

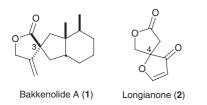
Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 3657-3660

Tetrahedron Letters

Annulated butanolides by ring closing metathesis of diallyltetronic acid derivatives

Rainer Schobert* and Juan Manuel Urbina-González

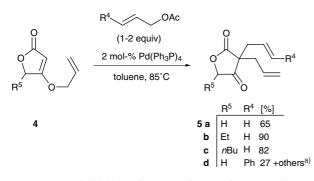

Organisch-chemisches Laboratorium der Universität, 95440 Bayreuth, Germany

Received 3 March 2005; revised 21 March 2005; accepted 22 March 2005 Available online 6 April 2005

Abstract—3,3-Diallyldihydrofuran-2,4-diones **5** with two identical allyl residues were obtained by Tsuji–Trost-type Pd-catalysed allylation of either 4-*O*-allyltetronates or 3-allyltetronic acids. Allylation of sodium 3-allyltetronate with a second allyl acetate gave mixed derivatives **5** as did the Claisen rearrangement of 4-*O*-allyl 3-allyltetronates **6** under microwave conditions. Compounds **5** and **6** were converted to butanolides with 3,3-spirocyclopentenyl or 3,4-cycloalkanyl annulation by ring closing metathesis with Grubbs catalysts.

© 2005 Elsevier Ltd. All rights reserved.

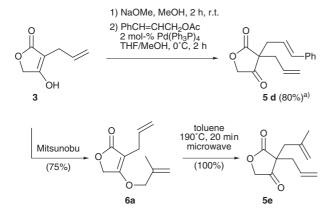
Numerous fungal and plant metabolites with spiroannulated y-butyrolactone structures have been reported over the last few decades. As part of our ongoing efforts towards the structural cores of the bakkanes,¹ for example bakkenolide A $1,^2$ and of compounds like longianone 2^3 we explored the feasibility of double allylation-ring closing metathesis sequences. 3,3-Diallyldihydrofuran-2,4-diones with identical allyl residues have been obtained by allylation of tetronic acids with either allyl halides/base followed by thermal Claisen rearrangement of the intermediate 3,4-diallyl tetronates,^{4,5} or with allyl acetates under Pd catalysis resulting in moderate yields or product mixtures.⁶ Congeners with two different allyl residues were not accessible likewise. A single ring closing metathesis, namely of symmetrical 3.3-diallyldihydrofuran-2.4-dione has been reported.⁷ In this paper we investigate the generality of such and similar approaches to 3-spiro and 4-spiro-

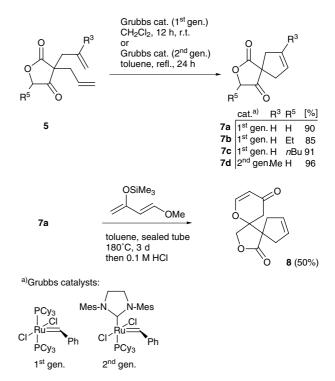


Keywords: Tetronic acid; Metathesis; Spiro compounds; Microwave. * Corresponding author. Tel.: +49 0921 552680; fax: +49 0921 552671; e-mail: rainer.schobert@uni-bayreuth.de

annulated or 3,4-fused butanolides as occurring in natural products.

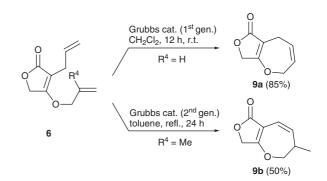
The most serious obstacle to using Pd-mediated allylation protocols⁸ is the mobility of allyl residues attached to either the 3- or the 4-position of tetronic acids in the presence of Pd⁰, which fact reflects the reversibility of the C-C bond formation step under the customary conditions. Both 3-allyltetronic acid 3^9 and 4-O-allyl tetronates 4 when treated with $Pd(Ph_3P)_4$ in toluene at ca. 80 °C 'disproportionated' to give 30-40% of the corresponding 3,3-diallyldihydrofuran-2,4-diones 5 besides a similar quantity of easy to separate de-allylated tetronic acids. The latter can also be converted to 5 by reaction with an excess of external allyl acetate in the presence of Pd⁰ and of a base such as DBU to increase their solubility. As depicted in Scheme 1, symmetrical 3,3-diallyldihydrofuran-2,4-diones 5a-c were obtained in good yields from 4-O-allyltetronates 4 and allyl acetate.¹⁰ 3-Allyl-3-cinnamyldihydrofuran-2,4-dione 5d, however, was formed merely as a mixture with 5a and 3,3-dicinnamyldihydrofuran-2,4-dione, when allyltetronate 4a was treated with cinnamyl acetate (Scheme 1).


