Inorganica Chimica Acta 476 (2018) 123-128

Contents lists available at ScienceDirect

## Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

# Synthesis and crystal structures of ZnCl<sub>2</sub> and CdCl<sub>2</sub> containing helical coordination polymers derived from a flexible bis(pyridylurea) ligand

## Chao Huang, Xian-Mei Yi, Dong-Mei Chen, Bi-Xue Zhu\*

Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China

#### ARTICLE INFO

Article history: Received 1 September 2017 Received in revised form 22 January 2018 Accepted 26 January 2018

Keywords: Pyridylurea Bidentate Coordination polymer Helical chain Racemic

#### 1. Introduction

The synthesis of coordination polymers has attracted much interest in recent years not only because of their intriguing structures, but also for their potential applications in functional solid materials, ion exchange, catalysis, and gas adsorption [1-6], etc. The design strategy for novel self-assembled structures is based on the presence of suitable metal-ligand interactions and supramolecular contacts (hydrogen bonding and  $\pi \cdot \cdot \pi$  stacking interactions) [7-11]. The flexible ligands could adopt different coordination modes by adjusting their conformation, length, or inherent angle of the terminal coordinative groups, thus leading to fascinating structures of the metal organic frameworks (MOFs) [12–14]. The pyridyl mojety has been proved to be the most popular building block for the construction of metal-organic networks due to its strong coordination ability to metal ions. Among them, the bis(pyridylurea) ligands with both rigid and flexible bridges are ideal units for the construction of various coordination polymers, such as metallomacrocycles, helical chains, and layered networks [15-23].

In this work, the flexible ligand 1,1'-[oxybis(2,1-phenylene)] bis(3-pyridin-3-ylurea) (L) was synthesized by the reaction of 3-isocyanato-pyridine and bis(2-aminophenyl) ether (Scheme 1). Reaction of L with ZnCl<sub>2</sub> or CdCl<sub>2</sub> in DMF/MeOH solution resulted in the formation of 1D helical chain coordination polymer

\* Corresponding author. *E-mail address:* bxzhu@gzu.edu.cn (B.-X. Zhu).

# ABSTRACT

A flexible bis(pyridylurea) ligand, 1,1'-[oxybis(2,1-phenylene)] bis(3-pyridin-3-ylurea) (L), has been synthesized and characterized. The interaction of L with  $ZnCl_2$  and  $CdCl_2$  has been investigated. In the structure of { $[ZnLCl_2]$ -2DMF}<sub>n</sub> (1), the flexible ligands bridge the  $Zn^{II}$  centers to form 1D helical chains with a pitch of 9.743 Å. The *P* and *M* helical chains are arranged equally, and the whole complex 1 is racemic. In the structure of  $[CdLCl_2(DMF)]_n$  (2), the flexible ligands bridge  $Cd^{II}$  centers to form one-dimensional *P* and *M* helical chain structures in a similar manner. Then the chlorine atoms act as bridges in bidentate modes linking the *P* helical chain with *M* helical chain to form a 1D looped chain coordination polymer.

© 2018 Elsevier B.V. All rights reserved.

 ${[ZnLCl_2] \cdot 2DMF}_n$  (1) and 1D looped chain coordination polymer  $[CdLCl_2(DMF)]_n$  (2).

## 2. Experimental

### 2.1. Materials and physical measurements

All commercially available chemicals were of reagent grade and used without further purification. All solvents were purified by conventional methods before use. Elemental analysis was obtained from a Vario EL III elemental analyzer. <sup>1</sup>H NMR spectra was recorded in DMSO- $d_6$  using a JEOL ECX 400 MHz NMR spectrometer. IR spectra was measured as KBr pellets on a Bio-Rad FTIR instrument at the range of 4000–400 cm<sup>-1</sup>. The crystal structure was determined by Bruker Smart Apex II CCD and SHELXL crystallographic software of molecular structure.

