

Tetrahedron Letters 44 (2003) 7659-7661

TETRAHEDRON LETTERS

Synthetic studies of microtubule stabilizing agent peloruside A: an asymmetric synthesis of $C_{10}-C_{24}$ segment

Arun K. Ghosh* and Jae-Hun Kim

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA

Received 3 July 2003; accepted 7 August 2003

Abstract—An asymmetric synthesis of the C_{10} – C_{24} fragment of the potent antitumor macrolide, peloruside A is described. All three stereogenic centers have been enantioselectively constructed utilizing Evans alkylation, Brown asymmetric allylboration, and a substrate controlled epoxide formation. Other key reactions involved Grubbs's ring-closing olefin metathesis and Ando's *Z*-selective olefination reaction.

© 2003 Elsevier Ltd. All rights reserved.

Peloruside A, a 16-membered macrolide, was recently isolated from the New Zealand marine sponge Mycale hentscheli.1 It exhibited potent cytotoxicity against P388 murine leukemia cells with an IC_{50} value of 10 ng/mL.¹ Like paclitaxel, peloruside A has shown microtubulestabilizing activity and arrests cells in the G₂-M phase.² It has structural resemblance to epothilones which are undergoing clinical trials.³ Important antitumor activities of peloruside A along with its unique structural features have stimulated immense interest in the synthesis and structure-function studies. Peloruside A's initial structure and relative stereochemistry were established by NMR studies.¹ However, its absolute stereochemistry was conclusively established only recently after the first total synthesis⁴ followed by its chemical and biological correlation with the natural peloruside A. To date, De Brabander and co-workers have reported the only total synthesis. Synthetic approaches toward fragments of peloruside A have been reported by Paterson et al.⁵ We recently reported an enantioselective synthesis of the C_1 - C_9 segment of peloruside A.⁶ In continuation of our on-going studies, we now report a stereocontrolled route to the C_{10} - C_{24} segment (3) of peloruside A where all three stereocenters have been created by asymmetric synthesis.

As shown in Figure 1, our convergent synthetic plan for peloruside A involves the assembly of C_1-C_9 segment (2) and $C_{10}-C_{24}$ (3) by an aldol reaction followed by a macrolactonization between the C_{15} -hydroxyl group and the C_1 -carboxylic acid. We plan to synthesize the

fragment 3 by a nucleophilic addition of isopropylmagnesium halide to the functionalized δ -lactone derived from acrylate ester 4. The corresponding homoallyl

Figure 1.

^{*} Corresponding author. E-mail: arunghos@uic.edu

^{0040-4039/\$ -} see front matter $\ensuremath{\mathbb{C}}$ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.08.023

alcohol will be derived from protected alcohol **5** by oxidation, olefination and subsequent asymmetric allylboration of the resulting aldehyde utilizing Brown's protocol. Protected alcohol **5** will be readily available by Evans' asymmetric alkylation reaction.⁷

As depicted in Scheme 1, asymmetric alkylation of chiral imide **6** was carried out with benzyloxymethyl chloride using Evans' protocol^{7a} to provide the alkylated product **7** as a single isomer in 80% yield (from benzyloxazolidinone). Reduction of imide **7** by LiBH₄ in THF–MeOH at 23°C afforded alcohol **8**. Swern oxidation of **8** and subsequent Horner–Emmons reaction of the resulting aldehyde with sodium enolate of (*o*-cresol)₂P=O(CH₃)CHCO₂Et as described by Ando⁸ furnished tri-substituted Z-olefin **9** in 90% yield over two steps. The Z-selectivity was >99:1 as revealed by ¹H and ¹³C NMR analysis. Our next synthetic plan was

Scheme 1. Reagents and conditions: (a) TiCl₄, Et₃N, CH₂Cl₂, PhCH₂OCH₂Cl, 0°C, 1.5 h; (b) LiBH₄, MeOH, THF, 23°C, 1 h (94%); (c) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -60°C, 45 min; (d) (*o*-cresol)₂P=O(CH₃)CHCO₂Et, NaH, THF, -78 to -20°C, 2 h (90% over two steps); (e) Dibal-H, CH₂Cl₂, -78° to -40°C, 1 h (96%); (f) Dess–Martin periodinane, NaHCO₃, CH₂Cl₂, 23°C, 1.5 h; (g) CH₂=CHCH₂B[(+)-Ipc]₂, Et₂O, -80°C, 3 h (65% over two steps); (h) CH₂=CHCOCl, Et₃N, CH₂Cl₂, 0°C, 2 h (77%); (i) Cl₂(Pcy)₂Ru=CHPh, CH₂Cl₂, 40°C, 12 h (83%); (i) H₂O₂, 6N-aq NaOH, MeOH, 1.5 h (74%); (k) NaBH₄, PhSeSePh, AcOH, 'PrOH, 0°C, 30 min (quant.); (l) TBDPSCl, imidazole, DMAP, DMF, 23°C, 13 h (quant.).