Yet 'mixed' 3,3-diallyl derivatives were accessible in two other ways. The first one exploits the fact that the above mentioned Pd-mediated scrambling of allyl residues requires elevated temperatures. By deprotonating 3-allyltetronic acids with sodium alkoxides well soluble sodium tetronate salts with a more strongly nucleophilic tetronate anion are obtained.¹¹ These in turn are readily allylated by a second external allyl acetate at 0 °C


Scheme 1. 3,3-Diallyldihydrofuran-2,4-diones 5 from 4-O-allyltetronates and allyl acetates under Tsuji conditions; (a) + 5a (26%) + 3,3-dicinnamyldihydrofuran-2,4-dione (36%).

without scrambling of the allyl residues at a noticeable degree (Scheme 2, top).¹² An alternative high-yielding route to mixed 3,3-diallyldihydrofuran-2,4-diones **5** consists of the esterification of 3-allyltetronic acids such as **3** with a different allylic alcohol¹³ followed by a thermal Claisen rearrangement of the intermediate 4-*O*-allyl 3-allyltetronate **6** (Scheme 2, bottom).¹⁴ When carried out under microwave irradiation the Claisen step proceeded quantitatively and without allyl scrambling. The esterification of **3** with methallylic alcohol to give **6a** was only possible under modified Mitsunobu conditions¹⁵ while both the Steglich–Hassner as well as our own isourea¹⁶ method failed completely.

Ring closing metathesis reactions were then carried out with bis-allyl tetronates of types **5** and **6** to build up the structural target motifs of butanolides with 3,3-spirocyclopentenyl, with 4,4-spiro-oxacycloalkanyl and with 3,4-cycloalkanyl annulation. Metathesis reaction of various 3,3-diallylfurandiones **5** with Grubbs catalysts gave 3,3-spirocyclopentenyldihydrofuran-2,4-diones **7** in good to excellent yields (Scheme 3, top). While first generation catalyst (Pcy₃)₂Cl₂Ru=CHPh was efficacious in the RCM of derivatives with two C₃H₅ residues,¹⁷ a second generation catalyst and harsh conditions were required for the ring closure of **5e**, most likely due to sterical hinderance.^{18,19} Residual Ru compounds responsible for a greyish to black hue of the crude prod-


Scheme 2. Mixed 3,3-diallyldihydrofuran-2,4-diones 5d,e; (a) + 5a (8%) + 3,3-dicinnamyldihydrofuran-2,4-dione (5%).

Scheme 3. 3,3-Spirocyclopentenyldihydrofuran-2,4-diones 7 and 3,4-dispirobutanolide 8.

ucts were removed by treatment with 4 mol % of lead tetraacetate according to Paquette et al.²⁰ We then treated **7a** with ethyl sorbinate in order to complete the bakkane framework via a Diels–Alder reaction with the cyclopentene. No reaction was observed under classical thermal (PhMe, sealed tube, 180 °C) nor under Lewis acid catalysed [2 mol % Yb(OTf)₃ or EtAlCl₂, 180 °C, PhMe] conditions. However, when compound **7a** was heated with Danishefsky's diene in a sealed tube in toluene the corresponding hetero-Diels Alder 3,4-dispiro adduct **8** was obtained instead in 50% yield after chromatography and recrystallisation (Scheme 3, middle).²¹

RCM of 4-*O*-allyl 3-allyltetronates **6** led to the corresponding furo[3,4-b]dihydrooxepines **9**. Again, the allyl-methallyl derivative **6a** required a second generation Grubbs catalyst and forcing conditions causing a concomitant shift of the double bond into a conjugated position furnishing **9b** (Scheme 4).^{17,18} Alkene

Scheme 4. Furo[3,4-b]dihydrooxepines 9.

isomerisation as a side or a follow-up reaction to metathesis processes initiated with Grubbs catalysts has been frequently reported, especially for allylic alcohols and allyl ethers.²²

