OI Organic Letters

Synthesis of 2-Formylpyrroles from Pyridinium Iodide Salts

Ke Xu, Wenjing Li, Rui Sun, Lihua Luo, Xue Chen, Chunchun Zhang, Xueli Zheng, Maolin Yuan, Haiyan Fu,* Ruixiang Li, and Hua Chen

2-Formylpyrrole-derived alkaloids are one of the most important classes of structural motifs found in numerous pharmaceutical molecules,¹ natural products,² and functional materials.³ In addition, they also represent privileged building blocks and have been widely used as intermediates in the construction of porphyrins,⁴ anion receptors in biomedical analysis,⁵ unnatural base pairs,⁶ and oligopyrrole-based metal-locomplexes.⁷

Given its broad applicability, many synthetic methods toward 2-formylpyrroles have been developed (Scheme 1). So far, numerous efficient methodologies have been developed for the synthesis of 2-formylpyrroles. The conventional methods rely on the Vilsmeier-Haack formylation of the preformed parent pyrrole,⁸ which is usually synthesized by Hantzsch,⁹ Knorr,¹⁰ Paal–Knorr,¹¹ Barton–Zard,¹² and Trofimov reactions.¹³ A sustainable Maillard approach to 2formylpyrroles from primary amines and sugar was described by Fujimaki, Zhao, Koo, and others.¹⁴ Padwa and coworkers constructed the 6-phenyl-2-formylpyrrole from 2H-azirine by treating with Grubb's catalyst.¹⁵ A highly substituted 2formylpyrrole was successfully synthesized by Sato and Urabe by using a coupling reaction of acetylene and nitrile mediated by a titanium reagent.¹⁶ A two-step synthesis from ketones and 4-formyloxazole was also described by Senanayake.¹⁷ In 2017, Kumar's group reported a pseudo-[3 + 2]annulation between N-(4-methoxyphenyl)aldimines and glutaraldehyde for the direct synthesis of pyrrole-2,4-dialdehydes.¹⁸ Very recently, Wu et al. prepared the 2-formylpyrroles bearing an ester group at the three-position from methyl ketones, arylamines, and acetoacetate esters with the assistance of molecular iodine.19

However, these methods suffer from several drawbacks, such as the use of a toxic reagent, the restricted availability of substrates, the requirement for specially designed starting molecules, tedious experimental operations, poor functional group compatibility, and harsh conditions. Therefore, the discovery of a more efficient and greener route to synthesize 2-formylpyrroles is still highly desirable.

Pyridines are cheap and abundantly available and have served as versatile synthetic intermediates in organic chemistry.²⁰ 2-Formylpyrrole formation by the rearrangement of the pyridine N-oxides via photolysis²¹ has been known. Unfortunately, the yield of this process is very low. We are interested in developing the synthetic method for 2formylpyrrole from pyridinium salts. In the past several decades, molecular I₂ has been widely used in promoting the intramolecular cyclization to prepare many important heterocycles, such as furans, thiophenes, and pyrroles.²² In view of the capability of iodine in promoting intramolecular cyclization and the ring-opening tendency of the pyridinium salts in the presence of an appropriate nucleophile,²³ we expected that the treatment of the pyridinium salt with a basic aqueous solution in the presence of I2 would lead to a H2O-triggered ringopening reaction to form an acyclic intermediate, which subsequently undergoes an intramolecularly nucleophilic attack to give 2-formylpyrroles. To the best of our knowledge, this type of transformation has never been reported in the literature.

To evaluate the feasibility of the proposed protocol, a variety of I₂ sources, bases, solvents, and additives were extensively screened (Table S1). The optimal condition was determined to be the following: *N*-methyl-2-phenylpyridinium salts **A** (0.25 mmol) were treated with 0.64 equiv of I₂ in the presence of 4.0 equiv of K₂CO₃ and 1 equiv of methyl methacrylate (MMA) in a solvent mixture of DCE/H₂O (1:1) at 80 °C under air for 20 h. (See Table S1 for details.) The desired 2-