to install an α , β -unsaturated δ -lactone with appropriate stereochemistry and then elaborate the *syn*-1,3-diol functionality by a substrate-controlled diastereoselective epoxidation followed by reductive opening of the resulting epoxide. For the synthesis of α , β -unsaturated δ -lactone, ester **9** was first reduced by Dibal-H to deliver the corresponding alcohol. Dess-Martin periodinane oxidation provided the aldehyde which was subjected to the Brown asymmetric allylboration protocol⁹ with allyldiisopinocampheylborane to afford homoallylic alcohol **10** as the major diastereomer (dr = 93:7 by ¹H and ¹³C NMR). Alcohol **10** was obtained in 65% yield over two steps after silica gel chromatography.

For synthesis of α,β -unsaturated δ -lactone, we relied upon ring-closing olefin metathesis protocol described in our recent work.¹⁰ Reaction of **10** with acryloyl chloride and triethylamine at 0°C furnished acryloyl ester 11. Exposure of 11 to a catalytic amount (10 mol%) of first generation commercial Grubb's catalyst¹¹ in CH₂Cl₂ at reflux for 12 h provided α , β -unsaturated δ -lactone 12 in 83% yield after one recycle of the recovered starting material.¹² The use of titanium tetraisopropoxide as a co-catalyst (40 mol%) significantly lowered the yield (62%) of δ -lactone 12. Reaction with second generation Grubb's catalyst did not improve the overall yield (74%) either. For elaboration of the γ hydroxy δ -lactone with appropriate stereochemistry, δ lactone 12 was exposed to nucleophilic epoxidation with alkaline hydrogen peroxide in methanol at 0°C to furnish the corresponding epoxide in 74% yield as a single isomer. Treatment of the resulting epoxide with diphenyldiselenide and sodium borohydride in 2propanol afforded exclusively hydroxylactone 13 in quantitative yield.¹³ Lactone 13 possesses the required syn-1,3-diol stereochemistry necessary for peloruside A synthesis. Protection of alcohol 13 under standard condition provided TBDPS ether 14 in quantitative yield.

For conversion of δ -lactone 14 to the C₁₀–C₂₄ fragment, we first attempted direct opening of lactone ring with isopropylmagnesium chloride. However, reaction of 14 with excess isopropylmagnesium chloride under a variety of reaction conditions did not provide the desired ketone. In an alternative approach, δ -lactone 14 was transformed into C10-C24 fragment ketone 16 as follows (Scheme 2). Reaction of 14 with N,O-dimethylhydroxylamine hydrochloride in the presence of trimethylaluminum in CH₂Cl₂ according to Weinreb procedure¹⁴ furnished the corresponding hydroxy Weinreb amide. Protection of the resulting alcohol as MEM-ether provided Weinreb amide 15 in 86% yield (from 14). Treatment of 15 with isopropylmagnesium chloride (5 equiv.) in THF at 23°C for 5 h afforded C10-C24 fragment ketone 16¹⁵ in 61% yield. It turned out that both MEMand TBDPS-protecting groups were critical to form 16. Replacement of the MEM-group with a PMB-group resulted in substantial β -elimination as well as degradation of starting material.

In summary, a highly stereoselective synthesis of C_{10} - C_{24} segment of peloruside A has been accom-

Scheme 2. Reagent and conditions: (a) $AlMe_3$, $HN(OCH_3)-CH_3 \cdot HCl$, CH_2Cl_2 , 23°C, 2.5 h (93%); (b) MEMCl, DIPEA, 23°C, 9 h (92%); (c) 'PrMgCl, THF, 23°C, 5 h (61%).

plished. The key steps involved an Evans asymmetric alkylation, Ando's Z-selective olefination, Brown asymmetric allylboration, Grubbs's ring-closing olefin metathesis, and substrate controlled stereoselective epoxidation. Work toward the total synthesis of peloruside A is in progress.

