This article was downloaded by: [Universitaets und Landesbibliothek]

On: 24 December 2013, At: 20:05

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

New Procedures for the Preparation of Isoflavones with Unsubstituted Ring A

Albert Lévai ^a & Péter Sebòk ^b

^a Department of Organic Chemistry, Lajos Kossuth University, H 4010, Debrecen, Hungary

^b Alkaloida Chemical Factory, H 4440, Tiszavasvári, Hungary

Published online: 23 Sep 2006.

To cite this article: Albert Lévai & Péter Sebòk (1992) New Procedures for the Preparation of Isoflavones with Unsubstituted Ring A, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 22:12, 1735-1750, DOI: 10.1080/00397919208020493

To link to this article: http://dx.doi.org/10.1080/00397919208020493

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with

primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

NEW PROCEDURES FOR THE PREPARATION OF ISOFLAVONES WITH UNSUBSTITUTED RING A

Albert Lévai^{a*} and Péter Sebők^b

^aDepartment of Organic Chemistry, Lajos Kossuth University, H 4010 Debrecen, Hungary and ^bAlkaloida Chemical Factory, H 4440 Tiszavasvári, Hungary

<u>Abstract</u>: Isoflavones with unsubstituted ring A have been synthesized either by the ring closure of 2-hy-droxydeoxybenzoins or by the dehydroxylation of 7-hy-droxyisoflavones. 7-Mercaptoisoflavones have also been prepared.

Naturally occurring isoflavones are generally substituted both in their rings A and B and the availability of representatives substituted only in ring B is not of importance in this respect. However, the studies of their electronic structure and spectral properties require isoflavones unsubstituted in ring A as well.

 $^{^{*}}$ To whom correspondence should be addressed.

Synthesis of such isoflavones has hitherto been performed mainly by the conversion of 2'-benzyloxychalcone epoxides into isoflavones 1,2 and by the oxidative rearrangement of 2'-hydroxychalcones with thallium(III) nitrate³ invented by McKillop et al. 4-6 Since the applicability of these methods depends on the substituents of the above-mentioned chalcone derivatives they can, therefore, be used only in special cases. Usual methods, viz. the ring closure of the 2-hydroxydeoxybenzoins could not be used since, except for the parent 2-hydroxydeoxybenzoin⁷, 2-hydroxydeoxybenzoins substituted only in their ring B cannot be synthesized by the known procedures. In our present paper we report on the application of the Newman-Kwart rearrangement $^{8-13}$ followed by treatment with Raney nickel for selective dehydroxylation of 2,4-dihydroxydeoxybenzoins and 7-hydroxyisoflavone derivatives to make possible the preparation of isoflavones with unsubstituted ring A.

2,4-Dihydroxydeoxybenzoins $(\underline{1}-\underline{4})$ were allowed to react with dimethylthiocarbamoyl chloride to afford D-aryl dimethylthiocarbamates $\underline{5}-\underline{8}$ which gave then S-aryl dimethylthiocarbamates $\underline{9}-\underline{12}$ as products of the Newman-Kwart rearrangement. Compounds $\underline{9}-\underline{12}$ were treated with Raney nickel in ethanolic solution to obtain 2-hydroxydeoxybenzoins $\underline{13}-\underline{16}$. This procedure seems to be a convenient method for the selective de-

HS
$$\frac{13-16}{1}$$
 $\frac{13-16}{1}$ $\frac{13-16}{1}$

$$17, 22, 27, 32$$
: $R^1 = R^2 = R^3 = H$

$$- - - 33$$
: $R^1 = R^2 = H$, $R^3 = 2 - CH_3O$
 $- - 34$: $R^1 = R^2 = H$, $R^3 = 4 - CH_3O$

$$18,23,28,35$$
: $R^1 = R^2 = H$, $R^3 = 3,4-0$ CH₂O

$$\underline{19}, \underline{24}, \underline{29}, \underline{36}, \underline{39}: R^1 = CH_3, R^2 = R^3 = H$$

$$20,25,30,37,40$$
: $R^1 = CH_3, R^2 = OH, R^3 = H$

$$21, 26, 31, 38, 41$$
: $R^1 = C_6 H_5$, $R^2 = R^3 = H$

hydroxylation of the 2,4-dihydroxydeoxybenzoins affording 2-hydroxydeoxybenzoins as convenient intermediates for the synthesis of isoflavones with unsubstituted ring A. Indeed, substances $\underline{13}$ - $\underline{16}$ have easily been converted (method a) into isoflavones $\underline{32}$ - $\underline{35}$ by the utilization of the method of Karmarker. $\underline{14}$