Received: July 1, 2020

Scheme 1. Represent Examples for 2-Formylpyrrole Synthesis

formylpyrrole could be obtained in 79% isolated yield, with 21% of pyridinium salt recovery, which was determined on the basis of the ¹H NMR analysis of the crude reaction mixture (Table 1, entry 1). It should be pointed out that the optimal amount of I₂ is 0.64 equiv, which seems insufficient to react with pyridinium salt (1.0 equiv), but the resulting I^- or the counterion I⁻ of the pyridinium salt would be oxidized by air to iodine. Notably, the replacement of I2 with Nbromosuccinimide (NBS) or N-chlorosuccinimide (NCS) also produced the product in comparable yield (72 and 68% yield, respectively) (Table 1, entries 2 and 3). The reaction could still occur at room temperature and afforded the product in 56% yield (Table 1, entry 4). The controlled experiments showed that no product was formed in the absence of I₂ or K_2CO_3 , revealing their important roles in the reaction (Table 1, entries 5 and 6). Of the examined bases, K₃PO₄ provided a similar result as K₂CO₃, and other bases, such as Na₂CO₃, Li₂CO₃, Cs₂CO₃, KOAc, NaOH, K^tOBu, and 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) (Table S1), were all inferior in the reaction. The amount of K₂CO₃ also had an impact on the reactivity. The yield of 1 decreased to 55% when the amount of K_2CO_3 was decreased from 4 to 2 equiv (Table 1, entry 7). The removal of the additive MMA from the system impaired the reaction efficiency to some extent and generated 1 in 68% yield (Table 1, entry 8). The use of other olefins as the additives exhibited a lower efficiency than MMA (Table S1). Finally, various solvents, including 1,2 dichloroethane (DCE), CCl₄, acetone, PhCl, hexane, and tetrahydrofuran

Table 1. Optimization of Reaction Conditions^a

Û	$ \begin{array}{c} $	
entry	variation from standard conditions	yield (%) ^b
1	none	79
2	NBS instead of I ₂	72
3	NCS instead of I ₂	68
4	r.t.	56
5	w/o I ₂	0
6	w/o K ₂ CO ₃	0
7	2.0 equiv of K_2CO_3	55
8	w/o MMA	68
9	H ₂ O	54
10	DCE	0
11	DCE/H ₂ O 10:1	48
12	DCE/H ₂ O 4:1	56
13	DCE/H ₂ O 3:2	74
14	DCE/H ₂ O 2:3	70

^aReaction conditions: A (0.25 mmol), I₂ (0.64 equiv), K₂CO₃ (4 equiv), MMA (1 equiv), DCE/H₂O (1:1, 0.25 M), 80 $^{\circ}$ C, 20 h. ^bIsolate yields.

(THF), were screened as cosolvents, and DCE proved to be the best one (Table S1). Using H_2O alone as the solvent resulted in a 54% yield of 1, and in the absence of H_2O , no product was formed (Table 1, entries 9 and 10). The variation of the ratio of DCE/ H_2O from 1:1 decreased the yield to different extents (Table 1, entries 11–14).

With the optimal condition in hand, we next investigated the scope of the pyridinium salts (Scheme 2). Several features should be pointed out: (1) In the case of aryl-substituted pyridinium salts, a wide range of functional groups on the aryl rings were tolerated. The pyridinium salts bearing either the electron-withdrawing (p-F, p-Cl, p-CF₃, p-CN) or -donating (p-Me, p-MeO) substitutents on the 2-aryl group underwent the reaction very well to afford the corresponding 2formylpyrrole derivatives 1-7 in 62-84% isolated yields. (2) Notably, N-methylpyridinium salts with heteroaryl groups such as furanyl, thiophenyl, and pyridinyl, could also be employed, giving products 9-11 in 50-78% yields. (3) In the case of alkyl-substituted pyridinium salts, the reaction outcome was dependent on the types of the alkyl groups. The pyridinium salts bearing an α -branched alkyl group at their two-position reacted very well to deliver the desired products 12-16 in 66-86% yields, whereas the linear alkyl-substituted substrate led to a very low yield of the product. On the contrary, the 2cyclohexyl- and 2-cyclopropylpyridinium salts could be smoothly converted into the 5-cycloalkyl-2-formylpyrroles 17 and 18 in 69 and 28% yields, respectively. (4) It is worth mentioning that the reaction efficiency was greatly influenced by the substitution patterns of the pyridinium ring. For example, the 3-aryl-substituted pyridinium salts generally produced the corresponding products 19-23 in moderate yields (40-56%). The 2,3-disubstituted pyridinium salts were also viable substrates, furnishing the products 24-29 in 48-74% yield. (5) Introducing the functional groups such as MeO, CN, or NO₂ on the pyridinium ring resulted in a complicated mixture. For instance, 3-methoxy-1-methyl-2-phenylpyridinium iodide only afforded product 30 in a very low yield of 18%. (6) The alkyl group on the quaternary nitrogen also

Scheme 2. Scope of Substrates^{a,b}

^{*a*}All reactions were run under the conditions: A (0.25 mmol), I_2 (0.64 equiv), K_2CO_3 (4 equiv), MMA (1 equiv), DCE/H₂O (1:1, 0.25 M), 80 °C, 20 h. ^{*b*}Isolate yields.

influences the reaction reactivity. The reactivity gradually decreased with increasing alkyl chain length (31-33), and *N*-benzyl-2-phenylpyridinium iodide gave the product 34 in 43% yield. (7) *N*-methyl-isoquinolinium iodide afforded 3-phenyl-1-formylisoindole 35, albeit in a relatively lower yield of 29%. (8) However, the *N*-methyl iodide salts of quinoline, 1,10-phenanthroline, 2,2'-bipyridine, terpyridine (III–VI), proved to be not effective substrates in this reaction.