In conclusion two efficient syntheses of 3,3-diallyldihydrofurandiones-2,4 **5** with different allyl residues were developed, one by Pd-catalysed Tsuji allylation of the sodium salts of 3-allyltetronic acids, the other by Claisen rearrangement of 4-*O*-allyl 3-allyltetronates. Ring-closing metathesis of **5** with Grubbs catalysts furnished 3-spirocyclopentenyldihydrofurandiones-2,4 7 while RCM of the 4-*O*-allyl 3-allyltetronate precursors gave furo[3,4-*b*]dihydrooxepinones **9**. In line with the known literature on RCM, the proper choice of the catalyst very much depends on the degree of substitution of the olefins.

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (Grant Scho 402/7-1) is gratefully acknowledged.

References and notes

- (a) Fischer, N. H.; Oliver, E. J.; Fischer, H. D. In *Progress* in the Chemistry of Organic Natural Products; Herz, W., Grisebach, H., Kirby, G. W., Eds.; Springer: New York, 1979; Vol. 38, Chapter 2; (b) Silva, L. F. Synthesis 2001, 671–689.
- (a) Abe, N.; Onoda, R.; Shirahata, K.; Kato, T.; Woods, M. C.; Kitahara, Y. *Tetrahedron Lett.* **1968**, *9*(3), 369–373;
 (b) Brocksom, T. J.; Coelho, F.; Depres, J.; Greene, A. E.; Freire de Lima, M. E.; Hamelin, O.; Hartmann, B.; Kanazawa, A.; Wang, Y. J. Am. Chem. Soc. **2002**, *124*, 15313–15325.
- Edwards, R. L.; Maitland, D. J.; Oliver, C. L.; Pacey, M. S.; Shields, L.; Whalley, A. J. S. J. Chem. Soc., Perkin Trans. 1 1999, 715–719.
- Momose, T.; Toyooka, N.; Nishio, M.; Shinoda, H.; Fujii, H.; Yanagino, H. *Heterocycles* 1999, 51(6), 1321–1343.
- Kotha, S.; Mandal, K.; Deb, A. C.; Banerjee, S. Tetrahedron Lett. 2004, 45, 9603–9605.
- (a) Prat, M.; Moreno-Mañas, M.; Ribas, J. *Tetrahedron* 1988, 44(23), 7205–7212; (b) Moreno-Mañas, M.; Prat, M.; Ribas, J.; Virgili, A. *Tetrahedron Lett.* 1988, 29(5), 581–584.
- Kotha, S.; Deb, A. C.; Kumar, R. V. Bioorg. Med. Chem. Lett. 2005, 15(4), 1039–1043.
- Tsuji, J. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; John Wiley & Sons, 2002, p 1669.
- Schobert, R.; Gordon, G. J.; Mullen, G.; Stehle, R. Tetrahedron Lett. 2004, 45(6), 1121–1124.
- Compound 5a⁷ from 4a—typical procedure: 4a¹² (500 mg, 3.6 mmol), Pd(Ph₃P)₄ (80 mg, 2 mol %), allyl acetate (390 mg, 3.9 mmol) and toluene (10 mL) were stirred in the dark at 85 °C for 2 h. Filtration over Celite[®], removal of the solvent and column chromatography (CC) (silica gel 60; hexane/Et₂O, 2:3, v/v; R_f 0.78) left a colourless liquid (418 mg, 65%); v_{max} (ATR)/cm⁻¹ 1802, 1752, 1214; ¹H NMR (300 MHz, CDCl₃): δ 2.44 (4H, d, ³J 7.3 Hz), 4.35 (2H, s), 5.08 (2H, d, ³J 9.7 Hz), 5.09 (2H, d, ³J 17.3 Hz),