7-Hydroxyisoflavones 17 - 21 have also been allowed to react with dimethylthiocarbamoyl chloride to yield O-aryl dimethylthiocarbamates 22 - 26 which were then rearranged into S-aryl dimethylthiocarbamates 27 - 31. Compounds <u>27 - 31</u> afforded isoflavones <u>32</u> and <u>35 - 38</u> on treatment with Raney nickel. This reaction series proved to be an efficient procedure for the dehydroxylation of variously substituted 7-hydroxyisoflavones (17 - 21). In the case of the 5,7-dihydroxy-2-methylisoflavone (20) the regioselectivity of the acylation made possible the preparation of the 5-hydroxy-2-methylisoflavone (37). It is worth mentioning that no procedure has hitherto been developed for the preparation of 5-hydroxyisoflavones. Therefore, the selective dehydroxylation of e.g. 5,7-dihydroxyisoflavones seems to be an advantageous method for the synthesis of 5-hydroxyisoflavones.

Alkaline hydrolysis of compounds $\underline{27}$ - $\underline{31}$ has also been performed and 7-mercaptoisoflavones $\underline{39}$ - $\underline{41}$ have been prepared in this way. 7-Mercaptoisoflavones formed

 $\label{eq:table_loss} \underline{\text{Table }\underline{1}}$ Physical constants of compounds prepared

Com-	М.р.	Yield	Overall
pound	o.C	%	formula
	94 - 95	95	C H NO S
5 6 7 8 9 10	168 - 169	91	C ₁₇ H ₁₇ NO ₃ S
<u>6</u>		96	C ₁₈ H ₁₉ NO ₄ S
<u>/</u>	114 - 115		C ₁₈ H ₁₉ NO ₄ S
<u>8</u>	168 - 169	92	C ₁₈ H ₁₇ NO ₅ S
<u>9</u>	100 - 101	87	C ₁₇ H ₁₇ NO ₃ S
	107 - 108	89	C ₁₈ H ₁₉ NO ₄ S
<u>11</u>	130 - 131	92	C ₁₈ H ₁₉ NO ₄ S
12	160 - 161	91	с ₁₈ н ₁₇ N0 ₅ S
<u>13</u>	60 - 61 ^b	67	$^{\mathrm{C}}_{14}^{\mathrm{H}}_{12}^{\mathrm{O}}_{2}$
14	59 - 60	71	$^{\rm C}_{15}^{\rm H}_{14}^{\rm O}_{3}$
<u>15</u>	85 - 86	73	$^{\rm C}_{15}^{\rm H}_{14}^{\rm O}_{3}$
16	62 - 63	71	$^{\mathrm{C}}_{15}^{\mathrm{H}}_{12}^{\mathrm{O}}_{4}$
22	195 - 196	85	^C 18 ^H 15 ^{NO} 3 ^S
23	229 - 230	93	C ₁₉ H ₁₅ NO ₅ S
24	207 - 208	96	C ₁₉ H ₁₇ NO ₃ S
25	208 - 209	90	C ₁₉ H ₁₇ NO ₄ S
26	215 - 216	96	C ₂₄ H ₁₉ NO ₃ S
27	218 - 219	85	C ₁₈ H ₁₅ NO ₃ S
28	240 - 241	90	C ₁₉ H ₁₅ NO ₅ S
29	159 - 160	92	C ₁₉ H ₁₇ NO ₃ S
<u>30</u>	171 - 172	91	C ₁₉ H ₁₇ NO ₄ S
3 1	208 - 209	82	C ₂₄ H ₁₉ NO ₃ S
32	136 - 137 ^{a,c}	91	C ₁₅ H ₁₀ O ₂
33	187 - 188 ^a ,d	81	$^{0}_{16}^{H}_{12}^{0}_{3}$
34	140 - 141 ^a ,e	82	C ₁₆ H ₁₂ O ₃
35	157 - 158 ^a ,f		C ₁₆ H ₁₀ O ₄
<u>36</u>	135 - 136 ⁹	86	C ₁₆ H ₁₂ O ₂
	86 - 87	85	10 11 1
<u>37</u>	00 - 07	U Z	$^{\text{C}}_{16}^{\text{H}}_{12}^{\text{O}}_{3}$

