ARTICLES

Sinomenine derivatives with embedment of nitrogen-containing heterocycles exhibiting potent TNF-α inhibitory activity

WANG Meng¹, MA LiYan², LOU YangTong³, BIAN Chao², ZHOU TingTing¹, ZHOU HaiBin³, LIAO HongZe¹, MA Zhao², YIN DongSheng², CHEN AiZhong², WANG ShaoZhong¹, YANG ZhenYu^{3*}, SUN Bing^{2*} & YAO ZhuJun^{1,3*}

¹State Key Laboratory of Coordination Chemistry and Nanjing National Laboratory of Microstructures; Institute of Chemical Biology and Drug Innovation, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
²Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai

200031, China

³State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received January 2, 2012; accepted March 20, 2012; published online May 19, 2012

Inhibitory effect on tumor necrosis factor- α (TNF- α) production by sinomenine derivatives with embedment of small drug-like nitrogen hetereocyclic moieties has been studied in this work. Several new sinomenine derivatives having chlorophenyl substituent have been found to exhibit much more potent TNF- α inhibitory activity than natural sinomenine and other derivatives.

sinomenine, druggability, heterocycle, tumor necrosis factor-α, inhibition

1 Introduction

Improvement of the druggability of bioactive natural products by proper chemical modifications has influenced modern drug discovery across the therapeutic spectrum for many decades [1]. Among numerous naturally occurring compounds, only a small part meet the requirements for further pharmaceutical development. Many easily available natural compounds are insufficiently active to be potential drug candidates. Sinomenine (1, Figure 1), an economically available alkaloid extracted from the Chinese medicinal plant *Sinomenium acutum* [2], is distributed widely as an ingredient of traditional Chinese medicines for treatment of rheumatoid arthritis (RA) for centuries. However, sinomenine alone only exhibits very weak immunomodulating activity. Furthermore, the mechanisms associated with its treatment effects to rheumatoid arthritis are still ambiguous [3–5].

For its easy and economic availability, various modifications of the naturally existing functionalities of sinomenine have been conducted in the past several decades [6]. Unfortunately, no achievement has been advanced to the clinical applications yet (Figure 1). Insufficient druggability of sinomenine of plant origin is thought to be a major drawback. Therefore, developing druggable derivatives should be a more promising strategy in further efforts. Our recent study has developed a number of new derivatives by incorporation of certain druggable fragments into the skeleton of sinomenine and examined their inhibitory effect on the growth of T- and B-cells [7]. The modified compounds were found to display more potent inhibitory activity than natural sinomenine in a high hit rate. To exclude possible complicated environment problems involved in the wholecell model, further study of the effects on the key cytokines associated with the immunomodulating response is necessary. Furthermore, fine tuning and examination of more

^{*}Corresponding authors (email: yaoz@nju.edu.cn; bingsun@sibs.ac.cn)

[©] Science China Press and Springer-Verlag Berlin Heidelberg 2012

Figure 1 Representative chemical modifications of sinomenine (1).

diverse sinomenine derivatives on the basis of our previous findings [7] are also helpful to conclude structure-activity relationships. With these considerations, inhibition of the production of TNF- α (pro-inflammatory cytokine tumor necrosis factor- α), which is generally involved in the pathogenesis of the disease rheumatoid arthritis (RA) [8], was employed in this work as the evaluation platform of the corresponding immunomodulating properties.

2 Results and discussion

In order to avoid the known modifications [6] and identify a unique modification protocol, we decided to screen a suitable intermediate from scalable transformations as our starting point. We called such a protocol as re-invention. Firstly, a number of available reactions were examined using natural sinomenine (1) as the substrate so that we could understand the chemo- and stereoselectivity under protecting-free conditions (Scheme 1). Hydrogenation of 1 afforded a single product 3 (79%) in the presence of 10% Pd/C [9], while that using catalytic amount of PtO₂ gave another single product 4 (70%) [10]. Treatment of 1 with conc. HCl in ethanol provided 5a (43%) and 5b (37%), and vicinal diacetal 6 was afforded when ethylene glycol was employed as the solvent [6n]. Simple acid treatment of sinomenine provided a vicinal diketone compound 2 in 86% yield [7, 9a].

Considering the results of the above reactions and available further transformations, vicinal diketone 2 was finally chosen as the starting material for introduction of small heterocycles in its C-ring. Two categories of derivatives 7 (fusing with an imidazole-ring to the C-ring, Table 1) and 8

Scheme 1 Reagents and conditions: (a) 10% HCl, 80 °C, 86%; (b) 10% Pd-C, H₂O, 79%; (c) PtO₂, EtOH, H₂, rt, 70%; (d) HOCH₂CH₂OH, *p*-TsOH, PhCH₃, reflux, 59%; (e) HCl/ EtOH, reflux, **5a** (43%) and **5b** (37%).

 Table 1
 Synthesis of imidazole-fused sinomenine derivatives 7a–7t

a) Isolated yields. b) Derivative 7t was confirmed by the X-ray single crystallography analysis.

(fusing with a pyrazine-ring to the C-ring, Table 2) were conveniently prepared from 2 by corresponding one-pot reactions, respectively.