5.57 (2H, ddt, ³J 7.3, 9.7, 17.3 Hz); ¹³C NMR (75.5 MHz, CDCl₃): δ 38.9, 53.9, 73.2, 121.2, 129.9, 175.6, 209.9; *m*/z (EI) 180 (M^+ , 2%), 139 (64%), 79 (95%), 41 (100%). Compound **5b**: R_f 0.73 (hexane/Et₂O, 3:2), red oil; v_{max} (ATR)/cm⁻¹ 1797, 1751, 1211; ¹H NMR (300 MHz, CDCl₃): δ 0.98 (3H, t, ³J 7.5 Hz), 1.51–1.69 (1H, m), 1.72–1.89 (1H, m), 2.41 (4H, d, ³J 7.7 Hz), 4.29 (1H, dd, ³J 4.5, 8.6 Hz), 5.01–5.12 (4H, m), 5.46–5.65 (2H, m); ¹³C NMR (75.5 MHz, CDCl₃): δ 9.6, 23.8, 37.9, 40.3, 54.5, 85.7, 120.8, 121.2, 129.9, 130.8, 175.3, 211.7; m/z (EI) 208 (M⁺, 5%), 166 (33%), 79 (100%), 41 (79%). Compound **5c**: $R_{\rm f}$ 0.83 (hexane/Et₂O, 3:2), yellow oil; $v_{\rm max}$ (ATR)/cm⁻¹ 1798, 1755, 1214; ¹H NMR (300 MHz, CDCl₃): δ 0.83 (3H, t, ³*J* 7.2), 1.10–1.40 (4H, m), 1.40–1.60 (1H, m), 1.65– 1.87 (1H, m), 2.41 (4H, dm, ³J 7.5 Hz), 4.34 (1H, dd, ³J 4.3, 9.1 Hz), 5.05 (2H, m), 5.11 (2H, m), 5.45–5.70 (2H, m); ¹³C NMR (75.5 MHz, CDCl₃): δ 13.6, 22.0, 27.3, 30.1, 38.1, 40.3, 54.5, 84.7, 120.8, 121.2, 129.9, 130.8, 175.4, 211.9; m/z (EI) 236 (M⁺, 5%), 194 (14%), 79 (100%), 41 (29%).

- Sodeoka, M.; Sampe, R.; Kojima, S.; Baba, Y.; Morisaki, N.; Hashimoto, Y. *Chem. Pharm. Bull.* 2001, 49(2), 206– 212.
- 12. Compound 5d from 3: 3 (200 mg, 1.43 mmol), NaOMe (79.5 mg, 1.43 mmol) and dry MeOH (10 mL) were stirred at rt for 2 h. The solvent was removed to give a hygroscopic sodium salt, which was re-dissolved in THF/MeOH and stirred with Pd(Ph₃P)₄ (32 mg, 2 mol %) and cinnamyl acetate (276 mg, 1.57 mmol) at 0 °C in the dark for 2 h. Filtration over Celite[®], concentration and CC (silica gel 60; hexane/Et₂O, 2:3, v/v; $R_{\rm f}$ 0.72) left a colourless oil (292 mg, 80%); v_{max} (ATR)/cm⁻ 1801, 1753, 1218; ¹H NMR (300 MHz, CDCl₃): δ 2.48 (2H, d, ³J 7.3 Hz), 2.59 (2H, d, ³J 7.4 Hz), 4.30 (2H, s), (211, d, ^{3}J) (211, d, ^{3}J) (211, d, ^{3}J) (211, d), (211, d) m); ¹³C NMR (75.5 MHz, CDCl₃): δ 38.3, 39.1, 54.3, 73.3, 120.8, 121.3, 126.4, 127.9, 128.3, 129.9, 136.0, 136.1, 175.8, 210.1; *m*/*z* (EI) 256 (M⁺, 4%), 215 (6%), 117 (100%), 104 (35%).