Acknowledgements

Partial financial support for this work was provided by the National Institutes of Health.

References

- 1. West, L. M.; Northcote, P. T. J. Org. Chem. 2000, 65, 445.
- (a) Hood, K. A.; Backstorm, B. T.; West, L. M.; Northcote, P. T.; Berridge, M. V.; Miller, J. H. *Anti-Cancer Drug Design* 2001, *16*, 155; (b) Hood, K. A.; West, L. M.; Rouwe, B.; Northcote, P. T.; Berridge, M. V.; St. Wakefield, J.; Miller, J. H. *Cancer Res.* 2002, *62*, 3356.
- 3. (a) Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.;

Woods, C. M. *Cancer Res.* 1995, *55*, 2325; (b) Nicolaou,
K. C.; Rosechanger, F.; Vourloumis, D. *Angew. Chem.* 1998, *37*, 2014; (c) Stachel, S. J.; Biswas, K.; Danishefsky,
S. J. *Curr. Pharm. Des.* 2001, *7*, 1277 and references cited therein.

- Liao, X.; Wu, Y.; De Brabander, J. K. Angew. Chem., Int. Ed. 2003, 42, 1648.
- 5. Paterson, I.; Di Francesco, M. E.; Kuhn, T. Org. Lett. 2003, 5, 599.
- 6. Ghosh, A. K.; Kim, J.-H. Tetrahedron Lett 2003, 44, 3967.
- (a) Evans, D. A.; Chapman, K. T.; Huang, D. T.; Kawaguchi, A. T. Angew. Chem., Int. Ed. Engl. 1987, 26, 1184; (b) Evans, D. A.; Urpi, F.; Somers, T. C.; Cleark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215; (c) Ihara, M.; Katsumata, A.; Setsu, F.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1996, 61, 677.
- 8. Ando, K. J. Org. Chem. 1998, 63, 8411.
- (a) Jadhav, P. K.; Bhat, K. S.; Perumaal, T.; Brown, H. C. J. Org. Chem. 1986, 51, 432; (b) Racgerlaa, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.
- (a) Ghosh, A. K.; Cappiello, J.; Shin, D. Tetrahedron Lett. 1998, 39, 4651; (b) Ghosh, A. K.; Liu, C. Chem. Commun. 1999, 1743; (c) Ghosh, A. K.; Wang, Y. J. Am. Chem. Soc. 2002, 122, 11027; (d) Ghosh, A. K.; Wang, Y; Kim, J. T. J. Org. Chem. 2001, 66, 8973.
- 11. Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
- 12. Initially, lactone **12** was obtained in 68% along with 23% of unreacted starting material. After one recycling of starting material overall isolated yield was 83%.
- (a) Ghosh, A. K.; Lei, H. J. Org. Chem. 2000, 65, 4779;
 (b) Ghosh, A. K.; Lei, H. Synthesis 2002, 371.
- Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 18, 4171.
- 15. All new compounds gave satisfactory spectroscopic and analytical results. **16**: $[\alpha]_{20}^{20} = +87.5$ (*c* 0.4, CHCl₃); IR (thin film) 2932, 1713, 1429, 1039 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.67 (m, 4H), 7.42–7.26 (m, 11H), 5.06 (d, J = 10.3 Hz, 1H), 4.54 (m, 1H), 4.49–4.42 (m, 4H), 4.34 (d, J = 6.8 Hz, 1H), 3.57 (m, 1H), 3.43–3.27 (m, 8H), 2.75 (dd, J = 16.0, 4.6 Hz, 1H), 2.63(dd, J = 6.0, 7.3 Hz, 1H), 2.59–2.52 (m, 2H), 1.95 (m, 1H), 1.56 (m, 1H), 1.46 (m, 1H), 1.42 (d, J = 0.9 Hz, 3H), 1.15 (m, 1H), 1.06–1.01 (m, 15H), 0.79 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz) δ 213.2, 139.2, 136.4, 136.3, 135.6, 134.3, 131.5, 130.0, 129.9, 128.7, 127.9, 127.8 (2C), 92.5, 74.2, 73.3, 72.2, 70.5, 68.4, 67.6, 59.4, 46.9, 42.1, 41.1, 39.5, 27.4 (3C), 25.4, 19.7, 18.3, 18.2, 12.1; HRMS (ESI) m/z calcd for C₄₂H₆₀O₆Si (M⁺+Na) 711.4057, found 711.4045.