

Zirconocene-Mediated and/or Catalyzed Unprecedented Coupling Reactions of Alkoxymethyl-Substituted Styrene Derivatives

Yutaka Ikeuchi,^{†,‡} Takeo Taguchi,[‡] and Yuji Hanzawa^{*,§}

Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-8560, Japan, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392, Japan, and Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida-shi, Tokyo 194-8543, Japan

hanzaway@ac.shoyaku.ac.jp

Received February 5, 2005

Reactions of o-(alkoxymethyl)styrene derivatives with a stoichiometric amount of zirconocenebutene complex (zirconocene equivalent, "Cp₂Zr") brought about an insertion of the zirconocene species into a benzylic carbon—oxygen bond. The oxidative insertion of Cp₂Zr to the benzylic carbon oxygen bond is a result of sequential reactions: (i) formation of zirconacyclopropane by the ligand exchange with o-(alkoxymethyl)styrene, (ii) elimination of the alkoxy group through an aromatic conjugate system giving metalated o-quinodimethane species, and (iii) transfer of zirconium metal to the benzylic position. Through use of a catalytic amount of "Cp₂Zr", however, unprecedented homo-coupling reactions (dimerization) of o-(alkoxymethyl)styrene derivatives occurred to give a tetracyclic compound. On the other hand, reactions of o-(1-alkoxyisopropyl)styrene derivatives gave rise to the analogous tetracyclic compounds regardless of the amount of "Cp₂Zr" (stoichiometric or catalytic). Heterocoupling product between o-(1-alkoxyisopropyl)styrene and styrene congeners was obtained in high cis stereo- and regioselectivity by treating o-(1-alkoxyisopropyl)styrene derivatives with "Cp₂Zr" in the presence of an excess amount of styrene derivatives.

Introduction

Easy preparation and versatile reactivity of zirconocene-butene complex 1 ("Cp₂Zr", Cp = cyclopentadienyl)¹ attracted synthetic organic chemists to the use of "Cp₂Zr" as a zirconocene equivalent for the study of new carbon-carbon bond formation.² During the course of our studies of "Cp₂Zr"-mediated carbon-carbon bond formation reactions, we reported an efficient generation of allylic zirconocene **3** species from allylic ethers through β -alkoxy elimination of the zirconacyclopropane intermediate **2**.³ On the basis of the formation of allylic zirconocene **3**, we were tempted to examine "Cp₂Zr"catalyzed or -mediated reactions of alkoxymethyl-substituted styrene derivatives **4**, which possess a reactive olefin site to " Cp_2Zr " and a leaving alkoxy group through the aromatic π -conjugated system. Preliminary examination of the reactions of *o*-, *m*-, or *p*-alkoxymethyl-substituted styrene derivatives **4** toward " Cp_2Zr " showed a remarkable difference in reactivity.⁴

In this paper, we disclose a full account of the " Cp_2Zr "-mediated or -catalyzed reactions of o-, m-, and

[†] Sankyo Co., Ltd..

[‡] Tokyo University of Pharmacy and Life Science.

[§] Showa Pharmaceutical University.

⁽¹⁾ Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1986, 27, 2829.

⁽²⁾ For recent reviews, see: (a) Marek, I., Ed. *Titanium and Zirconium in Organic Synthesis*, Wiley-VCH: Weinheim, Germany, 2002. (b) Suzuki, K.; Wipf, P., Eds.; Recent advances in the chemistry of zirconocenes. In Symposium-in print *Tetrahedron* **2004**, *60*, 1267.

⁽³⁾ For review, see: Hanzawa, Y.; Ito, H.; Taguchi, T. Synlett 1995, 299.

⁽⁴⁾ Hanzawa, Y.; Ikeuchi, Y.; Nakamura, T.; Taguchi, T. Tetrahedron Lett. 1995, 36, 6503.

FIGURE 1. Regio- and stereoselective formation of 6.5

p-alkoxymethyl-substituted styrene derivatives **4** and the unprecedented formation of homo- and heterocoupling products.

