Bioorganic & Medicinal Chemistry Letters 22 (2012) 4869-4872

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Identification of a dual δ OR antagonist/ μ OR agonist as a potential therapeutic for diarrhea-predominant Irritable Bowel Syndrome (IBS-d)

Henry J. Breslin^{†,*}, Craig J. Diamond[†], Robert W. Kavash[†], Chaozhong Cai, Alexey B. Dyatkin[†], Tamara A. Miskowski[†], Sui-Po Zhang, Paul R. Wade[†], Pamela J. Hornby, Wei He[†]

Janssen Research and Development, L.L.C. (formerly known as Johnson and Johnson Pharmaceutical Research and Development, L.L.C.), Welsh and McKean Roads, PO Box 776, Spring House, PA 19477-0776, USA

ARTICLE INFO

Article history: Received 16 March 2012 Revised 4 May 2012 Accepted 8 May 2012 Available online 24 May 2012

Keywords: Mixed δ OR antagonist/μ OR agonist Opioid receptor Irritable Bowel Syndrome IBS-d

ABSTRACT

A small set of acyclic analogs **5** were prepared to explore their structure–activity relationships (SARs) relative to heterocyclic core, opioid receptor (OR) agonists **4**. Compound **51** was found to have very favorable OR binding affinities at the δ and μ ORs ($r K_i \delta = 1.3 \text{ nM}$; $r K_i \mu = 0.9 \text{ nM}$; $h K_i \mu = 1.7 \text{ nM}$), with less affinity for the κ OR (gp $K_i \kappa = 55 \text{ nM}$). The OR functional profile for **51** varied from the previously described dual δ/μ OR agonists **4**, with **51** being a potent, mixed dual δ OR antagonist/ μ OR agonist [δ IC₅₀ = 89 nM (HVD); μ EC₅₀ = 1 nM (GPI); κ EC₅₀ = 1.6 μ M (GPC)]. Compound **51** has progressed through a clinical Phase II Proof of Concept study on 800 patients suffering from diarrhea-predominant Irritable Bowel Syndrome (IBS-d). This Phase II study was recently completed successfully, with **51** demonstrating statistically significant efficacy over placebo.

© 2012 Elsevier Ltd. All rights reserved.

Compounds that modulate opioid receptors (ORs) have long been accepted as a standard of care for pain management (e.g., morphine, **1**, and fentanyl, **2**), and more recently have become appreciated as therapeutics for their gastrointestinal (GI) motility modulation (e.g., loperamide, **3**) (Fig. 1).^{1,2} The ORs are categorized into three major subclasses, δ , μ , and κ , with their classifications based on well defined pharmacological profiles.²

We previously reported on a series of phenyl imidazoles **4** that demonstrated potent dual δ/μ OR agonist activities, both in vitro and in vivo (Fig. 2).^{3,4} Initially described was the discovery of **4a**, a potent δ OR agonist whose OR activity was directly correlated with modulation of GI motility in vivo.³ Subsequently reported was the improvement of **4a**'s overall OR activities by exploring variations of its Tyr moiety (arbitrarily labeled 'A' segment), ultimately yielding the more potent compounds **4b**–**e** at both the δ and μ ORs.⁴

Following are described secondary structure-activity relationship (SAR) endeavors evaluating OR activities relative to alterations of the central tetrahydroisoquinoline (Tic) and piperidine 'B' segments of analogs **4a–e**. Recognizing that this SAR exploration could prove laboriously slow if various core substituted heterocycles had to be synthesized in lieu of **4a–e**'s Tics and piperidines, we chose to prepare more readily accessible acyclic analogs akin to **5** (Fig. 3) with the hope they would prove equivalent, or hopefully better, as OR ligands. Key experimental findings are discussed below for some 'B' acyclic analogs **5**. These analogs **5** are summarized in Table 1, along with their respective δ and μ OR binding affinities.