#### 2.2. Synthesis

# 2.2.1. Synthesis of 1,1'-[oxybis(2,1-phenylene)] bis(3-pyridin-3-ylurea) (L)

**L.** Nicotinic acid acyl azide and bis(2-aminophenyl) ether were synthesized according to previous literatures [24–26], respectively. A solution of nicotinic acid acyl azide (1.04 g, 7.0 mmol) in toluene (30 mL) was refluxed under nitrogen for 1.5 h, and bis(2-aminophenyl) ether (0.60 g, 3.0 mmol) in acetonitrile (30 mL) was added dropwise. The mixture was stirred for another 1.5 h and cooled to room temperature. The precipitate that formed was collected by filtration and purified by recrystallization from



**Research** paper



Inorganica Chimica Acta



Scheme 1. Synthesis of the bis(pyridylurea) ligand.

| Table 1 |
|---------|
|---------|

Crystal data and structure refinement for the ligand, complexes 1 and 2.

| Compound                                  | L                                 | Complex 1                                                                        | Complex 2                                                                        |
|-------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Empirical formula                         | $C_{24}H_{20}N_6O_3$              | C <sub>30</sub> H <sub>34</sub> Cl <sub>2</sub> N <sub>8</sub> O <sub>5</sub> Zn | C <sub>27</sub> H <sub>27</sub> Cl <sub>2</sub> N <sub>7</sub> O <sub>4</sub> Cd |
| Formula weight                            | 440.46                            | 722.92                                                                           | 696.85                                                                           |
| Crystal system                            | Monoclinic                        | Monoclinic                                                                       | Monoclinic                                                                       |
| Space group                               | $P2_1/c$                          | $P2_1/n$                                                                         | P21/c                                                                            |
| a/(Å)                                     | 10.899(4)                         | 10.832(3)                                                                        | 10.100(16)                                                                       |
| <i>b/</i> (Å)                             | 14.206(5)                         | 9.743(3)                                                                         | 9.139(14)                                                                        |
| c/(Å)                                     | 14.242(5)                         | 32.396(10)                                                                       | 42.820(7)                                                                        |
| β/(°)                                     | 105.238(8)                        | 93.993(5)                                                                        | 92.038(3)                                                                        |
| $V/(Å^3)$                                 | 2127.7(13)                        | 3410.6(17)                                                                       | 3950.1(11)                                                                       |
| Ζ                                         | 4                                 | 4                                                                                | 4                                                                                |
| $D_{\rm c}/(\rm g\cdot \rm cm^{-3})$      | 1.375                             | 1.408                                                                            | 1.172                                                                            |
| $\theta$ range/(°)                        | $1.94\sim25.00$                   | $1.26\sim26.00$                                                                  | $0.95\sim 27.83$                                                                 |
| Absorption coefficient/mm <sup>-1</sup>   | 0.095                             | 0.927                                                                            | 0.722                                                                            |
| F(0 0 0)                                  | 920                               | 1496                                                                             | 1408                                                                             |
| Reflections collected                     | 10,650                            | 29,034                                                                           | 36,172                                                                           |
| Independent reflections                   | 3732                              | 6683                                                                             | 9305                                                                             |
| Observed reflections $(I > 2\sigma(I))$   | 2273                              | 4933                                                                             | 6527                                                                             |
| Number of parameters                      | 298                               | 415                                                                              | 372                                                                              |
| Goodness-of-fit on $F^2$                  | 1.078                             | 1.078                                                                            | 1.030                                                                            |
| Final <i>R</i> indices $(I > 2\sigma(I))$ | $R_1 = 0.0590, wR_2 = 0.1705$     | $R_1 = 0.0548$ , w $R_2 = 0.1593$                                                | $R_1 = 0.0461$ , w $R_2 = 0.1230$                                                |
| R indices (all data)                      | $R_1 = 0.1029$ , w $R_2 = 0.1898$ | $R_1 = 0.0763$ , w $R_2 = 0.1702$                                                | $R_1 = 0.0688$ , w $R_2 = 0.1388$                                                |
| Largest diff. Peak and hole (e $Å^{-3}$ ) | 0.496 and -0.209                  | 0.894 and -0.489                                                                 | 0.461 and -0.529                                                                 |