Three-component reactions of 2 with a variety of aldehydes and ammonium acetate in EtOH afforded the corresponding imidazoles 7a-7t in satisfactory yields. Their structures were determined by NMR methods and further confirmed by an X-ray single crystallographic structure of representative derivative 7t. According to this evidence, the chemistry nature of two newly introduced nitrogen atoms (positions of NH and N) in derivatives 7 was finally elucidated.

The other category of pyrazines derivatives 8a-8r were prepared by direct dehydrative condensation reactions of diketone 2 with a variety of symmetrical vicinal diamines in chloroform under mild conditions. Unfortunately, the reactions with unsymmetrical vicinal diamines afforded a mixture of two regioisomers, which were inseparable by chromatographic methods. The structures of few pure single unsymmetrical isomers separated by several times of careful chromatographies could not be clearly elucidated by the NMR methods. For these unambiguous sample problems, we did not further study them in this work.

Though it is weakly active in the cell or pro-inflamma-

Table 2 Synthesis of pyrazine-fused sinomenine derivatives 8a-8r

	$ \overset{H}{\underset{O}{\overset{H}{\longrightarrow}}} 0 + \overset{H_2N}{\underset{H_2N}{\overset{R}{\longrightarrow}}} R $		
2	9		8a-8r R
Entry	Diamine/R	Product	Yield (%) a)
1	NH ₂ NH ₂	8a	79
2		8b	75
3 ^{b)}	Ph	8c	75
4	1-naphthyl	8d	65
5	o-Cl-C ₆ H ₄	8e	59
6	m-Cl-C ₆ H ₄	8f	66
7	p-Cl-C ₆ H ₄	8g	62
8	o-Br-C ₆ H ₄	8h	64
9	m-Br-C ₆ H ₄	8i	63
10	p-Br-C ₆ H ₄	8j	61
11	o-F-C ₆ H ₄	8k	66
12	m-F-C ₆ H ₄	81	68
13	p-F-C ₆ H ₄	8m	69
14	p-CH ₃ -C ₆ H ₄	8n	75
15	p-CF ₃ -C ₆ H ₄	80	70
16	o-CH ₃ O-C ₆ H ₄	8p	74
17	m-CH ₃ O-C ₆ H ₄	8q	71
18	p-CH ₂ O-C ₆ H ₄	8r	69

a) Isolated yields. b) Reported in ref. [11].

tory cytokine models, natural sinomenine has been known to involve in the treatment of rheumatoid arthritis as an ingredient of herb medicines. Modern researches also indicate that TNF- α expression in rheumatoid arthritis (RA) patients is particularly elevated in RA synovial fluid, serum and synovial fibroblasts. More importantly, these enhanced TNF- α levels correlate well with disease pathology and severity. Application of anti TNF- α drugs in the clinic has also proved that blocking TNF- α is an effective way to treat RA [12].

With the above sinomenine derivatives in hand, the in vitro effects on TNF-a production in LPS stimulated mouse macrophage cells (J774) were then evaluated. TNF- α inhibitory and stimulating effects of sinomenine (1) and its derivatives 7a-7s were assayed in LPS stimulated mouse macrophage cells (J774) at 10 µM concentration. All the imidazole derivatives 7a-7s exhibited TNF- α inhibitory activity with a higher potency than sinomenine (Figure 2). Among these, compound 7e ($R = m-ClC_6H_4$) bearing a chlorobenzene moiety provided the highest score with a 47% inhibitory rate, while sinomenine 1 displayed only 7% inhibitotion and diketone derivative 2 exhibited 26% inhibition. These imidazoles derived from various aromatic aldehydes (phenyl, naphthyl, pyridinyl, furanyl) were generally found to improve the TNF- α inhibitory activity. This may indicate that introduction of a lipophilic moiety is helpful. Furthermore, introduction of one or two halogens into the phenyl ring is also useful in activity improvement (7d, 7e, 7g, 7h and 7m). Chlorinated derivatives 7d, 7e and 7m are listed in the four compounds (another one is 7j) exhibiting over 40% inhibition. Minor change of the halogen position can also influence the biological effects. Slight activity difference is found between 7d (R = o-ClC₆H₄) and 7e (R = m-ClC₆H₄), while it is much greater by comparison with compound **7f** (R = p-ClC₆H₄, less than 20% TNF- α inhibition). In addition, a smaller substituent at ortho position of the phenyl ring of R might be helpful for their anti-TNF- α production activity (7d, R = o-ClC₆H₄; 7g, R = o-FC₆H₄; 7l, $R = o-HOC_6H_4$; **7i**, $R = o-CF_3C_6H_4$).