Com-	М.р.	Yield	Overall
pound	o.C	%	formula
38	143 - 144 ^h	93	C ₂₁ H ₁₄ O ₂
38 39	145 - 146	90	C ₁₆ H ₁₂ O ₂ S
<u>40</u>	115 - 116	75	C ₁₆ H ₁₂ O ₃ S
41	186 - 187	7 4	$0_{21}^{13}H_{14}^{12}O_{2}^{5}$

Table 1 continued

probably from substances 27 and 28 were unstable and could not be isolated and characterized. Our present results reveal that the preparation and chemical transformations of the dimethylthiocarbamate derivatives of the hydroxyisoflavones is a convenient method for the replacement of the hydroxy group by mercapto group as well. To our knowledge, mercaptoisoflavones have not yet been synthesized.

Structure of compounds prepared $(\underline{5}$ - $\underline{41})$ has been elucidated by 1 H-NMR and mass spectroscopy and the relevant data are summarized in Tables 2 and 3.

Experimental

 $^{
m l}$ H-NMR spectra were recorded on Bruker WP 200 SY and Varian Gemini-200 spectrometers at 200 MHz in CDCl $_{
m 3}$

^aYield refers to method a. Lit. m.p. $^{b}60$ $^{o}C^{7}$, $^{c}136$ $^{o}C^{3}$, $^{d}187$ - 188 $^{o}C^{3}$, $^{e}140$ - 141 $^{o}C^{3}$, $^{f}158$ - 159 $^{o}C^{3}$, $^{g}140$ $^{o}C^{7}$, $^{h}152$ $^{o}C^{7}$.

 $\begin{tabular}{l} \hline 1_{\mbox{H-NMR}}$ & spectroscopic data of compounds prepared \\ \hline \end{tabular}$