An initial set of acyclic analogs (**5a–5d**) had modest OR binding affinities, considerably poorer than parent cyclic analogs **4a–c** ($\Delta K_i \delta$: >200-fold; $\Delta K_i \mu$: 20–250-fold). For analogs such as **5a–5d**, where the amide R' is H, it is well established that the expected stereochemical preference around the 2° amide bond is more predominately pseudo trans (Fig. 4) relative to analogous 3° amides. Conversely, there is a higher percentage of pseudo cis configuration expected for 3° amides such as **4**, which is the observed energy-minimized modeling configuration of **4a**.³ This pseudo cis/trans amide conjecture for analogs **4** and **5** is a potential contributing factor for the noted relative loss of OR binding affinities for **5a–5d**. Further supportive evidence for this pseudo cis/trans amide supposition is that the additionally R'' sterically encumbered **5c** (R' = i-Pr; K_i $\delta = 5198$ nM; $K_i \mu = 121$ nM) is considerably less active than **5b**

^{*} Corresponding author.

E-mail address: HBreslin60@gmail.com (H.J. Breslin).

 $^{^\}dagger\,$ Not currently employed within the Janssen organization.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2012.05.042

			OR Binding		OR Functional		
	Ar	R	Х	$r K_i \\ \delta (nM)$	r K _i μ (nM)	$\delta EC_{_{50}}$	$\mu EC_{_{50}}$
4a	Fused Ph	Н	OH	0.9	55	19	2445
4b	Fused Ph	CH_3	OH	0.1	0.3	0.9	27
4c		CH_3	OH	1.9	0.05	37	2
4d	Fused Ph	CH_3	CONH_2	0.06	1.4	22	161
4e		CH_3	$CONH_2$	14	0.13	135	9

Figure	2
--------	---

(R' = Me; $K_i \delta = 708$ nM; $K_i \mu = 17$ nM) or **5d** (R' = Bn; $K_i \delta = 255$ nM; $K_i \mu = 13$ nM). Not surprisingly, also observed from this preliminary set of analogs was improved OR binding affinities for the 2,6-di-Mephenyl substituted Tyr (DMT) analog **5b** (R = Me; $K_i \delta = 708$ nM; $K_i \mu = 17$ nM) relative to Tyr analog **5a** (R = H; $K_i \delta = 5660$ nM; $K_i \mu = 1260$ nM). These improved OR affinity trends for DMT analogs are consistent with our previously reported work, ⁴ and further illustrate the utility of the DMT discovery by Lazarus and co-workers.⁵

Next evaluated was the SAR for varied R' and R" alkyl substitutions (5e-i), where R and X were held constant as Me and OH, respectively (i.e., with DMT as the 'A' substituent). Pleasingly, OR binding affinities for the R' alkyl substituted acyclic analogs 5 were more reflective overall of the favorable OR binding affinities for parent cyclic structures 4b and 4c than had been observed for the R' = H analogs. For example, relatively consistent binding affinities for the μ OR were seen for acyclic analog **5g** (R' = Me; R'' = Me; $K_i \delta = 15 \text{ nM}; K_i \mu = 0.1 \text{ nM}$) and cyclic parent analog **4c** (K_i δ = 1.9 nM; $K_i \mu$ = 0.05 nM), although there was still a comparative loss (~7 fold) of binding affinity at the δ OR for **5g**. Weighing the relative activities of **5g** to **5e** (R' = Me; R'' = H; $K_i \delta = 26 \text{ nM}$; K_i μ = 0.3 nM) suggested a slight enhancement in OR binding affinities by having a methyl group as R''. A more prominent example where the OR binding affinities were enhanced by the R["] equals Me substituent was observed when comparing **5h** (R' = i-Pr; $R'' = Me; K_i \delta = 1.4 \text{ nM}; K_i \mu = 0.03 \text{ nM}$ with **5f** (R' = i-Pr; $R'' = H; K_i$ δ = 15 nM; $K_i \mu$ = 0.1 nM). Most encouraging about the binding affinities for acyclic analog 5h was that they mirrored those of a cyclic relative, **4c** ($K_i \delta = 1.9 \text{ nM}$; $K_i \mu = 0.05 \text{ nM}$). The benzyl (Bn) analog **5i** also showed very favorable OR binding affinities (R' = Bn; R'' = Me; $K_i \delta = 1.5 \text{ nM}$; $K_i \mu = 0.03 \text{ nM}$). Somewhat unexpected, the relative δ/μ OR binding affinities for benzyl analog **5i** did not

closely resemble those for its more closely related cyclic Tic analogs **4a**, **4b**, and **4d**, whose relative δ/μ OR binding affinities generally favored better binding affinity at the δ OR.

