Journal of Organometallic Chemistry, 402 (1991) C23-C26 Elsevier Sequoia S.A., Lausanne
JOM 21521

Preliminary communication

Synthesis of the η^1 -phosphaalkyne complex trans-[FeH(P=CBu^t)(dppe)₂][BF₄] and its conversion into a η^1 -fluorophosphaalkene complex. Crystal structure of trans-[FeH(PF=CHBu^t)(dppe)₂][FeCl₂F₂]

Peter B. Hitchcock ^a, M. Amélia N.D.A. Lemos ^b, Mohamed F. Meidine ^a, John F. Nixon ^a and Armando J.L. Pombeiro ^b

^a School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex (UK)
 ^b Centro de Quimica Estrutural, Instituto Superior Tecnico, 1096 Lisbon Codex (Portugal)
 (Received October 17th, 1990)

Abstract

The first example of the transformation of an η^1 -ligated phosphaalkyne metal complex to an η^1 -phosphaalkene complex is reported.

The rapidly developing coordination chemistry of compounds with phosphorus—carbon multiple bonds constitutes a rich new field linking main-group element and transition metal chemistry [1].

A variety of ligating behaviour has already been established for such types of unsaturated organophosphorus compounds, but only a few examples are known of complexes containing η^1 -ligated phosphaalkynes, (P=CR), in agreement with the expected predominance of the η^2 -type coordination indicated by photoelectron spectroscopic studies [2]. The first complexes of the type trans-[M(η^1 -P=CR)₂-(R'PCH₂CH₂PR'₂)₂] (M = Mo or W; R = Bu^t or adamantyl, R' = alkyl or aryl), containing η^1 -ligated phosphaalkynes have only recently been prepared and structurally characterised [3].

In related studies on a variety of unsaturated linear molecules, such as isocyanides, nitriles or alkyne-derived species [4-6], we have established an η^1 -ligating mode at an axial position in octahedral transition metal complexes containing two trans-chelating diphosphine ligands. This result prompted us to investigate this type of binding site with the phosphaalkyne $P \equiv CBu^1$.

Treatment of a solution of *trans*-[FeHCl(dppe)₂] in tetrahedrofuran with $P \equiv CBu^t$ in the presence of TlBF₄ led to the η^1 -phosphaalkyne complex *trans*-[FeH(η^1 - $P \equiv CBu^t$)(dppe)₂][BF₄], 1, which was isolated as a yellow powder and identified by multinuclear NMR studies.

The ³¹P{¹H} NMR spectrum of 1 in CD₂Cl₂ exhibits the typical pattern expected for an [A₄X] spin system, consisting of a quintet ($\delta_p = -154$ ppm rel. to P(OMe)₃), assigned to the phosphaalkyne phosphorus (²J(P^AP^B) = 36 Hz) and a doublet with a four-fold intensity, ($\delta_p = -62.3$ ppm) due to the resonance of the dppe phosphorus nuclei. The same type of pattern is observed for the structurally related complex *trans*-[ReCl(η^1 -P=CBu^t)(dppe)₂], 3, which was obtained by displacement of N₂ from *trans*-[ReCl(N₂)(dppe)₂] *

In the $^{31}P^{-1}H$ coupled NMR spectrum of 1, the phosphaalkyne-P resonance changes into a doublet $(^2J(PH)_{trans} = 54.5 \text{ Hz})$ of quintets. $(J(P^AP^B) = 36 \text{ Hz})$, thus providing for the first time a value for the coupling constant between an *sp* hybridised phosphorus and a *trans*-hydride ligand. Surprisingly this value is only marginally higher than that for the *cis* phosphorus(dppe)-hydride coupling $(^2J(PH)_{cis} = 46.4 \text{ Hz})$ in *trans*-[FeH(CNMe)(dppe)₂][BF₄] **.

^{*} The details of this reaction will be reported separately.

^{**} M.A.N.D.A. Lemos and A.J.L. Pombeiro, unpublished.
*** Crystal data: C₅₇H₅₉Cl₂F₃Fe₂P₅, F.W. 1138.6, monoclinic, space group P2₁/n, a 11.114(12), b

^{23.652(11),} c 24.045(8) Å, β 99.85(5)°, U 6227.3 Å, Z=4, $D_{\rm calc}$ 1.21 g cm⁻³, F(000)=2356. Monochromated Mo- K_{α} radiation, $\lambda=0.71069$ Å, $\mu=7.2$ cm⁻¹. Data were collected on a crystal of dimensions ca $0.1\times0.1\times0.05$ mm using an Enraf-Nonius CAD4 diffractometer. Because diffraction was extremely weak, out of 7833 unique reflections measured for $2<\theta<22^{\circ}$ and $+h+k\pm l$ only 2068 reflections with $|F^2|>3\sigma(F^2)$ were used in the refinement and no correction was made for absorption. Most of the non-hydrogen atoms were located using the automated Patterson solution routines of SHELXS-86, and the remainder found on a difference map. The anion was originally thought to be $FeCl_{4}^{-}$ but it soon became apparent that two atoms were fluorines. Because of the limited data only the Fe atoms were assigned anisotropic thermal parameters. Refinement, with H atoms omitted, using a weighting scheme $w=1/\sigma^2(F)$ converged at R=0.123, R'=0.156. A difference map showed an area of residual peaks of up to 1.3 e Å⁻³ not connected with the cation or anion, which we attributed to a disordered solvent molecule but it was not included in the model. Refinement used the SPD-plus program system run on a Microvax computer.