CH<sub>3</sub>OH/DMF(*V*: *V* = 2:1) to give a white solid. Yield: 1.07 g, 81%; mp: 285 ~ 286 °C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz):  $\delta$  6.84 (d, 2H, *J* = 7.6 Hz, Ar-H), 7.02 (t, 2H, *J* = 5.2 Hz, Ar-H), 7.18 (t, 2H, *J* = 5.6 Hz, Ar-H), 7.36 (dd, 2H, *J* = 2.8 Hz, Ar-H), 7.99 (m, 2H, Py-H), 8.23 (d, *J* = 2.8 Hz, 2H, Py-H), 8.35 (d, *J* = 6.8 Hz, 2H, Py-H), 8.61 (s, 2H, Py-H), 8.75 (s, 2H, CONH), 9.52 (s, 2H, CONH). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 400 MHz):  $\delta$  152.98, 145.76, 143.53, 140.33, 136.81, 131.60, 125.47, 124.64, 124.15, 123.20, 120.23, 118.38. Anal. Calcd(%) for C<sub>24</sub>H<sub>20</sub>N<sub>6</sub>O<sub>3</sub>: C 65.45, H 4.58, N 19.08; found(%): C 65.49, H 4.62, N 19.03. FT-IR (KBr pellet, *v*/cm<sup>-1</sup>): 3344 (m, NH), 1715 (s, CO), 1599 (s, NH). ESI-MS: *m/z* = 441 [M+H]<sup>+</sup>, 463 [M+Na]<sup>+</sup>.

#### 2.2.2. Synthesis of Zn(II) and Cd(II) complexes

 $\label{eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_line$ 

**[CdLCl<sub>2</sub>(DMF)]**<sub>n</sub> (2). CdCl<sub>2</sub>·2.5H<sub>2</sub>O (228 mg, 1 mmol) in methanol (30 mL) was added dropwise with stirring to L (440 mg, 1 mmol) in DMF (20 mL) and stirring was continued at room temperature for 2 h. The solution was filtered off and left for slow evaporation at room temperature. X-ray quality block-shaped colorless crystals were obtained after 5 days. The crystals were collected by filtration, washed with methanol, and dried at room temperature to give complex **2** as a white solid in 38% yield. Anal. Calcd.

(%) for  $C_{27}H_{27}Cl_2N_7O_4Cd$ : C 46.54, H 3.91, N 14.07; found(%): C 46.60, H 3.96, N 14.01. FT-IR (KBr pellet,  $v/cm^{-1}$ ): 3354 (m, NH), 1714 (s, CO), 1606 (s, NH).

#### 2.3. Crystallographic data collection and structure determination

The single-crystal X-ray diffraction was performed on a Bruker Smart Apex II CCD diffractometer. Intensities of reflections were measured using Mo K $\alpha$  monochromatized radiation ( $\lambda$  = 0.71 073 Å) at 293(2) K. Data reductions and absorption corrections were performed using the SAINT and SADABS software packages, respectively. The structures were solved by direct methods and refined by full-matrix least-squares methods on  $F^2$  using the SHELXS-97 and SHELXL-97 [27] programs. Anisotropic thermal factors were assigned to all the non-hydrogen atoms. Crystal data and structure refinement parameters are listed in Table 1. Selected bond lengths and angles for the two complexes are listed in Table 4.