	6.68
$ \frac{6}{6} \qquad 3.34(s, 3H), \ 3.44(s, 3H), \ 3.80(s, 3H), \\ (m, 2H), \ 6.93(m, 2H), \ 7.23(m, 2H), \ 7.98 \\ J_1=9.0 \ Hz, \ J_2=2.5 \ Hz), \ 12.43(s, 0H) \\ \frac{7}{2} \qquad 3.34(s, 3H), \ 3.44(s, 3H), \ 3.81(s, 3H), \\ 2H), \ 6.64(m, 2H), \ 6.89(m, 2H), \ 7.19(m, 7.90(dd, 1H, J_1=8.5 \ Hz, J_2=2.5 \ Hz), \ 12.40(s, 3H), \ 4.20(s, 2H), \\ \frac{8}{2} \qquad 3.34(s, 3H), \ 3.44(s, 3H), \ 4.20(s, 2H), \\ 2H), \ 6.71(m, 5H), \ 7.88(dd, 1H, J_1=8.5 \ Hz, 12.40(s, 0H) \\ \frac{1}{2} \qquad 3.34(s, 3H), \ 3.44(s, 3H), \ 3.44(s, 3H), \ 4.20(s, 2H), \\ \frac{1}{2} \qquad 3.34(s, 3H), \ 3.44(s, 3H), \ 4.20(s, 2H), \ 4.2$	7.41
$(m, 2H), 6.93(m, 2H), 7.23(m, 2H), 7.98$ $J_{1}=9.0 \text{ Hz}, J_{2}=2.5 \text{ Hz}), 12.43(s, 0H)$ $\underline{7}$ $3.34(s, 3H), 3.44(s, 3H), 3.81(s, 3H),$ $2H), 6.64(m, 2H), 6.89(m, 2H), 7.19(m,$ $7.90(dd, 1H, J_{1}=8.5 \text{ Hz}, J_{2}=2.5 \text{ Hz}), 12.$ $\underline{8}$ $3.34(s, 3H), 3.44(s, 3H), 4.20(s, 2H),$ $2H), 6.71(m, 5H), 7.88(dd, 1H, J_{1}=8.5 \text{ Hz})$ $=2.0 \text{ Hz}), 12.40(s, 0H)$	s, OH)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{7}{3.34}(s, 3H), 3.44(s, 3H), 3.81(s, 3H),$ $2H), 6.64(m, 2H), 6.89(m, 2H), 7.19(m,$ $7.90(dd, 1H, J1=8.5 Hz, J2=2.5 Hz), 12.$ $\frac{8}{3.34}(s, 3H), 3.44(s, 3H), 4.20(s, 2H),$ $2H), 6.71(m, 5H), 7.88(dd, 1H, J1=8.5 Hz), 12.40(s, 0H)$	3(dd, 1H,
2H), $6.64(m, 2H)$, $6.89(m, 2H)$, $7.19(m, 7.90(dd, 1H, J_1=8.5 Hz, J_2=2.5 Hz), 12.8 3.34(s, 3H), 3.44(s, 3H), 4.20(s, 2H), 2H), 6.71(m, 5H), 7.88(dd, 1H, J_1=8.5 Hz), 12.40(s, 0H)$	1
7.90(dd, 1H, J_1 =8.5 Hz, J_2 =2.5 Hz), 12. 8.334(s, 3H), 3.44(s, 3H), 4.20(s, 2H), 2H), 6.71(m, 5H), 7.88(dd, 1H, J_1 =8.5 H = 2.0 Hz), 12.40(s, 0H)	
8 3.34(s, 3H), 3.44(s, 3H), 4.20(s, 2H), 2H), 6.71(m, 5H), 7.88(dd, 1H, J_1 =8.5 H =2.0 Hz), 12.40(s, 0H)	
2H), 6.71(m, 5H), 7.88(dd, 1H, J ₁ =8.5 H =2.0 Hz), 12.40(s, 0H)	
=2.0 Hz), 12.40(s, OH)	
7 00(44 111	12, J ₂ =
9 3.118(8.68). 4.29(8.28). 7.00(00, 10,	7 - Q 5
Hz, J ₂ =2.0 Hz), 7.16(d, 1H, J=2.0 Hz), 7.48(m, 5H), 7.85(d, 1H, J=8.5 Hz), 12	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
10 3.06(s, 6H), 3.80(s, 3H), 4.29(s, 2H), 7.35(m, 6H), 7.91(d, 1H, J=9.0 Hz), 12	
11 3.06(s, 6H), 3.80(s, 3H), 4.22(s, 2H),	
2H), 7.09(m, 2H), 7.19(m, 2H), 7.84(d,	
J=8.5 Hz), 12.22(s, OH)	
12 3.05(s, 6H), 4.20(s, 2H), 5.96(s, 2H),	6.72(m,
3H), 7.06(dd, 1H, J ₁ =8.5 Hz, J ₂ =2.0 Hz	
(d, 1H, J=2.0 Hz), 7.82(d, 1H, J=8.5 H	z), 12.18
(s, OH)	
13 4.31(s, 2H), 6.84 - 7.54(m, 8H), 7.88(dd, 1H,
J ₁ =8.5, J ₂ =2.0 Hz), 12.24(s, OH)	
14 3.80(s, 3H), 4.16(s, 2H), 6.86 - 7.54(
7.93(dd, 1H, J ₁ =9.0 Hz, J ₂ =2.5 Hz), 12	24/c NH