Fig. 1. Crystal structure of trans- $[FeH(\eta^1-PF=CHBu^1)(dppe)_2][FeCl_2F_2]$.

In the ¹H NMR spectrum of 1, the hydride resonance occurs as a sextet $(\delta = -12.2 \text{ ppm}; \text{ overlapping doublet of quintets})$, as a result of coupling with the four equivalent dppe-phosphorus nuclei and the phosphaalkyne-P nucleus.

Interestingly, attempted recrystallisation, of an impure sample of 1 from CH_2Cl_2 led to the isolation of a red crystalline solid which was structurally characterised by a single-crystal X-ray diffraction study *** as the η^1 -fluorophosphaalkene complex trans-[FeH(η^1 -PF=CHBu¹)(dppe)₂)][FeCl₂F₂], 2 (Fig. 1). Its formation presumably involves an hitherto unknown initial nucleophilic attack by fluoride ion on the η^1 -bonded phosphaalkyne, which is probably activated by coordination to the Fe¹¹ atom. Addition reactions across the η^1 -ligated P=C triple bond could provide a new synthetic route to a variety of η^1 -ligated phosphaalkene metal complexes, and this is currently under study.

The P=C (1.66(4) Å) and the P-F (1.61(3) Å) bond distances in 2 as well as the Fe-P=C (141(2)°) and Fe-P-F (117(1)°) bond angles within the ligated fluorophosphaalkene, are comparable with the corresponding data for the related fluorophosphaalkene complex trans-[RhCl(PPh₃)₂{ η^1 -PF=C(SiMe₃)₂}] (1.633(10) Å, 1.608(6) Å, 141.1(3)° and 113.8(3)°, respectively) [7]. As observed in other systems, the P=C bond length for η^1 -coordinated phosphaalkene ligands is shorter than P=C distances reported for the η^2 -binding mode [7] (1.69 to 1.83 Å). The latter usually exhibit a P=C bond lengthening on coordination consistent with population of the P=C π^* orbital by metal d-electrons, whereas in η^1 -phosphaalkene complexes the P=C distance is comparable or even slightly shorter than that in the free phosphoalkene [1].

The Fe-P(fluorophosphaalkene) bond length of 2.112(12) Å in complex 2 is considerably shorter than that observed for the tetracarbonyl iron compound $[Fe(CO)_4\{\eta^1\text{-PN}(SiMe_3)_2\text{=}C(SiMe_3)_2\}]$ [8], and the Fe-P(diphos) bond lengths (2.302(12) and 2.268(11) Å). A short metal-P bond length has also been reported by us [7] for the other known η^1 -ligated halogenophosphaalkene complexes trans- $[RhCl(PPh_3)_2\{\eta^1\text{-PX}=C(SiMe_3)_2\}]$ (X = F or Cl).

Acknowledgements. This work was partially supported by the CRUP/British Council (Treaty of Windsor programme), and by the INIC and JNICT (Portugal).

References

- 1 For a review see: J.F. Nixon, Chem. Rev., 88 (1988) 1327.
- 2 J.C.T.R. Buckett-St. Laurent, M.A. King, H.W. Kroto, J.F. Nixon and R.J. Suffolk, J. Chem. Soc., Chem. Commun., (1983) 155; O.J. Scherer, Angew. Chem., Int. Ed. Engl., 24 (1985) 924.
- 3 P.B. Hitchcock, M.J. Maah, J.F. Nixon, J.A. Zora, G.J. Leigh and M.A. Bakar, Angew. Chem., Int. Ed. Engl., 26 (1987) 414.
- 4 A.J.L. Pombeiro, in U. Schubert (Ed.), Advances in Metal Carbene Chemistry, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989.
- 5 A.J.L. Pombeiro, M.F.C.G. Silve, D.L. Hughes and R.L. Richards, Polyhedron, 8 (1989) 1972.
- 6 A.J.L. Pombeiro, J. Organomet. Chem., 358 (1988) 273.
- 7 P.B. Hitchcock, M.F. Meidine, J.F. Nixon, H. Wang, D. Gudat and E. Niecke, J. Organomet. Chem., 368 (1989) C29.
- 8 R.H. Neilson, R.J. Thorne, I. Vickoric and W.H. Watson, Organometallics, 3 (1984) 1132.