#### 3. Results and discussion

#### 3.1. X-ray structures

#### 3.1.1. Crystal structure of the ligand

Suitable single crystals of free ligand were obtained from MeOH/DMF(1:1 v/v) solution via slow evaporation. The crystal belongs to the centrosymmetric monoclinic space group  $P_{2_1/c}$  and its asymmetric unit is comprised of a fully occupied ligand (Fig. 1a). The dihedral angle between the two aromatic rings is 88.05°. The dihedral angles between the central aromatic rings and the neighboring urea moieties are found to be 11.84 and 1.47°, and between urea moieties and the terminal pyridyl rings



**Fig. 1.** (a) Molecular structure of the ligand; (b) The hydrogen bonds and  $\pi$ - $\pi$  stacking interaction in the ligand. Non-urea hydrogen atoms are omitted for clarity; (c) Layered structure in the *ab* plane formed by N–H…N bonds and  $\pi$ - $\pi$  stacking interaction.

 Table 2

 Hydrogen bonding distances (Å) and angles (°) for the ligand.

| D−H···A                      | D-H(Å) | H···A(Å) | D····A(Å) | ∠DHA    | Symmetry code                 |
|------------------------------|--------|----------|-----------|---------|-------------------------------|
| N2-H2A···N6 <sup>#1</sup>    | 0.8600 | 2.0787   | 2.919(3)  | 165.48  | 2 - x, $-1/2 + y$ , $1/2 - z$ |
| N3-H3A···O2                  | 0.8603 | 2.1930   | 2.620(3)  | 110.40  |                               |
| N3–H3A····N6 <sup>#1</sup>   | 0.8603 | 2.3234   | 3.124(3)  | 155.00′ | 2 - x, $-1/2 + y$ , $1/2 - z$ |
| N4-H4···O2                   | 0.8603 | 2.2664   | 2.661(3)  | 107.95  |                               |
| $N4-H4\cdots N1^{#2}$        | 0.8603 | 2.3167   | 3.125(4)  | 156.58  | 1 - x, 1 - y, -z              |
| N5–H5A· · · N1 <sup>#2</sup> | 0.8596 | 2.1178   | 2.959(4)  | 165.80  | 1 - x, 1 - y, -z              |
| C5-H5···01                   | 0.9298 | 2.2982   | 2.914(4)  | 123.32  |                               |
| C8-H8···01                   | 0.9303 | 2.3481   | 2.941(5)  | 121.34  |                               |
| C11-H1103 <sup>#3</sup>      | 0.9295 | 2.4125   | 3.313(4)  | 163.27  | 2 - x, 1 - y, 1 - z           |
| C17-H17O3                    | 0.9297 | 2.3573   | 2.932(4)  | 119.76  |                               |
| C21-H2103                    | 0.9307 | 2.2943   | 2.908(4)  | 123.03  |                               |

are 9.90 and 1.59°. Each ligand molecule is found to be associated with three neighboring ligand molecules via N—H···N hydrogen bonding between the pyridyl N atoms and the urea N atoms. Furthermore,  $\pi$ - $\pi$  stacking interactions are formed between the pyridyl ring and the aromatic ring with the face-to-face distance of *ca*. 3.69 and 3.82 Å (Fig. 1b). Through these N—H···N hydrogen bondings and  $\pi$ - $\pi$  stacking interactions, the structure is linked into a two-dimensional sheet in the *ab* plane (Fig. 1c) (Table 2).

#### 3.1.2. Crystal structure of complex 1

Slow evaporation of a solution of  $ZnCl_2$  and L in MeOH–DMF afforded colorless block crystals of { $[ZnLCl_2] \cdot 2DMF$ <sub>*n*</sub> (1). Complex 1 crystallizes in the monoclinic space group  $P2_1/n$ . The asymmetric unit comprises a independent  $Zn^{II}$  center, two chlorine ions, a ligand L, and two solvent DMF molecules (Fig. 2a). In the crystal structure, the zinc centers are each bound to two chlorine ions