- 13. Compound 6a from 3: DIAD (940 mg, 4.65 mmol) was added dropwise to Ph₃P (1.22 g, 4.65 mmol) in THF (10 mL) at -78 °C whereupon a white solid formed. 3 (500 mg, 3.57 mmol) in THF (5 mL) was slowly added at -78 °C. After addition of methallylic alcohol (390 mg, 5.41 mmol) to the clear solution it was warmed to rt while stirring and treated with aqueous NaHCO3 solution (pH 10) and Et₂O (3×10 mL). Drying and concentrating of the organic layers and CC (silica gel 60; hexane/Et₂O, 2:3, v/v; $R_{\rm f}$ 0.57) of the residue afforded a colourless oil (519 mg, 75%); v_{max} (ATR)/cm⁻¹ 1746, 1667, 1045; ¹H NMR (300 MHz, CDCl₃): δ 1.72 (3H, s), 2.94 (2H, d, ³J 6.2 Hz), 4.49 (2H, s), 4.64 (2H, s), 4.95 (2H, m), 4.96 (2H, mc), 5.81 (1H, ddt, ${}^{3}J$ 6.2, 10.0, 17.0 Hz); ${}^{13}C$ NMR (75.5 MHz, CDCl₃): δ 18.7, 26.2, 65.5, 73.6, 101.2, 113.8, 115.5, 134.2, 139.2, 172.4, 174.3; m/z (EI) 194 (M⁺, 10%), 161 (27%), 139 (60%), 55 (100%).
- 14. Compound 5e from 6a: 6a (500 mg, 2.57 mmol) in toluene (8 mL) was irradiated in a microwave oven (CEM Discovery[®]) at 190 °C for 20 min. Removal of the solvent and CC (silica gel 60; hexane/Et₂O, 2:3, v/v; *R*_f 0.76) left a colourless oil (500 mg, 100%); *v*_{max} (ATR)/cm⁻¹ 1804, 1754, 1044; ¹H NMR (300 MHz, CDCl₃): δ 1.65 (3 H, dd, ⁴J 0.9, 1.4 Hz), 2.47 (2H, ddd, ³J 7.3, ⁴J 1.4, 1.2 Hz), 2.50 (2H, s), 4.38 (2H, s), 4.68 (1H, m), 4.83 (1H, m), 5.12 (1H, m), 5.13 (1H, m), 5.60 (1H, ddt, ³J 17.3, 9.7, 7.3 Hz); ¹³C NMR (75.5 MHz, CDCl₃): δ 23.8, 40.3, 42.6, 54.2, 73.6, 116.1, 121.4, 129.8, 139.4, 176.2, 210.2; *m/z* (EI) 194 (M⁺,