Pyrazine derivatives **8a–8r** generally exhibit more potent inhibitory effects on the TNF- α production in LPS stimulated mouse macrophage cells (J774) (Figure 3). Among these, derivatives **8h** (R = *o*-BrC₆H₄) displayed more than 70% inhibitory rate, and **8e** (R = *o*-ClC₆H₄) and **8k** (R = *o*-FC₆H₄) showed over 60% inhibitory rates. The halogen is again found to be helpful in the biological effects. An *ortho* halogen substituent in both newly introduced phenyl rings improves the *anti*-TNF- α production activity. Compared to **8c** (R = Ph, 50% inhibition of TNF- α production), the above three compounds gave higher scores in their inhibitory activity. Other two substitution positions (*meta*, *para*) seem insignificant in improving the bioactivity (**8e** vs. **8f** and **8g**; **8h** vs. **8i** and **8j**; **8k** vs. **8l** and **8m**). A *para* substituent in both phenyl rings is again negative to the

Figure 2 TNF- α inhibitory and stimulating effects of sinomenine 1 and its derivatives 7a–7s in LPS stimulated mouse macrophage cells (J774). Compounds were assayed at 10 μ M concentration. SB202190 (4-(4-fluor- ophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1*H*-imidazole), a highly selective, potent and cell permeable inhibitor of *p*38 MAP kinase, was used as the positive control [13]. Compound 7t was not determined. IR: inhibitory rate.

Figure 3 TNF- α inhibitory and stimulating effects of sinomenine **1** and its derivatives **8a–8r** in LPS stimulated mouse macrophage cells (J774). Compounds were assayed in 10 μ M concentration. SB202190 was used as the positive control. IR: inhibitory rate.

biological activity (**8g**, **8j**, **8n**, **8o**, and **8r**), and bigger aromatic substituent (or ring system) is harmful (**8a**, **8b**, and **8d**) either.

3 Conclusion

In summary, embedment of drug-like heterocyclic moieties has been employed and proven to be an effective modification protocol for the readily available but poorly active natural alkaloid sinomenine. Most of the newly prepared derivatives are found to exhibit improved anti-TNF- α production activity than natural sinomenine. Derivative **8h** was identified to significantly inhibit *in vitro* TNF- α production in LPS stimulated mouse macrophage cells (J774) with a 73% inhibitory rate. The results also mention that introduction of a halogen atom at the proper position(s) of the newly introduced phenyl ring(s) can significantly improve the immunomodulating activity. Further study on other RA-related immunomodulating cytokines, as well as assessment in animal models, will be reported in due course.

4 Experimental section

4.1 General

All reactions were conducted using oven-dried glassware. All melting points were uncorrected. Dichloromethane was distilled from CaH₂, and tetrahydrofuran was distilled from Na prior to uses. IR spectra were recorded on an FT-IR instrument. ¹H NMR spectra were recorded at 300, 400 or 500 MHz, and ¹³C NMR spectra were recorded at 75, 100 or 125 MHz, and assigned in parts per million (δ). Reference peaks for CDCl₃ in ¹H NMR and ¹³C NMR spectra were set at 7.26 and 77.0 ppm, respectively. For CD₃OD, the reference peak of 13 C NMR spectra was set at 49.00 ppm, respectively. Petroleum ether and ethyl acetate were obtained from commercial suppliers and used without distillation.

4.2 Synthesis of imidazoles 7a–7t

To a solution of NH₄OAc (2.45 g, 31 mmol) in EtOH (30 mL) was successively added diketone **2** (1.0 g, 3.2 mmol) and the corresponding aldehyde (4.8 mmol) at room temperature. The reaction mixture was stirred at this temperature and monitored by TLC. The solvent was concentrated and the residue was then diluted with water and CH₂Cl₂. The separated aqueous layer was basified with 10% aqueous NaHCO₃ to pH 8–9 and then extracted with CH₂Cl₂ for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, concentrated and the residue was purified by flash chromatography using CH₂Cl₂ and CH₃OH as the eluents to afford the sinomenine derivative **7** (See Table 1 for the yields).

7a: White solid. Mp: 147–149 °C; $[\alpha]_D^{25}$ 113.9 (*c* 0.18, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 300 MHz): δ 6.62 (1H, d, *J* = 8.7 Hz), 6.59 (1H, d, *J* = 9.0 Hz), 4.64 (1H, d, *J* = 15.9 Hz), 3.77 (3H, s), 3.05-2.85 (3H, m), 2.54–2.25 (11H, m), 2.14 (1H, dt, *J* = 3.0, 12.3 Hz), 1.98–1.94 (1H, m), 1.84 (1H, dt, *J* = 4.8, 12.6 Hz); ¹³C NMR (CDCl₃/CD₃OD = 10:1, 125 MHz): δ 148.8, 148.5, 146.1, 134.9, 131.5, 131.1, 128.1, 122.3, 112.6, 61.2, 59.7, 50.8, 46.5, 46.3, 42.0, 41.2, 36.4, 28.3, 27.9, 17.2; IR (KBr): 3200, 2914, 2844, 1671, 1481, 1438, 1379, 1279, 1226, 1105, 1063, 1053, 1024, 795, 753, 662 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₀H₂₆N₃O₂ (M+H⁺): 340.2020, found: 340.2028.