and two nitrogen donors from pyridine rings belonging to different ligands. The Zn1-N6 and Zn1-N1a bond lengths are 2.059(3) and 2.078(3) Å. The Zn1-Cl1 and Zn1-Cl2 bond lengths are 2.2092 (12) and 2.2215(12) Å. The N–Zn–Cl bond angles are in the range of 104.25(9)-114.63(9), which are distorted from the ideal tetrahedral geometry as a consequence of the opening of the two chloro ligands. The bond angles for Cl1-Zn-Cl2 and N6-Zn-N1a are 123.99(5) and 95.69(12), respectively, which are consistent with those found in similar complexes. The two DMF solvents are bonded to the urea nitrogen atoms via four N-H...O hydrogen bonding  $(N \cdots 0 = 2.7603 - 3.2391 \text{ Å})$  (Fig. 2b). The flexible ligand in complex 1 bridges the Zn<sup>II</sup> centers to form 1D helical chains running along the b axis with a pitch of 9.743 Å (Fig. 2c). The P and M helical chains are equally arranged, and each helical chain shows the opposite helicity to the neighboring chain so that the whole complex **1** is racemic. In the extended structure of **1**, each helical



**Fig. 2.** (a) Coordination environments of the Zn atom in complex 1. H atoms and lattice DMF molecules are omitted for clarity; (b) N–H···O hydrogen bonds between the urea N atoms and DMF molecules; (c) Racemic helical chains in complex 1; (d) Racemic helices viewed along the *b* axis in complex 1. Symmetry codes: a) 2 – *x*, 1 – *y*, 1 – *z*.



**Fig. 3.** (a) Coordination environments of the Cd atom in complex **2**. H atoms are omitted for clarity; (b) 1D looped chain structure of complex **2** containing both P and M helical chains; (c) top view along the b axis in complex 2. Symmetry codes: a) x, 2 + y, z; b) 2 - x, 2 - y, 1 - z.

chain forms C–H···Cl and C–H···O hydrogen bonds with the neighboring chains (Fig. 2d).

## 3.1.3. Crystal structure of complex 2

The reaction of L and  $CdCl_2$  in MeOH–DMF (v/v 2:1) gave the complex [CdLCl<sub>2</sub>(DMF)]n (2) as colorless block crystals. Complex **2** crystallizes in the monoclinic space group  $P2_1/c$ . The asymmetric unit of 2 consists of one Cd(II) atom, two chlorine anions, one independent ligand, and one coordinated DMF molecule (Fig. 3a). The cadmium atom is six-coordinated by two nitrogen atoms from two pyridine ring of two different pyridylurea ligands, an oxygen atom from a DMF molecule, two bridged chlorine atom (Cl2, Cl2a) and a terminal chlorine atom (Cl1) in a slightly distorted octahedral geometry. Atoms N(1), N(6b), Cl(2) and Cl(2a) constitute the basal plane of the octahedron, and atoms O(4) and Cl(1)are located at the axial positions [28-30]. All the ligands act as bis(monodentate) bridging ligand linking the Cd(II) ions to form a one-dimensional P and M helical chain structure alternatively. Then the chlorine atoms act as bridges in bidentate modes linking the P helical chain with the M helical chain to form a 1D looped chain coordination polymer (Fig. 3b). The coordination polymer can be considered as a PM type double chain, and each chain shows the same helicity to neighboring double chains. The Cd-Cd distance from one Cd atom to its nearest neighbor through the pyridylurea ligand in the [CdLCl(DMF)]<sub>n</sub> chain is 9.139 Å, while the distance between the two Cd atoms bridged by chloride atoms is 3.900 Å (Table 3).

| Table | e 3 |
|-------|-----|
|-------|-----|

| Hydrogen bonding distances | (Å) and angles | (°) for complex 1 |
|----------------------------|----------------|-------------------|
|----------------------------|----------------|-------------------|

#### 3.2. Powder X-ray diffraction (PXRD)

In order to check the phase purity of the two complexes, the powder X-ray diffraction (PXRD) patterns of complex **1** and **2** were measured at room temperature. As shown in Fig. 4, the peak positions of the simulated and as-synthesized PXRD patterns are in agreement with each other, demonstrating a good phase purity of the two complexes. The difference in reflection intensities between the simulated and experimental patterns was due to the variation in crystal orientation [31,32] or particle size for the powder sample.