2%), 176 (50%), 139 (88%), 55 (100%). Satisfactory microanalyses (C, 0.2; H, 0.1) were obtained for **5a–e**.

- 15. Tahir, H.; Hindsgaul, O. J. Org. Chem. 2000, 65, 911-913.
- 16. Schobert, R.; Siegfried, S. Synlett 2000, 686-687.
- 17. Compound 7a from 5a-typical procedure: 5a (330 mg, 1.8 mmol) dissolved in dry CH₂Cl₂ (15 mL) was treated with (Pcy₃)₂Cl₂RuCHPh (30 mg, 2 mol %) and the mixture was stirred for 24 h at rt. Pb(OAc)₄ (32 mg, 4 mol %) was added and stirring was continued for a further 20 h. Filtration over a Celite[®] plug (3 cm), concentration of the filtrates and CC (silica gel 60; Et₂O; R_f 0.64) left a white powder (250 mg, 90%), mp 72 °C; v_{max} (ATR)/cm⁻¹ 1781, 1745, 1246, 1047; ¹H NMR (300 MHz, CDCl₃): δ 2.70-2.92 (4H, m), 4.65 (2H, s), 5.65 (2H, s); ¹³C NMR (75.5 MHz, CDCl₃): δ 42.4, 50.8, 72.1, 127.4, 177.6, 209.3; m/z (EI) 152 (M⁺, 80%), 110 (41%), 94 (33%), 66 (100%). Compound 7b: $R_f 0.63$ (hexane/Et₂O, 2:3), yellow oil; v_{max} (ATR)/cm⁻¹ 1796, 1747, 1242, 1046; ¹H NMR (300 MHz, CDCl₃): δ 0.99 (3H, t, ³J 7.4 Hz), 1.70–1.88 (1H, m), 1.88– 2.05 (1H, m), 2.68 (1H, d, ²J 16.5 Hz), 2.74 (1H, d, 16.2 Hz), 2.86 (1H, d, 2J 16.5 Hz), 2.86 (1H, d, 2J 16.2 Hz), 4.70 (1H, dd, 3J 4.8, 7.0 Hz), 5.63 (2H, s); 13 C NMR (75.5 MHz, CDCl₃): δ 8.8, 24.7, 42.1, 43.2, 50.9, 84.7, 126.9, 127.6, 177.4, 211.7; *m*/*z* (EI) 180 (M⁺, 73%), 110 (13%), 94 (95%), 66 (100%). Compound 7c: $R_{\rm f}$ 0.59 (hexane/Et₂O, 2:3), yellow oil; ν_{max} (ATR)/cm⁻¹ 1798, 1749, 1250, 1052; ¹H NMR (300 MHz, CDCl₃): δ 0.84 (3H, t, ³J 6.9 Hz), 1.22–1.45 (4H, m), 1.60–1.76 (1H, m), 1.77–1.95 (1H, m), 2.65 (1H, d, ²J 15.7 Hz), 2.70 (1H, d, ²J 15.5 Hz), 2.82 (1H, d, ${}^{2}J$ 15.7 Hz), 2.83 (1H, d, ${}^{2}J$ 15.5 Hz), 4.71 (1H, dd, ${}^{3}J$ 4.5, 7.9 Hz), 5.60 (2H, s); ${}^{13}C$ NMR (75.5 MHz, CDCl₃): δ 13.5, 21.9, 26.6, 30.9, 42.2, 43.1, 50.8, 83.7, 126.9, 127.5, 177.3, 211.7; *m*/*z* (EI) 208 (M⁺, 21%), 110 (5%), 94 (100%), 66 (84%). Compound 9a: R_f 21/32 (hexane/Et₂O, 2:3), white powder, mp 86 °C; v_{max} (ATR)/cm⁻¹ 1734, 1662, 1019, 921; ¹H NMR (300 MHz, CDCl₃): δ 3.08 (2H, ddd, ³J 5.6, ⁴J1.5, ⁵J 1.6 Hz), 4.46 (2H, t, ⁵J 1.6 Hz), 4.73 (2H, dd, ³J 7.0, ⁴J 0.4 Hz), 5.96 (1H, dtt, ³J 7.0, 10.4, ⁴J 1.5 Hz), 6.25 (1H, ddt, ³J 5.6, 10.4, ⁴J 0.4 Hz), 5.96 (1H, dtt, ³J 7.0, 10.4, ⁴J 1.5 Hz), 6.25 (1H, ddt, ³J 5.6, 10.4, ⁴J 0.4 Hz), 5.96 (1H, dtt, ³J 7.0, 10.4, ⁴J 1.5 Hz), 6.25 (1H, ddt, ³J 5.6, 10.4, ⁴J 0.4 Hz), 5.96 (1H, dtt, ³J 7.0, 10.4, ⁴J 1.5 Hz), 6.25 (1H, ddt, ³J 5.6, 10.4, ⁴J 0.4 Hz), 5.96 (1H, dtt, ⁴J 0.4 Hz), 5.96 (1H, dtt, ⁴J 0.4 Hz), 5.96 (1H, dtt, ⁴J 0.4 Hz), 5.96 ^(11, 0, 0, 1) 13 C NMR (75.5 MHz, CDCl₃): δ 22.1, 66.7, 67.6, 99.6, 125.4, 137.2, 174.1, 174.2; m/z (EI) 152 (M⁺, 70%), 66 (100%), 54 (49%), 39 (59%).
- 18. Compound **7d** from **5e**—typical procedure: **5e** (250 mg, 1.8 mmol) dissolved in dry toluene (15 mL) was treated with benzylidene-[1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]-dichloro(tricyclohexylphosphane)ruthenium C₄₆H₆₅Cl₂N₂PRu (44 mg, 4 mol %) and the mixture was stirred at 110 °C for 24 h. Pb(OAc)₄ (23 mg, 4 mol %) was added at rt and stirring was continued for a further 20 h. Workup as for **7a** gave a colourless oil of R_f 0.46 (Et₂O); v_{max} (ATR)/cm⁻¹ 1807, 1791, 1750, 1042; ¹H NMR (300 MHz, CDCl₃): δ 1.72 (3H, m), 2.60 (1H, dm,