7b: White solid. Mp: 213–214 °C; $[\alpha]_D^{24}$ 175.7 (*c* 0.7, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.63 (2H, d, *J* = 8.4 Hz), 7.11 (2H, d, *J* = 8 Hz), 6.61 (1H, d, *J* = 8 Hz), 6.58 (1H, d, *J* = 8.4 Hz), 5.96 (1H, brs), 4.73 (1H, d, *J* = 16 Hz), 3.75 (3H, s), 3.09 (1H, s), 2.99 (1H, d, *J* = 18.4 Hz), 2.90 (1H, dd, *J* = 6, 18.4 Hz), 2.63 (1H, dd, *J* = 5.2, 15.2 Hz), 2.44– 2.52 (3H, m), 2.44 (3H, s), 2.31–2.36 (1H, m), 2.31 (3H, s), 2.19 (1H, dt, *J* = 4.8, 12 Hz), 1.97 (1H, d, *J* = 12.8 Hz), 1.89 (1H, dt, *J* = 4.4, 12.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 144.5, 144.4, 144.3, 137.3, 131.0, 129.2, 127.7, 124.7, 124.1, 118.4, 108.4, 57.1, 55.7, 46.8, 42.6, 42.5, 38.2, 37.2, 32.6, 24.5, 23.8, 21.2; IR (KBr): 3419, 2912, 2841, 1622, 1614, 1481, 1437, 1380, 1279, 1225, 1105, 1053, 1022, 823, 728 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₆H₃₀N₃O₂ (M+H⁺): 416.2333, found: 416.2337.

7c: White solid. Mp: 144–146 °C (dec.); $[\alpha]_D^{25}$ 126.5 (*c* 0.52, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 300 MHz): δ 6.64 (1H, d, *J* = 8.4 Hz), 6.60 (1H, d, *J* = 8.4 Hz), 4.70 (1H, d, *J* = 15.9 Hz), 3.79 (3H, s), 3.09–2.85 (3H; m), 2.66 (2H, t, *J* = 7.5 Hz), 2.62–2.51 (2H, m), 2.44 (3H, s), 2.46–2.36 (2H, m), 2.32–2.28 (1H, m), 2.17 (1H, dt, *J* = 2.4, 12.0 Hz), 1.99–1.95 (1H, m), 1.85 (1H, dt, *J* = 4.2, 12.6 Hz),

1.67–1.59 (2H, m), 1.23-1.20 (8H, m), 0.83 (3H, m); ¹³C NMR (CDCl₃, 125 MHz): δ 146.0, 144.6, 144.4, 131.2, 126.64, 126.59, 123.8, 118.7, 108.7, 57.1, 56.0, 46.9, 42.7, 42.5, 38.3, 37.3, 32.0, 31.6, 29.2, 28.9, 28.3, 27.5, 23.8, 23.6, 22.5, 14.0; IR (KBr): 3517, 2926, 2852, 1670, 1482, 1438, 1280, 1226, 1064, 1054, 856, 755 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₆H₃₈N₃O₂ (M+H⁺): 424.2959, found: 424.2957.

7d: Yellow solid. Mp: 158–160 °C; $[\alpha]_D^{26}$ 144.1 (*c* 1.7, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 400 MHz): δ 9.96 (1H, brs), 8.16 (1H, d, J = 7.6 Hz), 7.31 (1H, d, J = 8Hz), 7.22 (1H, t, J = 7.6 Hz), 7.14 (1H, t, J = 7.6 Hz), 6.61 (1H, d, J = 8.4 Hz), 6.59 (1H, d, J = 8.8 Hz), 6.16 (1H, brs), 4.78 (1H, d, J = 16 Hz), 3.73 (3H, s), 3.13 (1H, s), 3.02 (1H, d, J = 18.8 Hz), 2.92 (1H, dd, J = 6.4, 18.8 Hz), 2.67 (1H, dd, J = 5.6, 15.2 Hz), 2.46–2.59 (3H, m), 2.45 (3H, s), 2.30–2.39 (1H, m), 2.19 (1H, dt, J = 2.4, 12 Hz), 2.00 (1H, d, J = 12.8 Hz), 1.90 (1H, dt, J = 4.4, 12.8 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 144.4, 144.3 ,141.3, 131.2, 130.3, 130.1, 128.9, 128.6, 128.4, 127.1, 124.0, 118.5, 108.5, 57.2, 55.9, 46.9, 42.8, 42.7, 38.4, 37.4, 32.9, 24.9, 23.8; IR (KBr): 3440, 2910, 2842, 1614, 1481, 1437, 1279, 1225, 1104, 1052, 979, 761, 734 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₅H₂₇ClN₃O₂ (M+H⁺): 436.1786, found: 436.1785.

7e: Yellow solid. Mp: 204–206 °C; $[\alpha]_D^{26}$ 149.3 (*c* 0.80, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 300 MHz): δ 7.71 (1H, s), 7.58 (1H, d, *J* = 6 Hz), 7.08–7.19 (2H, m), 6.50–6.63 (2H, m), 6.10 (1H, brs), 4.74 (1H, d, *J* = 15.9 Hz), 3.70 (3H, s), 3.08 (1H, s), 2.98 (1H, d, *J* = 18 Hz), 2.88 (1H, dd, *J* = 5.4, 18.9 Hz), 2.50–2.67 (2H, m), 2.36–2.50 (2H, m), 2.44 (3H, s), 2.26–2.36 (1H, m), 2.09–2.25 (1H, m), 1.80-2.02 (2H, m); ¹³C NMR (CDCl₃/CDOD₃ = 10:1, 75 MHz): δ 144.7, 144.3, 142.8, 134.4, 132.2, 130.2, 129.9, 127.4, 124.4, 123.5, 122.6, 118.4, 108.7, 57.4, 55.8, 46.8, 42.1, 42.0, 37.6, 37.0, 32.4, 24.3, 23.8; IR (KBr): 2916, 2842, 1596, 1481, 1437, 1379, 1279, 1224, 1049, 1021, 979, 790.6, 729, 511 cm⁻¹; HRMS (MALDI, *m/z*) Anal. calcd for C₂₅H₂₇ClN₃O₂ (M+ H⁺): 436.1786, found: 436.1782.