#### 3.3. TG analyses of the complexes

In order to examine the thermal stability of two complexes, TGA experiments for the two complexes were performed between 30 and 800 °C in the N<sub>2</sub> atmosphere at the heating rate of 10 °C·min<sup>-1</sup> (Fig. 5). The TG analyses of complex **1** showed a slight weight loss from room temperature to 295 °C corresponding to the release of DMF molecules (observed weight loss 18.1%, calculated 20.1%), as well as a major weight loss occurring at above 300 °C due to the decomposition of the organic ligand. The TGA curve showed complex **2** is stable below 260 °C. Upon further heating, an obvious weight loss (84%) occurs in the temperature range of 260–320 °C, which is corresponding to the loss of coordinated DMF molecules and the decomposition of the organic framework. TGA experiments suggest that complex **2** is more stable than

| D–H···A                      | D-H(Å) | H···A(Å) | $D{\cdots}A({\mathring{A}})$ | ∠DHA   | Symmetry code                   |
|------------------------------|--------|----------|------------------------------|--------|---------------------------------|
| N2−H2····O4 <sup>#4</sup>    | 0.8599 | 1.9132   | 2.7603                       | 168.07 | -1 + x, y, z                    |
| N3-H3···O2                   | 0.8599 | 2.2635   | 2.6680                       | 108.81 |                                 |
| N3-H3···O4 <sup>#4</sup>     | 0.8599 | 2.3228   | 3.0981                       | 150.10 | -1 + x, y, z                    |
| N4-H4···O2                   | 0.8599 | 2.1787   | 2.6045                       | 110.26 |                                 |
| N4-H4···05                   | 0.8599 | 2.4870   | 3.2391                       | 146.52 |                                 |
| N5-H5···05                   | 0.8601 | 1.9817   | 2.8277                       | 167.60 |                                 |
| C2-H2A···Cl2 <sup>#5</sup>   | 0.9300 | 2.7457   | 3.6219                       | 157.40 | 1/2 - x, $-1/2 + y$ , $1/2 - z$ |
| C3-H3A···01                  | 0.9300 | 2.3669   | 2.9217                       | 118.03 |                                 |
| C8-H8···01                   | 0.9300 | 2.3382   | 2.9199                       | 120.29 |                                 |
| C11-H11O3 <sup>#6</sup>      | 0.9300 | 2.5407   | 3.4521                       | 166.57 | -x, 2 - y, -z                   |
| C17-H17O3                    | 0.9301 | 2.3390   | 2.9213                       | 120.35 |                                 |
| C21-H21O3                    | 0.9301 | 2.4102   | 2.9340                       | 115.56 |                                 |
| C22-H22···O1 <sup>#7</sup>   | 0.9299 | 2.4169   | 3.3318                       | 167.88 | -1 + x, $1 + y$ , z             |
| C29-H29B···Cl2 <sup>#8</sup> | 0.9599 | 2.7658   | 3.7128                       | 169.10 | 1/2 - x, $1/2 + y$ , $1/2 - z$  |

| Table 4                                                           |
|-------------------------------------------------------------------|
| Selected bond distances (Å) and angles (°) for complexes 1 and 2. |

