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Abstract: A low cost, efficient, metal-free highly stereoselective
reduction of ketimines to chiral amines was developed. Different
imines bearing a very cheap and removable chiral auxiliary were re-
duced simply by trichlorosilane in the presence of N,N-dimethyl-
formamide, often in quantitative yield and complete control of the
absolute stereochemistry, to afford highly enantiomerically en-
riched amines.
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The advent of organocatalysis over the last few years has
led to the discovery and development of new activation
modes and novel transformations, sometimes comple-
mentary to those established in the field of organometallic
catalysis.1 A paradigmatic example comes from the stere-
oselective carbon–nitrogen double-bond reduction; for
this fundamental transformation that generates a new ni-
trogen-bearing stereocenter, both organometallic catalytic
systems2 and organic catalysts3 have been recently devel-
oped. However, the search of inexpensive but highly effi-
cient procedures for imines reduction, with total control of
the absolute stereochemistry, is still very active. Among
the different possibilities, an attractive methodology ex-
ploits trichlorosilane as the reducing species that needs to
be activated by co-ordination with Lewis bases, such as
N,N-dimethylformamide, acetonitrile, and trialkylamines,
to generate a hexacoordinated hydridosilicate acting as
the actual reducing agent.4

Already in 1999 in his pioneering works Matsumura re-
ported the use of N-formyl proline to promote enantio-
selective reduction of ketones and later of imines.5 Since
then several chiral activators for trichlorosilane-mediated
reduction have been developed.4,6 In the course of our
work on the topic7 very recently we have demonstrated
that it is possible to reach often a complete stereocontrol
in the ketoimines reduction by combining the use of a
proper catalyst with a very cheap, removable chiral auxil-
iary at the imine nitrogen.8

Now we wish to report that by working with the proper ex-
perimental conditions, the reduction of ketoimines de-
rived from (R)- or (S)-1-phenylethylamine may be
accomplished in very high chemical and stereochemical

efficiency simply by addition of trichlorosilane in the
presence of an achiral Lewis base such as N,N-dimethyl-
formamide.

During our studies on the organocatalytic reduction of
chiral ketimines8 it was found that a catalytic amount of
N,N-dimethylformamide was able to promote HSiCl3 ad-
dition with good stereoselectivity, although in low yield.
We decided to further investigate the reaction; not only
DMF (A) but also other achiral formamide derivatives
were employed, like N,N-diisopropylformamide (B), N,N-
dibenzylformamide (C), and N,N-dimethylacetamide (D).
In preliminary studies the reduction of imine (R)-1 was
performed at 0 °C in dichloromethane for 12 hours in the
presence of different equivalents of different Lewis bases
(Scheme 1).

Scheme 1 Stereoselective reduction of chiral imine 1

A few selected results are collected in Table 1. All activa-
tors promoted the trichlorosilane addition often in quanti-
tative yield, besides N,N-dimethylacetamide that was less
effective also as stereochemical controller (Scheme 1).
Generally, the use of six mol equivalents of Lewis base al-
lowed to obtain amine (R,R)-2 in higher diastereoselectiv-
ities, with N,N-dimethylformamide leading to the best
result (99% yield, dr = 97:3, entry 2).

With DMF having been identified as the Lewis base of
choice, a few experiments were dedicated to the individu-
ation of the best experimental conditions (Table 2).

At 0 °C in dichloromethane a variation of the amount of
DMF from 2 mol equivalents to 8 mol equivalents does
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not seem to influence the stereoselectivity decisively.
However, 6 mol equivalents of DMF and 3 mol equiva-
lents of HSiCl3 in CH2Cl2 seem to be the best combina-
tion. In other solvents, like toluene, acetonitrile, or
chloroform lower stereoselectivities were obtained. A de-
cisive improvement came from lowering the reaction tem-
perature; at –50 °C, after only 12 hours, the chiral amine
29 was obtained in 98% yield and basically as single dia-
stereomer.10

The general applicability of the methodology was then in-
vestigated (Scheme 2).11 N-a-Methyl benzyl imines of
methyl aryl ketones of different electronic properties were
effectively reduced to the corresponding secondary

amines in quantitative yields, always maintaining an abso-
lute control of the stereoselectivity of the process
(Table 3).