7f: Yellow solid. Mp: 181–183 °C (dec.); $[\alpha]_D^{25}$ 185.0 (*c* 0.49, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 300 MHz): δ 7.63 (2H, d, J = 9.0 Hz) 7.20 (2H, d, J = 9.0 Hz), 6.63 (1H, d, J = 8.4 Hz), 6.60 (1H, d, J = 8.4 Hz), 5.91 (1H, brs), 4.71 (1H, d, J = 15.9 Hz), 3.76 (3H, s), 3.06–3.02 (2H, m), 2.87-2.79 (1H, m), 2.66–2.48 (4H, m), 2.42 (3H, s), 2.33-2.26 (1H, m), 2.14(1H, dt, *J* = 3.0, 12.3 Hz), 1.98-1.93 (1H, m), 1.84 (1H, dt, *J* = 4.8, 12.3 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 144.4, 144.2, 143.4, 133.1, 131.5, 129.3, 128.7, 125.9, 124.2, 118.6, 108.4, 57.1, 55.9, 46.9, 43.0, 42.8, 38.5, 37.5, 32.9, 24.7, 23.8; IR (KBr): 3508, 2907, 2840, 1621, 1526, 1481, 1437, 1380, 1279, 1225, 1104, 1064, 1053, 1053, 834, 754 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₅H₂₇N₃O₂Cl (M+H⁺): 436.1786, found: 436.1785.

7g: Yellow solid. Mp: 158–160 °C; $[\alpha]_D^{26}$ 161.8 (*c* 2.0, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 400 MHz): δ 9.49

(1H, brs), 8.14 (1H, s), 6.99–7.22 (3H, m), 6.53–6.63 (2H, m), 6.13 (1H, brs), 4.75 (1H, d, J = 15.6 Hz), 3.73 (3H, s), 3.11 (1H, s), 3.01 (1H, d, J = 18.4 Hz), 2.90 (1H, dd, J = 6, 18.4 Hz), 2.59–2.73 (1H, m), 2.47–2.57 (3H, m), 2.43 (3H, s), 2.28–2.37 (1H, m), 2.17 (1H, dt, J = 2.4, 12 Hz), 1.99 (1H, d, J = 12.8 Hz), 1.89 (1H, dt, J = 4.4, 12.8 Hz); ¹⁹F NMR (CDCl₃/CD₃OD = 10:1, 300 MHz): δ –118.92; ¹³C NMR (CDCl₃, 75 MHz): δ 159.0 (d, J = 242.9 Hz), 144.4, 144.2, 139.3, 131.4, 128.6 (d, J = 8.8 Hz), 128.0, 124.7, 124.0, 118.5, 118.2 (d, J = 10.5 Hz), 115.6 (d, J = 22.7 Hz), 108.4, 57.1, 55.8, 46.9, 42.9, 42.8, 38.4, 37.4, 32.4, 25.3, 23.8; IR (KBr): 3473, 2909, 2841, 1624, 1609, 1581, 1527, 1481, 1465, 1438, 1279, 1225, 1063, 1052, 1023, 759, 733 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₅H₂₇N₃O₂F (M+H⁺): 420.2082, found: 420.2081.

7h: White solid. Mp: 216–218 °C; $[\alpha]_D^{25}$ 149.7 (*c* 1.4, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.58 (2H, d, *J* = 8.4 Hz), 7.34 (2H, d, *J* = 8.4 Hz), 6.62 (1H, d, *J* = 8.4 Hz), 6.59 (1H, d, *J* = 8.4 Hz), 5.99 (1H, brs), 4.72 (1H, d, *J* = 15.6 Hz), 3.74 (3H, s), 3.07 (1H, s), 2.98 (1H, d, *J* = 18.8 Hz), 2.87 (1H, dd, *J* = 6.0, 18.8 Hz), 2.43–2.67 (4H, m), 2.43 (3H, m), 2.26–2.36 (1H, m), 2.09–2.23 (1H, m), 1.95 (1H, d, *J* = 12.4 Hz), 1.87 (1H, dt, *J* = 4, 12.4 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 144.4, 144.2, 143.4, 131.7, 131.2, 129.6, 126.1, 124.0, 121.3, 118.6, 108.3, 57.2, 55.9, 46.9, 42.8, 38.3, 37.4, 32.8, 24.7, 23.7; IR (KBr): 3431, 2911, 2841, 1619, 1481, 1437, 1379, 1279, 1225, 1105, 1064, 1023, 831, 727 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₅H₂₇BrN₃O₂ (M+H⁺): 480.1281, found: 480.1372.