²J 15.3 Hz), 2.73 (1H, dm, ²J 15.3 Hz), 2.69 (1H, dm, ²J 17 Hz), 2.81 (1H, d, ²J 17 Hz), 4.63 (2H, d, ⁵J 1.7 Hz), 5.22 (1H, m); ¹³C NMR (75.5 MHz, CDCl₃): δ 15.6, 42.6, 45.4, 51.5, 72.1, 120.7, 137.4, 177.7, 209.2; *m/z* (EI) 166 (M⁺, 64%), 124 (41%), 93 (36%), 79 (100%). Compound **9b**: $R_{\rm f}$ 0.77 (Et₂O), colourless oil; $\nu_{\rm max}$ (ATR)/cm⁻¹ 1747, 1647, 1009; ¹H NMR (300 MHz, CDCl₃): δ 1.10 (3H, d, ³J 7.4 Hz), 2.77 (1H, m), 4.14 (1H, dd, ³J 5.9, 10.9 Hz), 4.26 (1H, dd, ³J 1.1, 10.9 Hz), 4.58 (2H, s), 5.85 (1H, dd, ³J 5.1, 10.6 Hz), 6.05 (1H, d, ³J 10.6 Hz); ¹³C NMR (75.5 MHz, CDCl₃): δ 16.6, 37.8, 66.4, 76.8, 102.3, 117.6, 137.0, 173.0, 173.4; *m/z* (EI) 166 (M⁺, 100%), 151 (59%), 124 (42%), 79 (74%). Satisfactory microanalyses (C, 0.2; H, 0.2) were obtained for **7a–c** and **9a,b**.

- A similar observation has been reported recently for the RCM of 2,3-bisalkenylcyclopentanones to give [5.7]bicycles: Michalak, K.; Michalak, M.; Wicha, J. *Tetrahedron Lett.* 2005, 46(7), 1149–1153.
- Paquette, L. A.; Schloss, J. D.; Efremov, I.; Fabris, F.; Gallou, F.; Méndez-Andino, J.; Yang, J. Org. Lett. 2000, 2(9), 1259–1261.
- 21. Compound 8: 1-Methoxy-3-trimethylsiloxy-1,3-butadiene (490 mg, 2.84 mmol) in toluene (10 mL) was treated with 7a (220 mg, 1.45 mmol) at 0 °C and the resulting mixture was heated in a sealed tube for 3 days at 180 °C. 15 mL of a mixture of THF (35 mL) and 0.1 N aqueous HCl (15 mL) were added at rt and stirring continued for 1 min. The residual acid solution (35 mL) was added and the resulting solution poured into AcOEt (50 mL) and treated with H₂O (25 mL). The organic layer was separated and the aqueous one was extracted with AcOEt $(4 \times 20 \text{ mL})$. The combined extracts were dried and concentrated and the residue was purified by CC (silica gel 60; Et₂O; $R_{\rm f}$ 0.53); white powder, mp 113 °C; v_{max} (ATR)/cm⁻¹ 1767, 1675, 1039, 1005; ¹H NMR (300 MHz, CDCl₃): δ 2.46 (1H, dd, ²J 17.2, ⁴J 1.1 Hz), 2.53 (2H, m), 2.81 (1H, d, ²J 17.2 Hz), 2.71–2.82 (1H, m), 2.84–2.95 (1H, m), 4.00 (1H, d, ${}^{2}J$ 10.6 Hz), 4.51 (1H, d, ${}^{2}J$ 10.6 Hz), 5.46 (1H, dd, ${}^{3}J$ 6.2, ⁴J 1.1 Hz), 5.50–5.57 (1H, m), 5.70–5.77 (1H, m), 7.23 (1H, d, ³J 6.2 Hz); ¹³C NMR (75.5 MHz, CDCl₃): δ 35.3, 37.4, 38.6, 54.9, 71.5, 88.9, 107.2, 125.9, 130.1, 160.9, 178.8, 188.5; m/z (EI) 220 (M⁺, 46%), 110 (97%), 91 (100%), 71 (91%). Found: C, 65.3; H, 5.6. C₁₂H₁₂O₄ requires C, 65.5; H, 5.5.
- (a) Sutton, A. E.; Seigal, B. A.; Finnegan, D. F.; Snapper, M. L. J. Am. Chem. Soc. 2002, 124, 13390–13391; (b) Bourgeois, D.; Pancrazi, A.; Nolan, S. P.; Prunet, J. J. Organomet. Chem. 2002, 643/644, 247–252; (c) Sworen, J. C.; Pawlowa, J. H.; Case, W.; Lever, J.; Wagener, K. B. J. Mol. Cat. A: Chem. 2003, 194, 69–78; (d) Lehman, S. E.; Schwendeman, J. E.; O'Donnell, P. M.; Wagener, K. B. Inorg. Chim. Acta 2003, 345, 190–198.