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ABSTRACT:. We herein report a general, practical, and highly efficient method for asymmetric synthesis of a wide range of chiral 
vicinal diamines via reductive coupling of imines templated by chiral diboron. The protocol features high enantioselectivity and 
stereospecificity, mild reaction conditions, simple operating procedures, use of readily available starting materials, and a broad substrate 
scope. The method signifies the generality of diboron-enabled [3,3]-sigmatropic rearrangement.

Chiral vicinal diamines are privileged substructures 
ubiquitously found in active pharmaceutical ingredients,1 natural 
products,2 agrochemicals,3 as well as a number of ligands or 
catalysts in the field of asymmetric catalysis.4 Their syntheses 
have drawn considerable attention in organic chemistry. However, 
most known methods (Figure 1a) including olefin diamination,5 
nucleophilic addition of diimines,6 diimine reduction,7 and radical 
coupling of imines only lead to racemic mixtures of vicinal 
diamines,8 half of which are undesired waste. Moreover, the often 
concomitant formation of the meso diastereomer with most 
methods further compromises the yield of the desired product in 
addition to the requirement of a tedious purification procedure. 
Syntheses from chiral building blocks or auxiliaries provide 
improved yields but require additional synthetic steps on the 
expenses of valuable chiral starting materials (Figure. 1b).9,10 It 
remains a significant challenge for efficient synthesis of chiral 
vicinal diamines with excellent yields, selectivities, and 
practicality. We herein report a general, simple, and practical 
method for the synthesis of a wide range of chiral vicinal 
diamines by developing a chiral diboron-templated reductive 
coupling of imines. The protocol features excellent yields, 
enantioselectivities and stereospecificities, mild reaction 
conditions, simple operating procedures, use of readily available 
starting materials,11 and a broad substrate scope.

Diborons are often applied to carbon-boron bond-forming 
reaction under action of a transition metal catalyst.12 They are also 
able to react with electrophiles in the presence of a base under 
transition metal-free conditions through heterolytic activation 
(Figure. 1c),13,14 or generate radical species via 
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Figure. 1. Syntheses of vicinal diamines.

homolytic cleavage in the presence of nucleophiles.15,16 
Activation of two reactants by a diboron species in a concerted 
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fashion is rarely explored and will be particularly interesting and 
synthetically useful in forming a carbon-carbon bond with high 
stereochemical fidelity. With the employment of a diboron 
modified by a chiral diol, the chiral diboron can act as an 
excellent reductive “template” for constructing a carbon-carbon 
bond with high stereospecificity and enantioselectivity. We 
previously reported a reductive coupling of isoquinolines in high 
yields, excellent enantioselectivities, and stereospecificities by 
employing a chiral diboron reagent, where a concerted diboron-
enabled [3,3]-sigmatropic rearrangement was discovered to form 
a carbon-carbon bond with excellent stereochemical fidelity.17 We 
envisioned that the chiral diboron-templated reductive couplings 
would be applicable to various imine substrates and the 
application of the concerted diboron-enabled [3,3]-sigmatropic 
rearrangement can be expanded to a more general term.18 Herein 
we report a general, practical, and highly efficient method for the 
synthesis of a wide range of chiral vicinal diamines via reductive 
coupling of various imines templated by chiral diboron (Figure. 
1d).

Our proof-of-concept experiment started with reductive 
coupling of phenylmethanimine 2a, which can be generated in 
situ from benzaldehyde 1a and ammonia. A series of chiral 
diboron DB1-7 were applied to the reaction using THF as the 
solvent at room temperature (Figure. 2). Encouragingly, the 
diboron DB1 derived from chiral pinanediol provided 3a in 80% 
yield and 20% ee. Use of DB2 derived from (R)-1,1-
diphenylpropane-1,2-diol formed 3a in 70% yield and 36% ee. 
51% ee was obtained when DB3 prepared from (1R,2R)-1,2-
diphenylethane-1,2-diol was employed. Interestingly, the diboron 
DB4 derived from a non-C2-symmetric chiral diol was also 
applicable, forming 3a in 57% ee. Use of a sterically bulkier 
diboron DB5 provided an excellent yield (87%), but did not give a 
better ee. Pleasingly, product 3a was formed in 80% ee when DB6 
derived from a more hindered chiral diol, (R)-2-phenyl-1,1-di-o-
tolylethane-1,2-diol, was employed. Further optimization of the 
diboron structure led to the development of DB7, which provided 
an excellent yield (90%) and ee (95%).