| Complex 1    |            |             |            |              |            |
|--------------|------------|-------------|------------|--------------|------------|
| N6-Zn1       | 2.059(3)   | Cl2–Zn1     | 2.2215(12) | Zn1-N1a      | 2.078(3)   |
| Cl1–Zn1      | 2.2092(12) |             |            |              |            |
| N6-Zn1-N1a   | 95.69(12)  | N6-Zn1-Cl1  | 114.63(9)  | N1a-Zn1-Cl1  | 104.25(9)  |
| N6-Zn1-Cl2   | 104.92(9)  | N1a-Zn1-Cl2 | 109.67(9)  | Cl1–Zn1–Cl2  | 123.99(5)  |
| Complex 2    |            |             |            |              |            |
| Cd1-Cl2a     | 2.6560(10) | Cd1-Cl2     | 2.6041(9)  | Cd1-Cl1      | 2.5425(11) |
| Cd1-04       | 2.323(3)   | Cd1–N6b     | 2.441(3)   | Cd1-N1       | 2.404(3)   |
| Cl2-Cd1-Cl2a | 84.27(3)   | Cl1-Cd1-Cl2 | 102.37(3)  | Cl1-Cd1-Cl2a | 96.69(3)   |
| 04-Cd1-Cl2   | 89.80(7)   | 04-Cd1-Cl2  | 93.42(7)   | 04-Cd1-Cl1   | 164.86(7)  |
| O4-Cd1-N6b   | 79.64(10)  | 04-Cd1-N1   | 82.86(10)  | N6b-Cd1-Cl2  | 92.61(8)   |
| N6b-Cd1-Cl2a | 172.42(8)  | N6b-Cd1-Cl1 | 90.71(8)   | N1-Cd1-Cl2   | 171.00(8)  |
| N1-Cd1-Cl2a  | 90.95(7)   | N1-Cd1-Cl1  | 85.73(8)   | N1-Cd1-N6b   | 91.19(10)  |
|              |            |             |            |              |            |



Fig. 4. Powder X-ray diffraction patterns: as-synthesized (red) and simulated from the single-crystal diffraction data (black): (a) 1; (b) 2.



Fig. 5. TGA curves of complexes 1 and 2.

complex **1** below 260 °C, which is mainly due to the structural differences of their helicoidal chains.

#### 4. Conclusion

In summary, A flexible bis(pyridylurea) ligand, 1,1'-[oxybis(2,1-phenylene)] bis(3-pyridin-3-ylurea) (L), has been synthesized and characterized. The interaction of L with Zn(II) ions and Cd(II) ions has been investigated. In the structure of {[ZnLCl<sub>2</sub>]·2DMF}<sub>n</sub> (**1**), the flexible ligands bridge the Zn<sup>II</sup> centers to form 1D helical chains with a pitch of 9.743 Å. The P and M helical chains are arranged equally, and the whole complex 1 is racemic. In the structure of [CdLCl<sub>2</sub>(DMF)]<sub>n</sub> (**2**), the flexible ligands bridge Cd<sup>II</sup> centers to form one-dimensional P and M helical chain structures in a similar manner. Then the chlorine atoms act as bridges in bidentate modes linking the P helical chain with M helical chain to form a looped-chain 1D coordination polymer.

#### Acknowledgments

This research was supported by the "Chun-Hui" Fund of Chinese Ministry of Education (No. Z2016009), and Student's Platform for Innovation and Entrepreneurship Training Program (No. 201510657050).

#### Appendix A. Supplementary data

- [15] N.N. Adarsh, D.K. Kumar, P. Dastidar, CrystEngComm 10 (2008) 1565.
- K. Pandurangan, J.A. Kitchen, S. Blasco, F. Paradisic, T. Gunnlaugsson, Chem. Commun. 50 (2014) 10819.
   F.Y. Zhuge, B. Wu, J.J. Liang, J. Yang, Y.Y. Liu, C.D. Jia, C. Janiak, N. Tang, X.J. Yang,

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ica.2018.01.028.