Compo	und &(ppm)
<u>15</u>	3.79(s, 3H), 4.23(s, 2H), 6.86 - 7.50(m, 7H),
	7.86(dd, 1H, J ₁ =8.5 Hz, J ₂ =2.5 Hz), 12.22(s, OH)
<u>16</u>	4.22(s, 2H), 5.96(s, 2H), 6.64 - 7.52(m, 6H),
	7.86(dd, lH, J_1 =8.5 Hz, J_2 =2.5 Hz), 12.22(s, OH)
22	3.40(s, 3H), 3.49(s, 3H), 7.10 - 7.62(m, 7H),
	B.O1(s, 1H), 8.33(d, 1H, J=9.0 Hz)
23	3.40(s, 3H), 3.49(s, 3H), 6.00(s, 2H), 6.80 -
	7.29(m, 5H), 7.97(s, 1H), 8.32(d, 1H , J=9.0 Hz)
24	2.31(s, 3H), 3.40(s, 3H), 3.49(s, 3H), 7.05 -
	7.50(m, 7H), 8.25(d, 1H, J=8.5 Hz)
<u>25</u>	2.32(s, 3H), 3.37(s, 3H), 3.48(s, 3H), 6.53(d,
	1H, J=2.0 Hz), 6.71(d, 1H, J=2.0 Hz), 7.20 -
	7.52(m, 5H), 12.83(s, OH)
<u>26</u>	3.40(s, 3H), 3.49(s, 3H), 7.11 - 7.43(m, 12H),
	8.32(d, 1H, J=8.5 Hz)
<u>27</u>	3.12(s, 6H), 7.33 - 7.76(m, 7H), 8.02(s, 1H),
	8.30(d, 1H, J=9.0 Hz)
<u>28</u>	3.11(s, 6H), 6.00(s, 2H), 6.87 - 7.70(m, 5H),
	7.97(s, 1H), 8.28(d, 1H, J=8.5 Hz)
<u>29</u>	2.31(s, 3H), 3.11(s, 6H), 7.21 - 7.51(m, 6H),
	7.68(d, 1H, J=1.5 Hz), 8.20(d, 1H, J=8.5 Hz)
<u>30</u>	2.31(s, 3H), 3.09(s, 6H), 6.92(d, 1H, J=2.0 Hz),
	7.15(d, 1H, J=2.0 Hz), 7.21 - 7.51(m, 5H),
7.3	12.64(s, OH)
<u>31</u>	3.08(s, 3H), 3.12(s, 3H), 7.15 - 7.44(m, 10H),
	7.52(dd, 1H, J ₁ =8.5 Hz, J ₂ =1.5 Hz), 7.78(d, 1H,
7.0	J=1.5 Hz), 8.27(d, 1H, J=8.5 Hz)
32	7.23 - 7.75(m, 8H), 8.02(s, 1H), 8.32(dd, 1H,
33	J _l =9.0 Hz, J ₂ =2.0 Hz) 3.80(s, 3H), 7.02 - 7.68(m, 7H), 8.00(s, 1H),
33	8.30(dd, 1H, J ₁ =9.0 Hz, J ₂ =2.5 Hz)
	$0.70(00, 10, 0)^{-7.00}$

continued .

Table 2 continued

Compour	nd $S(ppm)$
34	3.84(s, 3H), 6.99 - 7.68(m, 7H), 8.01(s, 1H),
	8.32(dd, 1H, J ₁ =8.5 Hz, J ₂ =2.5 Hz)
35	6.01(s, 2H), 6.88 - 7.68(m, 6H), 8.00(s, 1H),
	8.32(dd, 1H, J ₁ =8.5 Hz, J ₂ =2.0 Hz)
<u>36</u>	2.32(s, 3H), 7.17 - 7.66(m, 8H), 8.23(dd, 1H,
	$J_1 = 8.0 \text{ Hz}, J_2 = 1.5 \text{ Hz})$
<u>37</u>	2.17(s, 3H), 6.37 - 6.82(m, 8H), 12.35(s, 0H)
<u>38</u>	7.07 - 7.70(m, 13H), 8.30(dd, 1H, J ₁ =8.0 Hz,
	J ₂ =1.5 Hz)
<u>39</u>	2.29(s, 3H), 3.72(s, SH), 7.12 - 7.51(m, 7H),
	8.05(d, 1H, J=8.5 Hz)
40	2.28(s, 3H), 3.68(s, SH), 6.63 - 7.53(m, 7H),
	12.74(s, OH)
41	3.76(s, SH), 7.16 - 7.45(m, 12H), 8.15(d, 1H,
	J=15.1)

(internal standard TMS, \mathcal{E} = 0.0 ppm) at room temperature. Mass spectra were measured with a VG apparatus. Starting materials $\underline{1}$ - $\underline{4}$ and $\underline{17}$ - $\underline{21}$ were synthesized according to known procedures. $\underline{14-18}$

Synthesis of O-Aryl dimethylthiocarbamates 5 - 8 and 22 - 26

A mixture of compounds $\underline{1}$ - $\underline{4}$ and $\underline{17}$ - $\underline{21}$ (10 mmol), dimethylthicarbamoyl chloride (20 mmol), 1,4-diazabicyclo[2,2,2]octane (20 mmol), and anhydrous

N,N-dimethylformamide (30 ml) was stirred at room temperature for 2 h, then poured into 5% hydrochloric acid (300 ml). The precipitate was filtered off, washed free of acid, and crystallized from methanol to afford compounds $\underline{5} - \underline{8}$ and $\underline{22} - \underline{26}$.