The chiral diboron DB7 proved to be highly effective for 
reductive coupling of a wide range of aromatic aldimines. 
Excellent ee’s and yields were achieved through the single-step 
process for a series of 1,1’-diaryl-substituted vicinal diamines 3. 
Various substituents either with electron-donating or withdrawing 
properties regardless at para, ortho, meta position of the benzene 
ring were all compatible. A number of functionalities such as 
halogen, ester, alkoxy, alkynyl, and tertiary amine were well 
tolerable. Heterocycles such as furan and thiophene as well as 
naphthalene ring were applicable. It should be noted that no 
formation of meso diamine side-product was observed in every 
example listed in Figure 3, and most products were formed in 
extremely high enantioselectivities (99% ee’s). A chiral steroid 
skeleton was also compatible, while the chirality of the diamine 
moiety in homocoupling product was dictated by the chirality of 
the diboron, leading to a diastereomeric mixture of 3bb or 3cc 
with either ~9:1 or ~1:9 ratio. Besides aromatic aldimines, 
aliphatic aldimines could also be applied to the single-step 
protocol to form a series of 1,1’-dialkyl-substituted vicinal 
diamines 6 in satisfactory yields and almost perfect 
enantioselectivities. Unlike aromatic aldimines which could be 

prepared from the corresponding aldehydes, aliphatic aldimines 5 
were prepared in situ from the corresponding nitriles 4 through 
DIBAL-H reduction and applied directly with DB7 for the 
reductive coupling.19 Besides chiral vicinal diamines 6a-c, 6n 
with primary alkyl substituents, substituents with secondary alkyl 
(6d-e), benzyl and substituted benzyl, thiophene-, alkene-, and 
alkyne-incorporated alkyl were all compatible. The presence of 
halogen, alkene, and alkyne functionalities were amenable for 
further derivatization. Cyclic imines 7 were also applicable for 
enantioselective reductive couplings.20 Thus, chiral 2,2'-
bipyrrolidine (8a), 2,2'-bipiperidine (8b), 1,1'-
octahydrobiisoquinoline (8c), and 5,5'-
tetrahydrobidibenzo[c,e]azepine (8d) were formed in almost 
perfect ee’s and good yields in a single step from corresponding 
cyclic imines. N-Methyl aromatic aldimines 9 could also be 
efficiently prepared from corresponding aldehyde 1. We were 
pleased that such imines were suitable substrates for the diboron-
templated reductive coupling, for a range of N,N’-dimethyl 1,1’-
diaryl-substituted vicinal diamines in excellent ee’s and yields. 
Such chiral building blocks required a lengthy synthetic sequence 
otherwise, which were applied frequently as ligand in transition 
metal-catalyzed cross-coupling reactions.21 Unfortunately, a 
bulkier N-alkyl aromatic aldimines such as N-ethyl benzaldimine 
was inactive.
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Figure. 2. Proof-of-concept experiment. Reactions were carried 
out at rt in THF (2 mL) with 1a (0.5 mmol) and ammonia (15 
equiv, 7.5 mmol, 7 M in MeOH) for 1 h followed by addition of 
chiral diboron (0.5 equiv, 0.25 mmol). The mixture was further 
stired at rt for 24 h. Isolated yields. The ee values were 
determined by chiral HPLC analysis.
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Figure. 3. Chiral diboron-templated enantioselective reductive coupling of imines. All yields are of isolated products. The ee values 
were determined by chiral HPLC analysis. a. Reactions were carried out at rt in THF (1 mL) with 1 (0.2 mmol) and ammonia (15 equiv, 
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3.0 mmol, 7 M in MeOH) for 1 h followed by addition of DB7 (0.1 mmol). The mixture was further stired at rt for 24 h. b. Reactions were 
carried out in THF (1 mL) at -78 oC with nitrile 4 (0.6 mmol) and DIBAL-H (0.6 mmol) for 3h, and then warmed to rt, followed by the 
addition of DB7 (0. 3 mmol) and MeOH (0.66 mmol) at -78 oC. The mixture was further stirred at rt for 12 h. c.Reactions were carried out 
at rt in THF (1 mL) with 7 (1.0 mmol) and DB7 (0.5 mmol) for 12 h. d. Imine 9 was prepared from 1 and MeNH2 in DCM. Reductive 
couplings of 9 were carried out at rt in THF (1 mL) with 9 (0.5 mmol) and DB7 (0.25 mmol) for 12 h