Having identified **5i** with exceedingly desirable OR binding affinities ($K_i \delta = 1.5 \text{ nM}$; $K_i \mu = 0.03 \text{ nM}$), we subsequently replaced its DMT moiety with a DMT bioisostere, 4-(aminocarbonyl)-2,6-dimethyl-Phe,⁴ to give compound **5j**. Analog **5j** ($K_i \delta = 12 \text{ nM}$; $K_i \mu = 0.3 \text{ nM}$) possessed about 10-fold weaker binding affinities relative to **5i** at both the δ and μ ORs. Tighter binding at the δ and μ ORs was revived by exploring various substitutions on the Bn group of **5i**, as exemplified by **5k** ($K_i \delta = 0.5 \text{ nM}$; $K_i \mu = 1.0 \text{ nM}$) and **5l** ($K_i \delta = 1.3 \text{ nM}$; $K_i \mu = 0.9 \text{ nM}$).

The compounds with low nanomolar binding affinities at the δ OR were next evaluated for δ OR functional agonist activities, as measured by a cell membrane-based $[^{35}S]GTP\gamma S$ assay⁶ (Table 1). Compound **5h** ($K_i \delta = 1.4 \text{ nM}$; $\delta \text{ EC}_{50} = 103 \text{ nM}$) showed modest δ OR agonist functional activity, despite very promising δ OR binding affinity. Compounds **5i** ($K_i \delta = 1.5 \text{ nM}$; $\delta \text{ EC}_{50} = 20 \text{ nM}$) and **5j** (K_i δ = 12 nM; δ EC₅₀ = 35 nM) had similar δ OR agonist functional activities, even though their OR binding affinities were ~10-fold different. The comparable OR functional results for 5i and 5j shares additional credence to the previously reported conclusion that the 4-(aminocarbonyl)-2,6-dimethyl-Phe group is a good bioisostere for the DMT moiety.⁴ Compounds **5k** and **5l** exhibited no δ OR agonist functional activities at the maximum testing concentration of 10 µM, and actually inhibited [35S]GTPγS binding stimulation of the δ OR agonist, SNC 80. Noteworthy, the inclusion of a meta carboxy moiety on the phenyl ring of R' was the added structural commonality for both of these compounds that resulted in loss of all $\boldsymbol{\delta}$ OR agonist functional activity, despite that both analogs maintained very favorable δ OR binding affinities. Based on the interesting δ OR functional profiles for **5k** and **5l**, both compounds were subsequently evaluated for μ OR functional activities. Compound **5l** (μ EC₅₀ = 1 nM) proved ~60-fold more potent as a μ OR agonist relative to **5k** (μ EC₅₀ = 61 nM), where the μ OR functional activity was also determined by a GTP_γS assay.⁶

Because of **51**'s interesting preliminary δ OR functional result. in conjunction with its promising u OR functional activity, it was more extensively profiled biologically. Foremost, 51 was found to have potent δ OR antagonist activity (δ IC₅₀ = 89 nM), based on a hamster vas deferens (HVD) tissue assay.⁷ Identifying a dual δ OR antagonist/µ OR agonist compound was viewed as a potentially favorable finding, based on the reports of attenuated dependence liability for such dual acting ligands⁸ as well as possible analgesic advantages.⁹ In contrast to the \sim 1 nM δ and μ OR binding affinities for **51**, its affinity to the κ OR was lower (gp $K_i \kappa = 55$ nM) and in a guinea pig colon tissue assay was a rather weak agonist $(EC_{50} = 1.6 \,\mu\text{M})$.¹⁰ Compound **51**, as its dihydrochloride salt, also showed favorable pharmaceutical properties (Table 2 lists some key results), and had very positive outcomes in a battery of ex vivo and in vivo GI experiments, as recently determined.¹¹ Based on 51's overall compelling in vitro, ex vivo, and in vivo OR