<u>Preparation of S-Aryl dimethylthiocarbamates 9 - 12</u> and $\frac{27}{2}$ - $\frac{31}{2}$

Compounds 5 - 8 and 22 - 26 (10 mmol) were dissolved in N,N-dimethylaniline (30 ml) and refluxed for 1 h, then poured into 10% hydrochloric acid (300 ml). The precipitate was filtered off, washed free of acid and crystallized from methanol to obtain substances 9 - 12 and 27 - 31.

<u>2-Hydroxydeoxybenzoins</u> <u>13</u> - <u>16</u>

A mixture of substances 9 - 12 (5.0 mmol), Raney nickel (10.0 g), and ethanol (100 ml) was stirred at room temperature for 1 h, the solid material filtered off, the solvent evaporated, and the residue purified by column chromatography to yield crystalline products 13 - 16.

<u>General Procedures for the Preparation of Isoflavones</u> 32 - 38

a./ A mixture of 2-hydroxydeoxybenzoins $\underline{13}$ - $\underline{16}$ (0.1 g), anhydrous pyridine (5.0 ml), anhydrous tri-

Table 3

Mass spectroscopic data of compounds prepared

	und m/z (% relative intensity)
5	315(M ⁺ , 3), 224(20), 137(16), 88(100), 72(92)
<u>6</u>	345(M ⁺ , 4), 224(35), 137(3), 121(5), 88(100),
	72(38)
<u>7</u>	345(M ⁺ , 3), 224(38), 137(10), 121(19), 88(100),
	72(48)
<u>8</u>	359(M ⁺ , 6), 224(28), 135(10), 88(100), 72(37)
<u>9</u>	315(M ⁺ , 3), 224(30), 137(14), 91(12), 88(18),
	72(100)
<u>10</u>	345(M ⁺ , 8), 224(37), 121(8), 88(24), 72(100),
	43(27)
<u>11</u>	345(M ⁺ , 3), 224(43), 138(5), 121(22), 88(42),
	72(100), 57(11)
<u>12</u>	359(M ⁺ , 7), 224(39), 135(20), 102(4), 88(42),
	72(100), 57(15)
<u>13</u>	212(M ⁺ , 4), 121(100), 92(10), 77(4), 65(25)
14	242(M ⁺ , 13), 228(5), 121(100), 105(10), 91(29),
	77(11), 65(21), 51(7)
<u>15</u>	242(M ⁺ , 10), 121(100), 92(5), 77(5), 65(9)
<u>16</u>	256(M ⁺ , 12), 149(6), 135(20), 121(100), 105(5),
	93(10), 77(15)
<u>22</u>	325(M ⁺ , 10), 309(5), 237(5), 88(72), 72(100)
<u>23</u>	369(M ⁺ , 18), 88(100), 72(92)
<u>24</u>	339(M ⁺ , 10), 251(5), 109(8), 88(76), 72(100)
	57(22)
<u>25</u>	355(M ⁺ , 8), 115(8), 88(100), 72(85), 55(26)
<u>26</u>	401(M ⁺ , 4), 313(2), 88(75), 72(100)
<u>27</u>	325(M ⁺ , 10), 253(5), 72(100)
<u>28</u>	369(M ⁺ , 10), 297(5), 134(18), 106(10)
<u>29</u>	339(M ⁺ , 10), 267(3), 72(100)