7i: White solid. Mp: 164–166 °C (dec.); $[\alpha]_D^{25}$ 142.4 (*c* 0.54, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 300 MHz): δ 9.15 (1H, brs), 7.96 (1H, d, *J* = 7.2 Hz), 7.68 (1H, d, *J* = 7.8 Hz), 7.53 (1H, t, *J* = 7.5 Hz), 7.40 (1H, t, *J* = 7.5 Hz), 6.65 (1H, d, *J* = 8.1 Hz), 6.61 (1H, d, *J* = 8.1 Hz), 6.06 (1H, brs), 4.74 (1H, d, *J* = 15.3 Hz), 3.78 (3H, s), 3.15–2.84 (3H, m), 2.72–2.51 (4H, m), 2.47 (3H, s), 2.44–2.36 (1H, m), 2.21 (1H, dt, *J* = 3.6, 12.0 Hz), 2.03–1.92 (2H, m); IR (KBr): 3512, 2844, 1606, 1580, 1482, 1493,1315, 1280, 1126, 1054, 755 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₆H₂₇N₃O₂F₃ (M+H⁺): 470.2050, found: 470.2048; Anal calcd. for C₂₆H₂₆F₃N₃O₂: C, 66.51; H, 5.58; N, 8.95; found: C, 66.34; H, 5.96; N, 8.60.

7j: Yellow solid. Mp: 186–188 °C; $[\alpha]_D^{26}$ 162.4 (*c* 2.3, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 400 MHz): δ 8.95 (1H, brs), 7.67 (2H, d, *J* = 8.4 Hz), 6.73 (2H, d, *J* = 8.4 Hz), 6.52–6.61 (2H, m), 5.96 (1H, brs), 4.69 (1H, d, *J* = 16 Hz), 3.72 (3H, s), 3.68 (3H, s), 3.01 (1H, s), 2.95 (1H, d, *J* = 18.4 Hz), 2.81 (1H, dd, *J* = 5.6, 18.4 Hz), 2.58 (1H, dd, *J* = 5.6, 15.6 Hz), 2.38–2.53 (3H, m), 2.38 (3H, s), 2.21–2.31 (1H, m), 2.06–2.18 (1H, m), 1.90 (1H, d, *J* = 12.4 Hz), 1.81 (1H, dt, *J* = 4, 12.4 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 159.1, 144.4, 144.2, 131.4, 130.2, 128.6, 126.2, 124.3, 123.4, 118.4, 113.9, 108.2, 57.1, 55.7, 55.1, 46.9, 42.9, 42.7, 38.4, 37.3, 32.6, 24.6, 23.7; IR (KBr): 3429, 2910,

2838, 1624, 1580, 1541, 1481, 1438, 1389, 1280, 1250, 1178, 1063, 1053, 1029, 835, 797, 733 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for $C_{26}H_{30}N_3O_3$ (M+H⁺): 432.2282, found: 432.2281.

7k: Yellow solid. Mp: 242 °C (dec.); $[\alpha]_D^{26}$ 138.5 (*c* 0.80, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 300 MHz): δ 11.17 (1H, brs), 7.79 (2H, d, *J* = 8 Hz), 7.63 (2H, d, *J* = 7.6 Hz), 6.48–6.66 (2H, m), 6.15 (1H, brs), 4.77 (1H, d, *J* = 12 Hz), 3.67 (3H, s), 3.07 (1H, s), 2.77–3.03 (2H, m), 2.96 (3H, s), 2.55–2.68 (1H, m), 2.40–2.55 (3H, m), 2.41 (3H, s), 2.24–2.35 (1H, m), 2.07–2.21 (1H, m), 1.94 (1H, d, *J* = 12.4 Hz), 1.76-1.89 (1H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 144.6, 144.2, 142.2, 138.0, 135.5, 131.0, 127.5, 124.8, 123.9, 118.6, 108.5, 57.1, 55.8, 46.8, 44.2, 42.6, 38.2, 37.3, 23.7, 23.6; IR (KBr): 3419, 2913, 2814, 1593, 1481, 1437, 1279, 1149, 1053, 956, 779, 729, 557 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₆H₃₀N₃O₄S (M+H⁺): 480.1952, found: 480.1914.

7I: Brown solid. Mp: 208–210 °C; $[\alpha]_D^{25}$ 190.0 (*c* 0.50, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 400 MHz): δ 9.55 (1H, brs), 7.35 (1H, d, *J* = 6.8 Hz), 7.13 (1H, t, *J* = 7.6 Hz), 6.96 (1H, d, *J* = 8 Hz), 6.77 (1H, t, *J* = 7.2 Hz), 6.55–6.65 (2H, m), 4.74 (1H, d, *J* = 16 Hz), 3.74 (3H, s), 3.10 (1H, s), 3.01 (1H, d, *J* = 18.8 Hz), 2.90 (1H, dd, *J* = 5.6, 18.8 Hz), 2.43–2.67 (4H, m), 2.48 (3H, s), 2.23–2.35 (1H, m), 2.09–2.23 (1H, m), 1.98 (1H, d, *J* = 12.4 Hz), 1.83 (1H, dt, *J* = 4, 12 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 156.8, 144.5, 144.3, 144.2; 131.1, 129.0, 123.9, 123.0, 118.5, 117.2, 113.8, 108.5, 57.1, 55.8, 46.8, 42.6, 38.2, 37.3, 32.5, 24.6, 23.8; IR (KBr): 3405, 2911, 2842, 1625, 1590, 1483, 1456, 1438, 1381, 1279, 1226, 1052, 755 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₅H₂₈N₃O₃ (M+H⁺): 418.2125, found: 418.2131.