The reaction of styrene (**5a**) with "Cp₂Zr" has been reported to give regio- and stereoselectivily zirconacyclopentane intermediate **6**, which is converted to styrenebutene coupled product **7** in good yields by acid treatment (Figure 1).^{5,6} In this coupling reaction, it is worth noting that the formation of the styrene-styrene homocoupling (dimerization) products has been reported to be less than 10% under thermodynamically equilibrated conditions.

Results and Discussion

Generation of Benzylzirconocene Intermediates. The reactions of o-(benzyloxymethyl)styrene derivatives (o-4a-c) with a stoichiometric amount of "Cp₂Zr" in THF at room temperature gave o-methylstyrene compounds 8a-c or the monodeuteriomethyl congener of 8a after acidic workup (HCl-H₂O or DCl-D₂O) in good yields (Scheme 1). To our surprise, butene-coupling product 9 could not be detected in the reaction media. The double bond of o-4a is indispensable because the reaction of dibenzyl ether with "Cp₂Zr" under the same conditions did not afford any products except the recovered starting material. Through use of 2 equiv of "Cp₂Zr", o-4a afforded butene-coupling compound 10a (X = H) in a 79% yield, and three deuterium atoms were incorporated into ${\bf 10a}$ (X = D) by DCl-D₂O workup. The reaction of *p*-(benzyloxymethyl)styrene (p-4) with "Cp₂Zr" indicated similar reactivity to that of o-4a. Thus, the formation of pmethylstyrene (11) or butene-coupling product 12 depended on the amount of "Cp₂Zr" employed. In the

SCHEME 1

reaction of meta-substituted isomer m-4 with an equivalent amount of "Cp₂Zr", however, butene-coupling product 13 was obtained as the sole product as in the case of the styrene-"Cp₂Zr" reaction.

These results indicate that the insertion of zirconocene into the benzylic carbon-oxygen bond took place in the reactions of o- and p-4 and not in the reaction of m-4, and thus, the importance of the π -conjugation is obvious. It is also obvious that benzylic zirconocene species is formed prior to the addition of the second "Cp₂Zr" in the reactions of *o*- and *p*-4. Thus, benzylzirconocene species 16, for example, would be formed through (i) the ligand exchange of the first equivalent of "Cp₂Zr" with a double bond of *o*-4a giving a zirconacyclopropane derivative 14, (ii) the elimination of the alkoxy group in 14 through the aromatic π -system to generate *o*-quinodimethane intermediate 15,⁷ and (iii) the transfer of the Cp_2Zr moiety to a benzylic position (Figure 2). The described processes (i-iii) explain the formation of **10** (X = H or D) in the reaction of o-4a with 2 equiv of "Cp₂Zr" or the formation of 13.

Formation of Homocoupling Products (Dimerization). The reaction of o-(1-alkoxyisopropyl)styrene 17a, which is a dimethyl-substituted analogue of *o*-4a, with an equivalent amount of "Cp2Zr" afforded an unexpected homocoupling product 19a as a mixture of trans/ cis isomers⁸ (ratio = 3.0/1). In addition, reduced product 18 was not detected (Scheme 2 and Table 1).9 No deuterium was incorporated into 19a by DCl-D₂O workup. The homocoupling reactions were affected by the substituent, and thus *p*-methoxy-substituted styrene derivative **17c** gave a complex mixture (entry 3). It is worth mentioning that the reaction of the fluorinesubstituted isomer 17d with "Cp₂Zr" (1 equiv) gave a corresponding homocoupling product 19c in a 29% yield (trans/cis = 2.5) together with **20** (X = H) in a 50% yield as a single cis-stereoisomer (entry 4).⁸ The incorporation of one deuterium atom into 20 (X = D) by DCl-D₂O workup indicates that the coupled product 20 is gener-

FIGURE 2. " Cp_2Zr "-mediated reaction pathway.