Table 1

All final compounds **5** with respective δ and μ rat OR in vitro binding affinities. The binding assays may be associated with a margin of error between 10–20%. Compounds **5** identified with δ and μ OR functional activities were screened in an OR [³⁵S]GTP γ S in vitro functional assay; NT = not tested

	R	Х	R′	R″	OR binding		OR functional	
					<i>r K</i> _i δ (nM)	<i>r K</i> _i μ (nM)	δ EC ₅₀ (nM)	μ EC ₅₀ (nM)
5a	Н	OH	Н	Me	5660	1260	NT	NT
5b	CH ₃	OH	Н	Me	708	17	NT	NT
5c	CH ₃	OH	Н	<i>i</i> -Pr	5198	121	NT	NT
5d	CH ₃	OH	Н	Bn	255	13	NT	NT
5e	CH ₃	OH	Me	Н	26	0.3	NT	NT
5f	CH ₃	OH	<i>i</i> -Pr	Н	15	0.1	NT	NT
5g	CH ₃	OH	Me	Me	15	0.1	NT	NT
5h	CH ₃	OH	<i>i</i> -Pr	Me	1.4	0.03	103	NT
5i	CH ₃	OH	Bn	Me	1.5	0.03	20	NT
5j	CH ₃	CONH ₂	Bn	Me	12	0.3	35	NT
5k	CH ₃	CONH ₂	HOHO	Me	0.5	1.0	>10,000	61
51	CH ₃	CONH ₂	HO HO Z ^T	Me	1.3	0.9	>10,000	1.0

Psuedo trans tautomer more preferred for secondary amides relative to tertiary amides R NH₂ R HN X

HO

Pseudo cis tautomer less preferred for secondary amides relative to tertiary amides

Figure 4.

The preparation of analog **51** (Scheme 1) exemplifies a standard route used to synthesize acyclic compounds **5**. The commercially available starting materials Cbz-N-protected L-alanine (**6**) and aminobenzophenone (**7**) were coupled via a standard amidation reaction to give **8** in reasonable yield. Intermediate **8** was then treated with ammonium acetate under cyclization/dehydration conditions to cleanly generate imidazole **9**. The Cbz protecting group of **9** was

Table 2

.

Pharmaceutical properties for 51

Compound 51	
Solubility (pH 7.4) ^a	>1 mg/mL
Metabolic stability (HLM) ^a	$t_{1/2} = 150 \min$
hERG IC ₅₀ ^b	>10 µM
P-450 (3A4) IC_{50}^{c}	>20 µM

 $^{\rm a}$ Assays performed at Absorption Systems following their standard protocols, HLM = human liver microsomes. $^{\rm 13}$

^b Inhibition by **5I** of [³H]-astemizole binding to the hERG-encoded K⁺ channel.¹⁴
^c P450 (isoform 3A4) inhibition in HLM by **5I**.¹⁵

readily removed by Pd catalyzed hydrogenolysis to quantitatively give primary amine **10**. A sodium borohydride reductive amination of benzaldehyde **11** with **10** gave secondary amine **12**, which was subsequently coupled with acid **13**¹⁶ providing a 56% isolated return of **14**. The ester moiety of **14** was easily hydrolyzed with lithium hydroxide to give acid **15**, which was then treated with hydrogen chloride to remove the Boc protecting group with simultaneous precipitation of desired final product **5I** straightaway as its dihydrochloride salt.