7m: Light yellow solid. Mp: 208–210 °C; $[\alpha]_D^{26}$ 72.4 (*c* 1.5, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃/CD₃OD = 10/1, 400 MHz): δ 7.32 (2H, d, *J* = 8 Hz), 7.22 (1H, t, *J* = 8 Hz), 6.65 (1H, d, *J* = 8 Hz), 6.60 (1H, d, *J* = 8.4 Hz), 4.75 (1H, d, *J* = 16 Hz), 3.77 (3H, s), 3.39 (1H, s), 2.87–3.03 (2H, m), 2.34-2.64 (4H, m), 2.44 (3H, s), 2.11–2.34 (2H, m), 2.00 (1H, d, *J* = 12.8 Hz), 1.73-1.92 (1H, m); ¹³C NMR (CDCl₃/CD₃OD = 10/1, 75 MHz): δ 144.6, 144.4, 138.0, 136.3, 130.7, 130.5, 130.4, 127.8, 123.8, 118.4, 108.7, 57.2, 56.0, 46.7, 42.2, 37.8, 37.1, 32.4, 24.4, 23.8; IR (KBr): 3435, 2911, 1614, 1551, 1482, 1435, 1278, 1224, 1059, 784, 501 cm⁻¹; HRMS (MALDI, *m/z*) Anal. calcd for C₂₅H₂₆Cl₂N₃O₂ (M+H⁺) 470.1397, found: 470.1407.

7n: Yellow solid. Mp: 250 °C (dec.); $[\alpha]_D^{26}$ 60.7 (*c* 0.40, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 400 MHz): δ 8.36 (1H, s), 7.90 (2H, d, *J* = 8.4 Hz), 7.68 (2H, d, *J* = 8.4 Hz), 7.35 (2H, t, *J* = 7.6 Hz), 7.19–7.31 (2H, m), 6.57 (1H, d, *J* = 8 Hz), 6.48 (1H, d, *J* = 8 Hz), 5.83 (1H, brs), 4.22 (1H, d, *J* = 16 Hz), 3.71 (3H, s), 2.79 (1H, d, *J* = 18.4 Hz), 2.46–2.69 (2H, m), 2.34–2.44 (1H, m), 2.31 (3H, s), 1.76–2.13 (5H, m), 1.67 (1H, d, *J* = 12.4 Hz), 1.43–1.61

(1H, m); 13 C NMR (CDCl₃, 75 MHz): δ 144.4, 144.3, 140.7, 131.5, 128.0, 127.9, 126.4, 125.8, 125.1, 124.0, 118.3, 108.5, 57.0, 56.0, 46.7, 42.4, 42.2, 37.7, 36.9, 32.2, 24.1, 23.6; IR (KBr): 3408, 3048, 2912, 2841, 1623, 1481, 1457, 1437, 1278, 1226, 1053, 735 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₃H₃₂N₃O₂ (M+H⁺): 502.2489, found: 502.2501.

70: Yellow solid. Mp: 172–174 °C; $[\alpha]_D^{26}$ 182.9 (c 2.6, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 400 MHz): δ 10.85 (1H, brs), 8.39 (1H, d, J = 4.4 Hz), 8.01 (1H, d, J = 5.2 Hz), 7.63 (1H, t, J = 8 Hz), 7.02–7.12 (1H, m), 6.50-6.60 (2H, m), 6.28 (1H, brs), 4.69 (1H, brs), 3.68 (3H, s), 3.09 (1H, s), 2.99 (1H, d, J = 18.4 Hz), 2.80-2.93 (1H, m), 2.57-2.76 (1H, m), 2.40-2.57 (3H, m), 2.41 (3H, s), 2.25–2.35 (1H, m), 2.08–2.21 (1H, m), 1.95 (1H, d, J = 12 Hz), 1.85 (1H, dt, J = 3.6, 12.4 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 148.9, 148.4, 144.4, 144.3, 143.8, 136.8, 131.4, 124.1, 122.0, 119.2, 118.4, 108.4, 57.1, 55.8, 46.8, 42.9, 42.7, 38.4, 37.3, 32.6, 25.8, 23.8; IR (KBr): 3445, 2909, 2841, 1589, 1522, 1480, 1457, 1437, 1402, 1278, 1225, 1148, 1101, 1063, 1052, 730 cm⁻¹; HRMS (MALDI, *m/z*) Anal. calcd for $C_{24}H_{27}N_4O_2$ (M+H⁺): 403.2129, found: 403.2129.