SCHEME 2

20 (*cis only*) X = H, D, or ZrCp₂(OMe)

entry	17	% yield ^b of 19 (trans/cis)	% yield ^b of 20
1	17a : $R = H$;	19a : 83 (3.0)	_
2	17b : $R = H$; $R^1 = CH_3$	19a : 78	-
3	17c : $R = CH_3O; R^1 = CH_3$	complex mixture	
4^c	17d : $R = F$; $R^1 = CH_3$	19c : 29 (2.5)	50
5^d	17d : $R = F$; $R^1 = CH_3$	19c : 53	28

 a Reaction conditions: 17 (0.5 mmol), "Cp₂Zr" (1.05 equiv), THF, rt. b Isolated yields. c 6.5 h of reaction time. d 97 h of reaction time.

ated as a zirconocene species in the reaction media. The prolonged reaction of 17d (97 h) with an equivalent amount of "Cp₂Zr" increased the ratio of 19c (53%)

(5) Swanson, D. R.; Rousset, C. J.; Negishi, E.; Takahashi, T.; Seki, T.; Saburi, M.; Uchida, Y. J. Org. Chem. **1989**, *54*, 3521.

(6) Besides the reactivity of styrene with a stoichiometric amount of 1, the efficient alkylation reaction of the styrene double bond has been reported by treatment with a catalytic amount of Cp₂ZrCl₂ in the presence of Grignard reagent (3 equiv) and alkyl halides or tosylates. (a) Cesati, R. C., III; Armas, J.; Hoveyda, A. H. Org. Lett. **2002**, 4, 395. (b) Armas, J.; Hoveyda, A. H. Org. Lett. **2001**, 3, 2097. (c) Armas, J.; Kolis, S. P.; Hoveyda, A. H. J. Am. Chem. Soc. **2000**, 122, 5977. (d) Terao, J.; Torii, K.; Saito, K.; Kambe, N.; Baba, A.; Sonoda, N. Angew. Chem., Int. Ed. **1998**, 37, 2653. (e) Terao, J.; Watanabe, T.; Saito, K.; Kambe, N.; Sonoda, N. Tetrahedron Lett. **1998**, 39, 9201. (f) Swanson, D. R.; Rousset, C. J.; Negishi, E.; Takahashi, T.; Seki, T.; Saburi, M.; Uchida, Y. J. Org. Chem. **1989**, 54, 3521.

(7) The generation of o-quinodimethane intermediates from o-alkoxymethylstyrene and its related compounds through the elimination of an alkoxyl group has been reported. (a) Hirao, A.; Negishi, Y.; Hayashi, M.; Sako, K.; Ryu, W.; Loykulnant, S.; Matsuo, A.; Sugiyama, K. Macromol. Chem. Phys. 2001, 202, 3590. (b) Hirao, A.; Kitamura, K.; Takenaka, K.; Nakahama, S. Macromolecules 1993, 26, 4995. (c) Ishizone, T.; Kato, R.; Ishino, Y.; Hirao, A.; Nakahama, S. Macromolecules 1991, 24, 1449. See also: (d) Moss, R. J.; Rickborn, B. J. Org. Chem. 1986, 51, 1992. (e) Moss, R. J.; White, R.; Rickborn, B. J. Org. Chem. 1985, 50, 5132. (f) Moss, R. J.; Rickborn, B. J. Org. Chem. 1985, 50, 5132. (f) Moss, R. J.; Rickborn, B. J. Org. Chem. 1983, 48, 70.

SCHEME 3

	"Cp ₂ Zr" (n equiv) room temp.	19a +			Yield (%) ^a		
17a				17a	n	19a	17a
			+		1	83	-
				1/2	84	-	
	THF				1/3	62	31
					1/3 ^b	75	-

 a Isolated yields. $^bn\mbox{-BuLi}\,(1/3$ equiv) was added before hydrolytic workup.

compared to **20** (28%) (entry 5), and thus the homocoupling reaction could be suggested to proceed with **20** (X = $ZrCp_2(OMe)$) as a key intermediate.