The protocol was next demonstrated in a scale-up reaction. Thus the reaction of 10 mmol A under the standard conditions afforded the 2-formylpyrrole derivative 1 in 66% yield. The CHO could be easily transformed into the functionalities such as ester, amide, carbonitrile, and methyl groups (Scheme 3).

To shed light on the mechanistic pathway, a set of experiments was carried out. When the reaction was conducted in the presence of a stoichiometric amount of radical

Scheme 3. Scale-Up Synthesis of 1 and Its Applications

was unambiguously confirmed by mass spectrometry (Figure S2). This provided direct evidence of the fact that the O atom originates from the solvent H₂O. In addition, the model reaction conducted in D₂O afforded 1 without deuterium incorporation in CHO group (Scheme 4b). Meanwhile, A-d₁ completely delivered the product with deuterium incorporation into CHO; these results implied that the hydrogen in the –CHO group came from C₆–H instead of H₂O (Scheme 4c).

Furthermore, a competitive reaction of A and A- d_1 under the standard condition demonstrated a moderate inverse secondary kinetic isotope effect (SKIE) of 0.85. As the previously described experiments proved, the H in the CHO group of the product originated from the C₆–H bond of the 2-phenyl-pyridinium salts. Because both of the carbons to which the H atom attached are sp²-hybridized and an inverse SKIE value was observed for the C₆–H bond, we assume that the C₆ goes through rehybridization from sp² to sp³ and then to sp². Furthermore, the sp² to sp³ rehybridization must occur during the rate-determining step, and thus an inverse secondary KIE was expected ($K_{\rm H}/k_{\rm D} \cong 0.85$) (Scheme 4d).²⁴

As previously mentioned, when NBS or NCS was used as the additive instead of I_2 , the reaction could also produce the desired products in comparable yields (Table 1, entries 2 and 3). This might be attributed to I_2 generated in situ via the oxidation of an iodide anion with NBS or NCS. To further confirm this assumption, we reacted the pyridinium salts A' bearing CF₃COO⁻ as the counteranion with NBS or NCS and found that the substrates were totally recovered without any product 1 (Scheme 4e). Whereas A' reacts in the presence of I_2 , a 76% yield of product 1 was obtained (Scheme 4f). These results strongly suggest the vital role of I_2 in the process. A plausible reaction pathway proposed on the basis of experimental observations is depicted in Scheme 5. The

Scheme 5. Plausible Reaction Pathway

reaction was initiated by nucleophilic attack on the C_6 position of the pyridinium salts **A** by H_2O to give species **B**. One molecule of HI was released with the assistance of a base, and in the presence of molecular iodine, a hemiaminal species **C** containing a three-membered iodonium ring was formed, which exists in equilibrium with the iodonium enamine aldehyde **D**. The intramolecular cyclization of **D** followed by the elimination of HI through intermediate **E** gives the final product *N*-methyl-5-phenyl-2-formylpyrrole. The role of MMA in the reaction remains unclear in this stage.

In conclusion, we have developed an efficient way to synthesize 2-formylpyrroles from cheap and readily available pyridinium salts. The reaction proceeds as an I_2 -mediated, H_2O -triggered pyridinium ring-opening/intramolecular cyclization sequence. Further exploration of the construction of other types of heterocycles from pyridinium salts is ongoing.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c02178.

Experimental details and full spectroscopic data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Haiyan Fu – Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China; orcid.org/0000-0002-7185-2062; Email: scufhy@scu.edu.cn

Authors

- Ke Xu Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Wenjing Li Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Rui Sun Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Lihua Luo Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Xue Chen Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Chunchun Zhang Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China

- Xueli Zheng Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China;
 orcid.org/0000-0001-8394-0310
- Maolin Yuan Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Ruixiang Li Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China;
 orcid.org/0000-0003-0756-3722
- Hua Chen Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China; Orcid.org/0000-0003-4248-8019

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c02178

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (nos. 21871187 and 21572137), the Collaborative Fund of Luzhou Municipal Government and Sichuan University (2018CDLZ-13), and the Key Program of Sichuan Science and Technology Project (2019YFG0146) for financial support. We also thank Chunchun Zhang from the Centre of Testing & Analysis, Sichuan University for NMR measurements.

REFERENCES

(1) Heide, L. Biotechnol. Adv. 2009, 27, 1006.

(2) (a) Guo, J.-L.; Feng, Z.-M.; Yang, Y.-J.; Zhang, Z.-W.; Zhang, P.-C. *Chem. Pharm. Bull.* **2010**, *58*, 983. (b) Wood, J. M.; Furkert, D. P.; Brimble, M. A. *Nat. Prod. Rep.* **2019**, *36*, 289.