#### References

- [1] B. Akhuli, T.K. Ghosh, P. Ghosh, CrystEngComm 15 (2013) 9472.
- [2] B. Akhuli, P. Ghosh, Dalton Trans. 42 (2013) 5818.
- [3] C.D. Jia, W. Zuo, D. Zhang, X.J. Yang, B. Wu, Chem. Commun. 52 (2016) 9614.
- [4] M. Paul, N.N. Adarsh, P. Dastidar, Cryst. Growth Des. 12 (2012) 4135.
- [5] N.N. Adarsh, P. Dastidar, Cryst. Growth Des. 10 (2010) 483.
- [6] S. Banerjee, N.N. Adarsh, P. Dastidar, Cryst. Growth Des. 12 (2012) 6061.
- [7] L.G. Ji, Z.W. Yang, Y.X. Zhao, M. Sun, L.P. Cao, X.J. Yang, Y.Y. Wang, B. Wu, Chem. Commun. 52 (2016) 7310.
- [8] Q.L. Zhang, Y.L. Huang, H. Xu, B. Tu, B.X. Zhu, J. Coord. Chem. 70 (2017) 156.
- [9] S.G. Li, B. Wu, Y.J. Hao, Y.Y. Liu, X.J. Yang, CrystEngComm 12 (2010) 2001.
- [10] Z.W. Yang, X.J. Huang, Q.L. Zhao, S.G. Li, B. Wu, CrystEngComm 14 (2012) 5446.
- [11] Y.J. Hao, B. Wu, S.G. Li, C.D. Jia, X.J. Huang, X.J. Yang, CrystEngComm 13 (2011) 215.
- [12] X.J. Huang, Z.W. Yang, X.J. Yang, Q.L. Zhao, Y.N. Xia, B. Wu, Inorg. Chem. Commun. 13 (2010) 1103.
- [13] Y.J. Hao, B. Wu, S.G. Li, B. Liu, C.D. Jia, X.J. Huang, X.J. Yang, CrystEngComm 13 (2011) 6285.
- [14] R. Zhang, Y.X. Zhao, J.M. Wang, L.G. Ji, X.J. Yang, B. Wu, Cryst. Growth Des. 14 (2014) 544.

- [18] B. Wu, J.J. Liang, Y.X. Zhao, M.R. Li, S.G. Li, Y.Y. Liu, Y.P. Zhang, X.J. Yang, CrystEngComm 12 (2010) 2129.
   [19] R. Zhang, Y.L. Zhang, J.M. Wang, L.G. Ji, X.J. Huang, B. Wu, Chin. J. Chem. 31
- (2013) 679.
- [20] J.J. Liang, B. Wu, C.D. Jia, X.J. Yang, CrystEngComm 11 (2009) 975.
- [21] Z.W. Yang, B. Wu, X.J. Huang, Y.Y. Liu, S.G. Li, Y.N. Xia, C.D. Jia, X.J. Yang, Chem. Commun. 47 (2011) 2880.
- [22] Q.L. Zhao, X.J. Yang, C.D. Jia, B. Wu, Inorg. Chem. Commun. 13 (2010) 873.
- [23] Q.L. Zhao, X.J. Yang, C.D. Jia, X.J. Huang, B. Wu, Z. Anorg. Allg. Chem. 636 (2010) 1998.
- [24] M.C. Naranthatta, D. Das, D. Tripathy, H.S. Sahoo, V. Ramkumar, D.K. Chand, Cryst. Growth Des. 12 (2012) 6012.
- [25] J.F.K. Wilshire, Aust. J. Chem. 41 (1988) 995.

Inorg. Chem. 48 (2009) 21.

- [26] U. Hernández-Balderas, N. Andrade-López, J.G. Alvarado-Rodríguez, R. Moreno-Esparza, M. Paneque, Polyhedron 90 (2015) 165.
- [27] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Analysis, University of Göttingen, Germany, 1997.
- [28] M.S. Hain, Y. Fukuda, C.R. Ramírez, B.Y. Winer, S.E. Winslow, R.D. Pike, D.C. Bebout, Cryst. Growth Des. 14 (2014) 6497.
- [29] K.Y. Choi, Y.M. Jeon, Inorg. Chem. Commun. 6 (2003) 1294.
- [30] K.Z. Guo, G.S. Nan, Z.X. Lian, L.J. Qi, Z.Z. Yu, Chin. J. Struct. Chem. 34 (2015) 606.
- [31] Z. Shi, G.H. Li, D. Zhang, J. Hua, S.H. Feng, Inorg. Chem. 42 (2003) 2357.
- [32] J.W. Cheng, S.T. Zheng, E. Ma, G.Y. Yang, Inorg. Chem. 46 (2007) 10534.