The lack of deuterium introduction into **19** by the acidic workup with DCl-D₂O suggests that dimeric product **19** was not generated as an organometallic compound in the reaction media. A half equivalent of "Cp₂Zr" to **17a** was sufficient (84% yield) for the formation of **19a** (Scheme 3). The use of ¹/₃ equiv of "Cp₂Zr", however, indicated a formation of **19a** in a lower yield (62%) with considerable recovery of **17a** (31%), and the addition of *n*-BuLi (¹/₃ equiv) to the reaction mixture prior to the hydrolytic workup increased the yield of **19a** (75%). Thus, the homocoupling process is a catalytic process with respect to "Cp₂Zr".

The reactions of o-(alkoxymethyl)styrene derivatives with a catalytic amount of Cp₂ZrCl₂ (10 mol %) in the presence of 3 equiv of n-BuMgCl in THF at refluxing temperature¹⁰ are summarized in Table 2. Under the catalytic conditions, improved yields of dimers **19** were observed in comparison to those under the stoichiometric conditions (entries 4–7). It is interesting to note that the styrene derivatives o-**4**, which did not give dimerization products under the stoichiometric conditions, gave dimerization products **19** under the catalytic conditions (entries 1 and 3). In contrast to the result of the reaction of o-**4**, p-(benzyloxymethyl)styrene (p-**4**) resulted in polymerization under catalytic conditions.

The catalytic process for the formation of **19** consisted of the prior formation of zirconacyclopropane **14**' and the formation of dialkoxyzirconocene, which regenerated "Cp₂Zr" through the reaction with Grignard reagent, and the dimerization product **19** was expelled from the catalytic cycle as shown in Figure 3.

⁽⁸⁾ Structure was determined by X-ray analysis.

⁽⁹⁾ Although dimer **19a** was obtained in a lower yield, using methyl ether **17b**, than benzyl ether **17a**, for easy preparation of substrates, methyl ether derivatives were prepared for the other substrates. See the Supporting Information.

⁽¹⁰⁾ It was essential to heat the reaction mixture to reflux to bring about an efficient formation of **19**.

TABLE 2. Formation of 19 from o-4 or 17 under Catalytic Conditions^a

^{*a*} Reaction conditions: *o*-4 or **17** (0.5 mmol), Cp₂ZrCl₂ (10 mol %), *n*-BuMgCl (3 equiv), THF, reflux. ^{*b*} Isolated yields. ^{*c*} Coupled product **20** was also obtained in a 34% yield.

17c

17d

19b: 55 (2.4)

19c: 44^c (1.4)

6

7

FIGURE 3. Catalytic cycle for the formation of 19.

Formation of Heterocoupling Products. Although the mechanism for the Cp₂ZrCl₂-catalyzed or "Cp₂Zr"mediated homocoupling formation of **19**, which will be discussed later, is still unclear, it may be of interest to investigate the possibility for the heterocoupling reaction of 17 with other olefins. Attempts to obtain such heterocoupling products would contribute to the understanding of the reaction mechanisms for the formation of 19. The results of the reaction of 17 with styrene (5a) as a heterocoupling partner are shown in Table 3. Thus, in the "Cp₂Zr"-mediated reaction of **17b** with 1 equiv of styrene (5a), heterointermolecular coupling product 21a was obtained in a 56% yield as a single cis-stereoisomer⁸ along with homodimer 19a (21% yield), and neither styrene (5a)-butene nor styrene-styrene coupling product (see, Figure 1) was obtained. Use of 3 equiv of styrene (5a) increased the yield of 21a to 85% (entry 2). Treatment of the reaction mixture with DCl/D₂O afforded the monodeuteriomethyl compound of 21a in an excellent deuterium content (>95% D, 79% yield). The intermolecular heterocoupling reaction of 17 was restricted to a styrene double bond, without a substituent on the double bond, as a coupling partner (Table 3). All other examined unsaturated compounds, such as maleic anhydride, 3,4-