Table 3 continued

Compo	und m/z (% relative intensity)
30	355(M ⁺ , 4), 72(100)
<u>31</u>	401(M ⁺ , 4), 72(100), 57(19)
<u>32</u>	222(M ⁺ , 75), 221(92), 165(10), 120(100), 104(25),
	92(51)
<u>33</u>	252(M ⁺ , 92), 221(100), 181(5), 165(14), 149(22),
	131(81), 121(70), 118(10), 100(12), 89(39)
34	252(M ⁺ , 100), 251(46), 237(27), 209(12), 181(8),
	152(11), 132(61), 117(24), 89(49), 76(9), 63(31)
<u>35</u>	266(M ⁺ , 55), 265(40), 222(82), 221(100), 165(10),
	146(42), 120(70), 92(52)
<u>36</u>	236(M ⁺ , 56), 235(100), 178(8), 149(9), 115(20),
	92(13), 76(8), 63(12)
<u>37</u>	252(M ⁺ , 71), 251(100), 137(16), 136(18), 115(25),
	108(26), 89(8)
38	298(M ⁺ , 42), 297(100), 263(13), 178(30), 149(18),
	82(47)
<u>39</u>	268(M ⁺ , 75), 267(100), 239(5), 178(8), 153(40),
	134(9), 115(51), 96(18)
<u>40</u>	284(M ⁺ , 76), 283(100), 168(8), 142(9), 115(30),
	85(10), 69(13), 55(16), 42(41)
<u>41</u>	330(M ⁺ , 16), 297(11), 178(47), 152(17), 112(18),
	96(14)

ethylorthoformate (5.0 ml), and piperidine (0.5 ml) was refluxed for 8 h, proured onto ice and acidified with hydrochloric acid. The precipitate was filtered off, washed free of acid and crystallized from methanol to afford isoflavones $\underline{32} - \underline{35}$.

b./ Substances $\underline{27}$ - $\underline{31}$ (5.0 mmol) were treated with Raney nickel (10.0 g) as described for compounds $\underline{9}$ - $\underline{12}$ to obtain white crystalline materials $\underline{32}$ and $\underline{35}$ - $\underline{38}$.

7-Mercaptoisoflavones 39 - 41

Compounds $\underline{29}$ - $\underline{31}$ were refluxed in 10% methanolic potassium hydroxyde solution (50 ml) for 30 min, then the solvent evaporated under reduced pressure. The residue was triturated with water (100 ml) and extracted with diethyl ether (100 ml). The aqueous phase was acidified with hydrochloric acid, the precipitate filtered off, washed free of acid, and crystallized from methanol to yield compounds 39 - 41.

<u>Acknowledgements</u>

The present study was sponsored by the Hungarian Academy of Sciences (Grant No. OTKA-1696) and by the Alkaloida Chemical Factory (Tiszavasvári, Hungary) for which our gratitude is expressed. Our thanks are due to Mrs. M. Nagy for her help in the experimental work.

References

 Bhrara, S.C., Jain, A.C., and Seshadri, T.R., Tetrahedron, 1965, <u>21</u>, 963.

- Litkei, Gy., Bognár, R., and Dinya Z., Acta Chim.
 Acad. Sci. Hung., 1972, 71, 403.
- 3. Lévai, A. and Balogh, L., Pharmazie, 1975, 30, 747.
- 4. McKillop, A., Swann, B.P., and Taylor, E.C., Tetrahedron Letters, 1970, 5281.
- McKillop, A., Swann, B.P., Ford, M.E., and Taylor,
 E.C., J. Amer. Chem. Soc., 1973, 95, 3641.
- 6. McKillop, A., Pure Appl. Chem., 1975, 43, 463.
- Chadra, T.C., Mahal, H.S., and Venkataraman, K.,
 J. Chem. Soc., <u>1933</u>, 1459.
- Kwart, H. and Evans, E.R., J. Org. Chem., 1966,
 31, 410.
- Newman, M.S. and Karnes, H.A., J. Org. Chem., 1966,
 31, 3890.
- Relles, H.M. and Pizzolato, G., J. Org. Chem.,
 1968, 33, 2249.
- 11. Miyazaki, K., Tetrahedron Letters, 1968, 2793.
- Kurth, H.J., Kraatz, U., and Korte, F., Chem. Ber.,
 1973, 106, 2419.
- Besserer, K., Köhler, H., and Rundel, W., Chem.
 Ber., 1982, <u>115</u>, 3678.
- Karmarker, S.S., J. Sci. Ind. Research, 1961,
 20B, 334.
- Baker, W. and Robinson, R., J. Chem. Soc., 1925,
 127, 1981.

Späth, E. and Schmidt, D., Monatsh. Chem., 1929,
 53/54, 454.

- 17. Kagal, S.A., Nair, P.M., and Venkataraman, K.,
 Tetrahedron Letters, <u>1962</u>, 593.
- Moersch, G.W., Morrow, D.F., and Neuklis, W.A.,
 J. Med. Chem., 1967, <u>10</u>, 154.

(Received in UK 10 February, 1992)