{HH} 8 Hz). ¹³C NMR spectrum, δ_C, ppm: 44.37 t (C¹, ¹J_{PC} 132.5 Hz), 54.89 s (MeO), 121.66 t (C², ²J_{PC} 8 Hz), 131.29 t (C³, ³J_{PC} 6.5 Hz), 113.69 s (C⁴), 158.90 s (C⁵). ³¹P NMR spectrum, δ_p, ppm: 18.74 s. Found, %: C 48.59; H 7.05. C₁₆H₂₈· O₇P₂. Calculated, %: C 48.73; H 7.16.

Tetraethyl (2,5-dimethoxyphenyl)methylenediphosphonate (IIb). Yield 76%, mp 212°C (2 mm Hg), n_D^{20} 1.5008. ¹H NMR spectrum, δ, ppm: 3.52 s and 3.55 s (MeO), 4.35 t (C¹H, ²J_{PH} 26 Hz), 6.45–6.60 m (C⁴H, C⁵H), 7.18 s (C⁷H). ¹³C NMR spectrum, δ_C , ppm: 35.48 t (C¹, ¹J_{PC} 133 Hz), 55.29 s and 56.30 (OMe), 119.28 t (C², ²J_{PC} 8 Hz), 150.78 t (C³, ³J_{PC} 7 Hz), 111.78 s and 113.94 s (C⁴, C⁵), 153.08 s (C⁶), 116.21 t (C⁷, ³J_{PC} 4.5 Hz). ³¹P NMR spectrum, δ_P , ppm: 19.05 s. Found, %: C 48.02; H 7.06. C₁₇H₃₀O₈P₂. Calculated, %: C 48.11; H 7.13.

4-Fluorophenyl(hydroxymethyl)phosphonic acid (**IIIa).** A mixture of 3 g of phosphonate **Ia** and 20 ml of conc. hydrochloric acid was heated on a boiling water bath for 4 h and then evaporated to dtryness at 7 mm Hg. 30 ml of water was added which was thed

distilled off in a vacuum. 2 g of acid **IIIa** was obtained, yield 92%, mp 69°C. ¹H NMR spectrum, δ , ppm: 4.72 d (C¹H, ²J_{PH} 12 Hz), 7.10–7.15 m (C³H), 7.41–7.44 m (C⁴H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 70.10 d (C¹, ¹J_{PC} 160 Hz), 136.71 s (C²), 129.66 s (C³), 114.69 d (C⁴, ²J_{FC} 21 Hz), 161.76 d (C⁵, ¹J_{FC} 244 Hz). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 18.52 s (see [3]).

Compounds **IIIb** and **IV** were prepared by similar procedure.

4-Methoxyphenyl(hydroxymethyl)phosphonic acid (IIIb). Yield 96%, mp 78°C. ¹H NMR spectrum, δ, ppm: 4.71 d (C¹H, ² J_{PH} 12 Hz), 3.44 s (OMe), 6.67 d (C³H, ³ J_{PH} 8 Hz), 7.12 d (C⁴H, ³ J_{PH} 8 Hz). ¹³C NMR spectrum, δ_C, ppm: 69.77 d (C¹, ¹ J_{PC} 160 Hz), 129.02 s (C²), 55.16 s (OMe), 128.52 d (C³, ³ J_{PC} 6 Hz), 113.87 s (C⁴), 158.29 s (C⁵). ³¹P NMR spectrum, δ_P, ppm: 20.76 s, (see [3]).

(4-Methoxyphenyl)methylenediphosphonic acid (IV). Yield 96%, mp 86°C. ¹H NMR spectrum, δ , ppm: 3.49 t (C¹H, ²J_{PH} 26 Hz), 3.57 s (OMe), 6.65 d (C³H, ³J_{PH} 8 Hz), 7.20 d (C⁴H, ³J_{PH} 8 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 45.06 t (C¹, ¹J_{PG} 126.5 Hz), 124.96 t (C², ²J_{PC} 7.5 Hz), 131.08 t (C³, ³J_{PC} 6 Hz), 117.72 s (C⁴), 157.76 s (C⁵), 54.74 s (OMe). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 17.72 s. Found, %: C 33.94; H 4.38. C₈H₁₂O₇P₂. Calculated, %: C 34.06; H 4.29.

NMR spectra were registered on a Bruker Avance 400 instrument, solvents: $CDCl_3$ for compounds I and II, D_2O for compounds III and IV; references TMS (¹H and ¹³C) and 85% H₃PO₄ in D_2O (³¹P).

ACKNOWLEDGMENTS

This work was performed under financial support of Russian Foundation for Basic research (grant nos. 05-03-32864, 06-03-32731).

REFERENCES

- Prishchenko, A.A., Novikova, Z.S., and Lutsenko, I.F., *Zh. Obshch. Khim.*, 1977, vol. 47, no. 12, p. 2689; Teulade, M.-P., Savignac, P., Aboujaoude, E.E., Lietge, S., and Collignon, N., *J. Organometal. Chem.*, 1986, vol. 304, p. 283.
- 2. Weigand, C. and Hilgetag, G., Organish-Chemishe Experimentierkunst, Moscow: Khimiya, 1968.
- 3. Prishchenko, A.A., Livantsov, M.V., Novikova, O.P., Livantsova, L.I., and Maryashkin, A.V., *Russ. J. Gen. Chem.*, 2005, vol. 76, no. 12, p. 1965.