In summary, appropriately substituted acyclic analogs **5**, derived by opening the heterocyclic cores of parent structures **4** (Fig. 3), had favorable δ and μ OR binding affinities and were consistent with the binding affinities previously reported for compounds **4**. However, dependent on the R' substituents of **5**, the compounds varied as δ OR agonists (E.g., **5h**, **5i**, **5j**; Table 1) or δ OR antagonists (E.g., **5k**, **5l**). From the set of acyclic analogs **5** evaluated, compound **51** was identified as a compound of particular interest, demonstrating potent dual δ OR antagonist/ μ OR agonist activities as well as possessing a favorable overall biological profile. Compound **51** is currently advancing through clinical studies, recently completing a large Phase II Proof of Concept study successfully where it showed statistically significant efficacy for IBS-d patients.

References and notes

1. Aldrich, J. V. Burger's Medicinal Chemistry and Drug Discovery In *Therapeutic Agents*; John Wiley Son, 1996; Vol. 3, pp 321–441. 5th ed.

- Fries, D. S. In *Principles of Medicinal Chemistry*; Foye, W. O., Lemke, T. L., Williams, D. A., Eds., 4th ed.; Willimams and Wilkins: Baltimore, MD, 1995; pp 247–269.
- Breslin, H. J.; Miskowski, T. A.; Rafferty, H. M.; Coutinho, S. V.; Palmer, J. M.; Wallace, N. H.; Schneider, C. R.; Kimball, E. S.; Ahang, S.-P.; Li, J.; Colburn, R. W.; Stone, D. J.; Martinez, R. P.; He, W. J. Med. Chem. 2004, 47, 5009.
- Breslin, H. J.; Cai, C.; Miskowski, T. A.; Coutinho, S. V.; Zhang, S.-P.; Hornby, P.; He, W. Bioorg. Med. Chem. Lett. 2006, 16, 2505.
- Bryant, S. D.; Jinsmaa, Y.; Salvadori, S.; Okada, Y.; Lazarus, L. H. *Biopolymers* 2003, 71, 86.
- 6. Purchased CHO-hg cell membrane was used for the GTPγS OR functional assays. Complete experimental details for these assays are described in Ref. 3.
- Complete experimental details for hamster vas deferens tissue assay: McKnight, A. T.; Corbett, A. D.; Marcoli, M.; Kosterlitz, H. W. Neuropharmacology 1985, 24, 1011.
- (a) Schiller, P. W. Life Sci. 2010, 86, 598; (b) Schiller, P. W.; Weltrowska, G.; Berezowska, I.; Nguyen, T. M.-D.; Wilkes, B. C.; Lemieux, C.; Chung, N. N. Biopolymers 2000, 51, 411.
- Dietis, N.; Guerrini, R.; Calo, G.; Salvadori, S.; Rowbotham, D. J.; Lambert, D. G. Br. J. Anaesth. 2009, 103, 38.
- 10. Complete experimental details for κ OR binding and functional assays are described in Ref. 11.
- Wade, P.R.; Palmer, J.M.; McKenney, S.; Kenigs, V.; Chevalier, K.; Moore, B.A.; Mabus, J.R.; Saunders, P.; Wallace, N.H.; Schneider, C.R.; Kimball, E.; Breslin, H.J.; He, W.; Hornby, P.J. Br. J. Pharmacol., in press.
- 12. Clinical Study: NCT01130272.
- 13. http://www.absorption.com/site/.
- Cardiovascular long QT syndrome was assessed by 51 inhibition of [3H]astemizole binding to the hERG-encoded channel; internal assay as described by Chiu, P. J.; Marcoe, K. F.; Bounds, S. E.; Lin, C. H.; Feng, J. J.; Lin, A.; Cheng, F. C.; Crumb, W. J.; Mitchell, R. J. Pharmacol. Sci. 2004, 95, 311.
- Experimental in vitro inhibition (IC₅₀) by **51** of cytochrome P450 3A4 using 6βhydroxylation of substrate testosterone in HLM; based on Wang, R. W.; Newton, D. J.; Liu, N.; Atkins, W. M.; Lu, A. Y. Drug Metab. Dispos. **2000**, 28, 360.
- Preparation of 13 previously reported: Cai, C.; Breslin, H. J.; He, W. Tetrahedron 2005, 61, 6836.