	Me Me				Me	e Me
/ >	Сом	e + ∥	(1) "Cp ₂ Z (2) H ₃ O ⁺	r" → [
	17b	5		21		Me
	entry	5 Ar	21 yield (%) ^b			
	1	C ₆ H ₅ -	5a	56 (21)	21a	_
	2 ^c	C ₆ H ₅ -	5a	85 (5)	21a	
	3 ^d	C ₆ H ₅ -	5a	85 (5)	21a	
	4	4-F-C ₆ H ₄ -	5b	81 (5)	21b	
	5	3,5-(CF ₃) ₂ -C ₆ H ₃ -	5c	11 (-)	21c	
	6	4-CH ₃ O-C ₆ H ₄ -	5d	35 (60)	21d	
	7	2-CH ₃ O-C ₆ H ₄ -	5e	59 (29)	21e	
	8	o- 4a + 5a		\bigcirc	Me	
				~ 8	a	

^a Reaction conditions: **17b** (0.5 mmol), **5** (3 equiv), "Cp₂Zr" (1.2 equiv), THF, rt. ^b Isolated yields. The yields of **19** are shown in parentheses. ^c 1 equiv of **5a** was used. ^d Reaction conditions: Cp₂ZrCl₂ (10 mol %), *n*-BuMgCl (3 equiv), THF, reflux.

FIGURE 4. Regio- and stereoselective formation of 22 by Negishi et al.

SCHEME 4

dihydrofuran, phenylacetylene, diphenylacetylene, *cis*- or *trans*-stilbene, and α - or β -methylstyrene, did not give a heterocoupling product but gave the homocoupling product **19**. It should be noted that the "Cp₂Zr"-mediated reaction of *o*-benzyloxymethystyrene (*o*-**4a**) with styrene (**5a**) gave a reduced product **8a** as the sole product (entry 8). The heterointermolecular coupling reaction of **17b** with styrene (**5a**) was also carried out under the same catalytic conditions with a similar efficiency to the stoichiometric conditions (entry 3).

Mechanistic Consideration of Coupling Reactions. Concerning the "Cp₂Zr"-mediated styrene-styrene homocoupling reaction, the reaction of Cp₂Zr-(CH₂CH₂Ph)₂ with styrene has been reported to give *trans*-2,5-diphenylzirconacyclopenatane intermediate **22**.⁵ The stereo- and regioselective formation of **22** was ex-

FIGURE 5. Supposed intermediates.

SCHEME 5

plained to be a result of the favorable thermodynamic effect of benzylic and/or agostic interaction of the α -phenyl group to Zr (Figure 4). Treatment of **17b** with Cp₂Zr-(CH₂CH₂Ph)₂ under identical conditions afforded 19a and 21a, and a product derived from 2-[2-(methoxyisopropyl)phenyl]-5-phenylzirconacyclopentane 23, which corresponds to 22 could not be obtained (Scheme 4). At this point in time, either one of the intermediates, zirconacyclopentane 24 or o-quinodimethane intermediate 25, could be involved as a key intermediate for the formation of 19 or 21 (Figure 5). It is interesting to note that the reaction of *o-tert*-butylstyrene (26) with an equivalent amount of "Cp₂Zr" gave *o-tert*-butylethylbenzene (59%)along with the recovered 26 (35%) (Scheme 5). Furthermore, the reaction of $Cp_2Zr(CH_2CH_2Ph)_2$ with *o-tert*butylstyrene (26) ended with a recovery of 26. These observations imply that a ligand exchange would be possible in the reaction of o-tert-butylstyrene (26) with "Cp₂Zr" giving 26-zirconocene complex, which did not react with butene. It is also obvious that **26** did not couple with styrene-zirconocene complex, and thus, the participation of the alkoxy group in o-4 or 17 plays a significant role in the reaction with "Cp₂Zr". It should also be noted that the stereochemistry of heterocoupling products **21** or the supposed intermediate **20d** ($\mathbf{R} = \mathbf{F}$) for homocoupling (see, Scheme 2) is cis while the stereochemistry of homodimer 19 itself is a mixture of cis and trans isomers. Thus, the stereochemical outcome of homodimer 19 would suggest that once formed cis stereochemistry in **20** does not last through the reaction.¹¹