The chiral diboron templated reductive coupling of imines 
were not limited to the stoichiometric use of chiral diboron DB7. 
For reductive coupling of stable aromatic imines 2 or 9, the 
employment of a stoichiometric amount of (BNeop)2 (11) and a 
catalytic amount of chiral diol 12 for the enantioselective 
reductive coupling was equally effective (Figure. 4). Thus, by 
employing bis(neopentyl glycolato)diboron as the nonchiral 
diboron source and 30 mol % of chiral diol 12 as the catalyst, the 
enantioselective reductive coupling of 9a proceeded
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Figure. 4. Asymmetric reductive coupling with a catalytic 
amount of chiral diol

smoothly to form 10a, an effective chiral ligand for asymmetric 
hydrogenation, in 88% yield and 96% ee. Besides a much simpler 
operation procedure, the yield was significantly better than the 
reported 23% yield using the zinc-mediated radical coupling-
lithium-mediated isomerization-resolution protocol.22 Noteworthy 
was the dramatic acceleration effect by chiral diol 12. No 
reductive coupling was observed when (BNeop)2 was mixed with 
9a. The reaction proceeded to completion over 24 h when 12 was 
added, indicating the significance of chiral diboron DB7 in 
promoting both enantioselectivity and reactivity.

To test the scalability of the reaction, synthesis of 3a at a 
decagram scale was pursued (Figure. 5a). Treatment of (R)-
mandelic acid derivative 16 with 2,5-xylyl Grignard reagent 
formed chiral diol 12 in 62% yield. Reaction of 12 with 
tetrahydroxydiboron in THF formed DB7 in almost quantitative 
yield, which was prepared in a kilogram scale. To a solution of 1a 
(50 g) dissolved in NH3/MeOH (7 M, 1.1 L) was charged DB7 

(168 g) and the mixture was stirred at rt for 24 h. Acidic/basic 
work-up provided product 3a (40 g) as white solid in 80% isolated 
yield and 95% ee, along with 90% recovery of chiral diol 12 (147 
g). The method constituted one of most efficient protocols for the 
synthesis of a wide array of chiral vicinal diamines.
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Figure. 5. A scale-up experiment and stereochemical model 

The high yields and enantioselectivities achieved on a variety 
of chiral vicinal diamines and the fact that no meso products were 
observed in any case further corroborated the generality of 
diboron-enabled [3,3]-sigmatropic rearrangement process. The 
successful protocol of employment of (BNeop)2 as the diboron 
source and diol 12 as the catalyst further proved the importance of 
the chiral diboron structure in promoting both reactivity and 
enantioselectivity. It appeared that the sterically bulky and rigid 
dioxaborolane of the diboron are crucial in providing an effective 
six-membered ring transition state A (Figure. 5b), thereby 
allowing the highly efficient reductive coupling to proceed. With 
the compact and rigid diboron moiety with four 2,5-xylyl 
substituents, the chirality on the diboron can be effectively 
translated to the aldimine boron coordination, leading to excellent 
stereocontrol. Interestingly, the ortho-methyl groups are in close 
proximity to the aldimine coordination, manifesting their 
importance in enhancing the enantioselectivity.

We anticipate that this simple, effective, and practical 
synthetic methodology will significantly facilitate the chemistry of 
chiral vicinal dimines as ligands and building blocks for 
pharmaceutical and fine chemistry. From a view of basic science, 
the enriched diboron-enabled [3,3]-sigmatropic rearrangement 
from this study has provided a new addition to the repertoire of 
valuable pericyclic reactions in organic chemistry, and the 
discovery of new interesting reactions and applications is expected 
by further exploiting this theory.
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