Both aromatic and heteroaromatic alkyl ketimines can be
converted to the corresponding amines with great effi-
ciency and stereocontrol (entries 1–4, Table 3). It is worth
mentioning that amine 11 has been converted to 4-trifluo-
romethylphenylmethylamine by simple hydrogenation,12

thus demonstrating the feasibility of the approach for the
preparation of an enantiomerically pure primary amine.

Imine 8 derived from methyl isobutyl ketone was also
readily reduced in >98% yield in the presence of N,N-di-
methylformamide at –50 °C (entry 5, Table 3). Chiral
amine 13, obtained as single isomer, represents a direct
precursor of (R)-isopropylmethylamine.13

The procedure was successfully employed in the prepara-
tion of other chiral secondary amines of C2 symmetry. For
example, the reduction of (R)-N-1-b-naphthyl ethyl imine
of 2-acetonaphthone 14 with trichlorosilane was accom-
plished (Scheme 3). In this case amine 15 was obtained al-
ready at 0 °C in quantitative yield and 98:2 stereoisomeric

Table 1 Different Lewis Bases in the Stereoselective Reduction of 
(R,R)-1 with HSiCl3

Entry Lewis base Lewis base (equiv) Yield (%)a dr of (R,R)-2/3b

1 A 2 99 95:5

2 A 6 99 97:3

3 B 2 99 89:11

4 B 6 99 90:10

5 C 2 99 91:9

6 C 6 99 92:8

7 D 2 95 87:13

a Reaction run at 0 °C, yields determined by 1H NMR and confirmed 
after chromatographic purification.
b Diastereomeric excess determined by 1H NMR and confirmed by 
HPLC (see Supporting Information).

Table 2 Stereoselective Reduction of Imine 1 Promoted by DMF–
HSiCl3

Entry Temp 
(°C)

Lewis base 
(equiv)

Solvent Yield 
(%)a

dr of 
(R,R)-2/3b

1 0 0.3 CH2Cl2 91 94:6

2 0 2 CH2Cl2 99 95:5

3 0 4 CH2Cl2 99 94:6

4 0 5 CH2Cl2 99 93:7

5 0 6 CH2Cl2 99 97:3

6 0 8 CH2Cl2 99 96:4

7 0 6 toluene 72 94:6

8 0 6 MeCN 99 87:13

9 0 6 CHCl3 90 95:5

10 –20 6 CH2Cl2 95 94:6

11 –50 6 CH2Cl2 98 >99:1

a Reaction run at 0 °C, yields determined by 1H NMR and confirmed 
after chromatographic purification.
b Diastereomeric excess determined by 1H NMR and confirmed by 
HPLC (see Supporting Information).

Table 3 Stereoselective Reduction of Chiral Imines

Entry Imine Product Yield (%)a drb

1 4 9 71 >99:1

2 5 10 90 91:9

3 6 11 83 99:1

4 7 12 65 >99:1

5 8 13 90 >99:1

6c 14 15 99 98:2

7 14 15 67 98:2

8c 16 17 71 91:9

9 16 17 51 88:12

a Reaction run at 0 °C, yields determined by 1H NMR and confirmed 
after chromatographic purification.
b Diastereomeric excess determined by 1H NMR and confirmed by 
HPLC (see Supporting Information).
c Reaction run at 0 °C.

Scheme 2 Stereoselective reduction of chiral imine 4–8
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ratio; running the reaction at lower temperature did not
improve the stereoselectivity (entries 6 and 7, Table 3).

Finally, as further demonstration of the versatility of the
methodology, the addition of trichlorosilane to imine 16,
derived from reaction of 2-methoxyacetophenone and
(R)-1-phenylethylamine, was studied (Scheme 3). The re-
duction at 0 °C after only 12 hours afforded the 1,2-meth-
oxyamino derivative 17 in 71% yield and 91:9
diastereomeric ratio (entry 8, Table 3).14 Also for this
transformation a lower reaction temperature did not mod-
ify significantly the stereochemical result.

Scheme 3 Stereoselective reduction of chiral imines 14 and 16

In conclusion, we have developed a very convenient, low
cost protocol for a highly stereoselective reduction of
ketimines15 bearing a very cheap and removable chiral
auxiliary, promoted by an achiral inexpensive Lewis base.
A very simple experimental procedure allows to obtain
the products often with very high diastereomeric excess.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett. It includes
characterization of reaction products, 1H NMR spectra, and HPLC
chromatograms on chiral stationary phase of chiral amines.
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