Conclusions

In conclusion, we found unexpected and unprecedented reactions of "Cp₂Zr" with (alkoxymethyl)styrene derivatives. Reactions of *o*- or *p*-(alkoxymethyl)styrene derivatives with a stoichiometric amount of "Cp₂Zr" resulted in the insertion of zirconocene into a benzylic carbonoxygen bond. Reactions of o-(1-alkoxyisopropyl)styrene derivatives with a stiochiometric and/or a catalytic amount of "Cp₂Zr" (Cp₂ZrCl₂ (10 mol %)) in the presence of 3 equiv of *n*-BuMgBr cause dimerization reactions as a major product. The catalytic process turned out to be efficient also for the dimerization of o-(alkoxymethyl)styrene, which yields benzylzirconocene species under the stoichiometric conditions. Heterocoupling reactions of o-(1-alkoxyisopropyl)styrene derivatives with styrene have been brought about in high cis-stereoselectivity. Although the precise reaction mechanism for the described formation of homo- and heterocoupling products has yet to be elucidated, the intramolecular Diels-Alder reaction is supposed to be involved at this point in time.

Experimental Section

Typical Procedure for Generation and Butene-Coupling Reactions of Benzylzirconocene Intermediates. To a solution of Cp₂ZrCl₂ (153 mg, 0.53 mmol) in THF (5 mL) was added *n*-BuLi (1.6 M solution in *n*-hexane, 0.66 mL, 1.05 mmol) at -78 °C and the mixture was stirred for 1 h at the same temperature. To this solution was added a solution of *o*-4a (112 mg, 0.50 mmol) in THF (2 mL) with gradual warming to room temperature, and the solution was stirred for 3 h. To this reaction mixture was added 1 M HCl (aq), extracting with ether. The organic layer was washed with brine and dried over anhydrous MgSO₄, and the filtrate was concentrated to dryness. The residue was purified by flash chromatography (*n*hexane) to give **8a** (52 mg, 88%).

1-Methy-2-vinylbenzene (8a): The structure was confirmed by comparison of spectral data from a commercially available sample.

1-Methyl-2-(3-methylpentyl)benzene (10): This product was prepared from *o*-**4a** (112 mg, 0.50 mmol), Cp₂ZrCl₂ (307 mg, 1.05 mmol), and *n*-BuLi (1.6 M, 1.31 mL, 2.10 mmol) according to the typical procedure. Colorless oil. IR (neat) 2961, 2928, 2873, 1906, 1605, 1493, 739 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 7.25–7.13 (4H, m), 2.78–2.56 (2H, m), 2.37 (3H, s), 1.66–1.25 (5H, m), 1.02 (3H, d, J = 6.1 Hz), 0.96 (3H, t, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75.5 MHz) δ 141.4, 135.7, 130.1, 128.7, 125.9, 125.7, 37.3, 34.7, 30.9, 29.4, 19.23, 19.19, 11.4. EI-MS (*m/z*) 176 (M⁺).

Typical Procedure for Homocoupling Reactions under Catalytic Conditions. To a solution of 17b (88 mg, 0.50 mmol) and Cp_2ZrCl_2 (14.6 mg, 0.05 mmol) in THF (5.2 mL) was added *n*-BuMgCl (0.84 M solution in THF, 1.79 mL, 1.50 mmol) at room temperature and the mixture was refluxed for 5 h. To this reaction mixture was added by 1 M HCl (aq) at 0 °C, extracting with ether. The organic layer was washed with brine and dried over anhydrous MgSO₄, and the filtrate was concentrated to dryness. The residue was purified by flash chromatography (*n*-hexane) to give **19a** (59 mg, 81%) as a

⁽¹¹⁾ It is known that the formation of **19d** by intramolecular Diels– Alder reaction of o-quinodimethane intermediate is generated from a sulfone derivative. Thus, the formation of **19** from **21** might have occurred via a similar pathway. See: Levy, L. A.; Sashikumar, V. P. J. Org. Chem. **1985**, 50, 1760.

mixture of trans/cis = 3.0. Recrystallization from EtOH gave *trans*-**19a** as a single isomer.