(3) Gao, M.; He, C.; Chen, H.; Bai, R.; Cheng, B.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 6958.

(4) Barbe, J.-M.; Burdet, F.; Espinosa, E.; Gros, C. P.; Guilard, R. J. Porphyrins Phthalocyanines 2003, 7, 365.

(5) Hunt, J. T.; Mitt, T.; Borzilleri, R.; Gullo-Brown, J.; Fargnoli, J.; Fink, B.; Han, W.-C.; Mortillo, S.; Vite, G.; Wautlet, B.; et al. *J. Med. Chem.* **2004**, 47, 4054.

(6) Mitsui, T.; Kitamura, A.; Kimoto, M.; To, T.; Sato, A.; Hirao, I.; Yokoyama, S. *J. Am. Chem. Soc.* **2003**, *125*, 5298.

(7) Sessler, J. L.; Roznyatovskiy, V.; Pantos, G. D.; Borisova, N. E.; Reshetova, M. D.; Lynch, V. M.; Khrustalev, V. N.; Ustynyuk, Y. A. *Org. Lett.* **2005**, *7*, 5277.

(8) Mikhaleva, A.; Ivanov, A.; Skital'tseva, E.; Ushakov, I.; Vasil'tsov, A.; Trofimov, B. *Synthesis* **2009**, *2009*, 587.

- (9) Pal, G.; Paul, S.; Das, A. R. Synthesis 2013, 45, 1191.
- (10) Knorr, L. Ber. Dtsch. Chem. Ges. 1884, 17, 1635.

(11) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. *Eur. J. Org. Chem.* **2005**, 2005, 5277.

(12) Barton, D. H.; Zard, S. Z. J. Chem. Soc., Chem. Commun. 1985, 1098.

(13) Schmidt, E. Y.; Mikhaleva, A. I.; Vasil'tsov, A. M.; Zaitsev, A. B.; Zorina, N. V. *ARKIVOC* **2005**, *7*, 11–17.

(14) (a) Kato, H.; Fujimaki, M. Agric. Biol. Chem. 1970, 34, 1071.
(b) Cao, Z.; Li, Y.; Wang, S.; Tang, B.; Guo, X.; Wang, L.; Zhao, W. Tetrahedron Lett. 2016, 57, 2219. (c) Adhikary, N. D.; Kwon, S.; Chung, W.-J.; Koo, S. J. Org. Chem. 2015, 80, 7693.

(15) Padwa, A.; Stengel, T. Tetrahedron Lett. 2004, 45, 5991.

(16) Suzuki, D.; Nobe, Y.; Watai, Y.; Tanaka, R.; Takayama, Y.; Sato, F.; Urabe, H. J. Am. Chem. Soc. **2005**, 127, 7474.

(18) Ramaraju, P.; Mir, N. A.; Singh, D.; Sharma, P.; Kant, R.; Kumar, I. Eur. J. Org. Chem. 2017, 2017, 3461.

(19) Wu, X.; Zhao, P.; Geng, X.; Wang, C.; Wu, Y.-d.; Wu, A.-x. Org. Lett. 2018, 20, 688.

(20) (a) Kishbaugh, T. L. S. *Curr. Top. Med. Chem.* **2016**, *16*, 3274.

(b) Baumann, M.; Baxendale, I. R. Beilstein J. Org. Chem. 2013, 9, 2265. (c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.

(21) (a) Serra-Errante, G.; Sammes, P. G. J. J. Chem. Soc., Chem. Commun. 1975, 573. (b) Weber, H.; Rohn, T. Z. Naturforsch., B: J. Chem. Sci. 1990, 45, 701. (c) Kumler, P.; Buchardt, O. Chem. Commun. (London) 1968, 1321.

(22) (a) Majumdar, K.; Biswas, A.; Mukhopadhyay, P. Synth. Commun. 2007, 37, 2881. (b) Mehta, S.; Larock, R. C. J. Org. Chem. 2010, 75, 1652. (c) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037. (d) Miao, M.; Xu, H.; Luo, Y.; Jin, M.; Chen, Z.; Xu, J.; Ren, H. Org. Chem. Front. 2017, 4, 1824. (e) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Chem. - Eur. J. 2012, 18, 5460.

(23) (a) Shkil, G. P.; Lusis, V.; Muceniece, D.; Sagitullin, R. S. Tetrahedron 1995, 51, 8599. (b) Babaev, E.; Tsisevich, A. Chem. Heterocycl. Compd. 1998, 34, 254. (c) Atavin, E.; Tikhonenko, V.; Sagitullin, R. Chem. Heterocycl. Compd. 2001, 37, 850.

(24) Edwards, D. R.; Montoya-Peleaz, P.; Crudden, C. M. Org. Lett. 2007, 9, 5481.