trans-6,6,12,12-Tetramethyl-4b,5,6,10b,11,12-hexahydrochrysene (*trans*-19a): Colorless crystalline solid. Mp (EtOH) 169.5–172.0 °C. IR (KBr) 2955, 2905, 2854, 1485, 1344, 755, 743 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 7.46–7.18 (8H, m), 2.88 (2H, dd, J = 11.0, 1.0 Hz), 2.44 (2H, dd, J = 12.5, 1.0 Hz), 1.71 (2H, dd, J = 12.5, 11.1 Hz), 1.44 (12H, s). ¹³C NMR (CDCl₃, 100 MHz) δ 145.8, 138.9, 127.0, 126.1, 125.6, 125.4, 44.0, 38.6, 35.3, 33.1, 32.6. EI-MS (*m*/*z*) 290 (M⁺). Anal. Calcd for C₂₂H₂₆: C, 90.73; H, 9.27. Found: C, 91.03; H, 9.23.

cis-6,6,12,12-Tetramethyl-4b,5,6,10b,11,12-hexahydrochrysene (cis-19a): Colorless crystalline solid. Mp (ether) 161.4–163.4 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.43–7.15 (8H, m), 3.25 (2H, dd, J = 13.1, 4.2 Hz), 1.99 (2H, br t, J = 13.1Hz), 1.69 (2H, dd, J = 14.2, 4.2 Hz), 1.40 (6H, s), 1.35 (6H, s). ¹³C NMR (CDCl₃, 100 MHz) δ 145.0, 140.0, 129.5, 126.4, 125.7, 125.3, 43.4, 35.3, 34.8, 31.3, 30.3.

Typical Procedure for Heterocoupling Reactions. To a solution of Cp_2ZrCl_2 (175 mg, 0.60 mmol) in THF (5 mL) was added *n*-BuLi (1.6 M solution in *n*-hexane, 0.75 mL, 1.20 mmol) at -78 °C with 1 h of stirring at the same temperature. To this solution was added a solution of **17b** (112 mg, 0.50 mmol) and **5a** (156 mg, 1.50 mmol) in THF (2 mL), which was gradually warmed to room temperature and stirred for 3 h. To this reaction mixture was added 1 M HCl (aq), extracting with ether. The organic layer was washed with brine and dried over anhydrous MgSO₄, and the filtrate was concentrated to dryness. The residue was purified by flash chromatography (*n*-hexane), and further purification was carried out by MPLC (*n*-hexane) to give **21a** (106 mg, 85%).

1,1,4-Trimethyl-3-phenyl-1,2,3,4-tetrahydronaphthalene (21a): Colorless crystalline solid. Mp (ether) 75.4–76.4 °C. IR (KBr) 2962, 2931, 1487, 1452, 1040, 763, 751, 699 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 7.37–7.31 (3H, m), 7.26–6.97 (6H, m), 3.38 (1H, ddd, J = 13.6, 4.8, 1.9 Hz), 3.09 (1H, dq, J = 7.2, 4.8 Hz), 2.25 (1H, dd, 13.6, 13.0 Hz), 1.73 (1H, dd, J = 13.0, 1.9 Hz), 1.44 (3H, s), 1.31 (3H, s), 0.87 (3H, d, J = 7.2 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 144.8, 144.4, 142.1, 129.2, 128.2, 127.8, 126.9, 126.2, 126.0, 125.6, 40.4, 39.4, 37.2, 35.2, 32.7, 32.3, 18.1. EI-MS (m/z) 250 (M⁺). Anal. Calcd for C₁₉H₂₂: C, 91.14; H, 8.86. Found: C, 91.25; H, 8.46.

Acknowledgment. We thank Dr. M. Shiro (Rigaku Corporation) and Mr. H. Fukaya (TUPLS) for X-ray analyses. We also acknowledge Professor T. Takahashi of Hokkaido University for valuable information.

Supporting Information Available: Experimental procedures and characterization data for products and starting materials, and X-ray data of **19a–c,f**, **20**, and **21a** in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0502293