7p: Yellow solid. Mp: 203–205 °C (dec.); $[\alpha]_D^2$ 184.3 (*c* 0.52, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃/CH₃OD = 10:1, 500 MHz): δ 8.91 (1H, s), 8.39 (1H, d, *J* = 4.8 Hz), 8.14 (1H, m), 7.36(1H, dd, J = 4.8, 7.9 Hz), 6.67(1H, d, *J* = 8.3 Hz), 6.62 (1H, d, *J* = 8.3 Hz), 4.90 (1H, *J* = 15.9 Hz), 3.71 (3H, s), 3.16 (1H, s), 3.08–3.04 (2H, m), 2.69–2.65 (1H, m), 2.57–2.47 (3H, m), 2.46 (3H, s), 2.35–2.33 (1H, m), 2.28–2.23 (1H, m), 2.07–2.05 (1H, m), 1.88 (1H, dt, *J* = 5.6, 12.9 Hz); ¹³C NMR (CDCl₃/CD₃OD = 10:1, 125 MHz): δ 146.9, 144.7, 144.6, 144.3, 140.5, 132.2, 130.1, 127.0, 123.6, 123.2, 118.0, 108.5, 56.8, 55.2, 46.3, 41.9, 41.6, 37.4, 36.7, 32.2, 24.0, 23.4; IR (KBr): 3180, 3050, 2900, 1577, 1483, 1439, 1397, 1329, 1281, 1128, 1056, 1022, 851, 813, 755, 709, 653 cm⁻¹; HRMS (ESI, *m*/*z*) Anal. calcd for C₂₄H₂₇N₄O₂ (M+H⁺): 403.2129, found: 403.2130.

7q: White solid. Mp: 160–162 °C (dec.); $[\alpha]_D^{25}$ 162.9 (*c* 0.56, CHCl₃/CH₃OH = 10:1); 1H NMR (CDCl₃, 500 MHz): δ 7.18 (1H, s), 6.62 (1H, d, *J* = 3.2 Hz), 6.58 (1H, d, *J* = 8.9), 6.56 (1H, d, *J* = 9.0 Hz), 6.27 (1H, d, *J* = 1.3 Hz), 4.72(1H, d, *J* = 16.0 Hz), 3.66 (3H, s), 3.08 (1H, s), 2.97 (1H, d, *J* = 18.6 Hz), 2.88 (1H, dd, *J* = 6.1, 18.6 Hz), 2.61–2.53 (2H, m), 2.48–2.43 (2H, m), 2.43 (3H, s), 2.35–2.26 (1H, m), 2.20–2.15 (1H, m), 1.96–1.93 (1H, m), 1.85 (1H, dt, *J* = 4.0, 12.5 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 145.5, 143.4, 143.3, 140.1, 136.2, 130.1, 127.1(2C), 123.0, 117.4, 110.4, 107.5, 104.5, 56.1, 54.8, 45.8, 41.6, 41.5, 37.1, 36.3, 31.6, 23.7, 22.9; IR (KBr): 3503, 2909, 2841, 1604, 1481, 1438, 1279, 1224, 1063, 1053, 1013, 753 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₃H₂₆N₃O₃ (M+H⁺): 392.1969, found: 392.1975.

7r: Yellow solid. Mp: 215–217 °C; $[\alpha]_D^{26}$ 175.0 (*c* 2.6, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃, 400 MHz): δ

7.84 (2H, d, J = 8.0 Hz), 7.52 (2H, d, J = 7.6 Hz), 7.46 (2H, d, J = 7.6 Hz), 7.37 (2H, t, J = 7.2 Hz), 7.29 (1H, t, J = 7.2 Hz), 6.44–6.54 (2H, m), 5.99 (1H, brs), 4.74 (1H, d, J = 16 Hz), 3.58 (3H, s), 3.03 (1H, s), 2.94 (1H, d, J = 18.8 Hz), 2.82 (1H, dd, J = 5.2, 18.4 Hz), 2.64 (1H, dd, J = 5.6, 15.6 Hz), 2.40–2.56 (3H, m), 2.39 (3H, s), 2.24–2.35 (1H, m), 2.04–2.18 (1H, m), 1.75–1.98 (2H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 144.3, 144.2, 144.1, 140.3, 139.7, 131.2, 129.6, 128.6, 127.1, 127.0, 126.7, 125.1, 124.1, 118.4, 108.2, 57.1, 55.6, 46.8, 42.8, 42.7, 38.3, 37.3, 32.8, 24.6, 23.7; IR (KBr): 3497, 2908, 2840, 1622, 1581, 1481, 1437, 1279, 1225, 1104, 1063, 1053, 845, 767, 732, 698 cm⁻¹; HRMS (MALDI, *m/z*) Anal. calcd for C₃₁H₃₂N₃O₂ (M+H⁺): 478.2489, found: 478.2485.

7s: Yellow solid. Mp: 194–196 °C; $[\alpha]_D^{-26} 231.0$ (*c* 0.40, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 6.51–6.67 (3H, m), 5.97 (1H, d, J = 2.8 Hz), 4.70 (1H, d, J = 15.6 Hz), 3.75 (3H, s), 3.12 (1H, s), 3.00 (1H, d, J = 18.8 Hz), 2.90 (1H, dd, J = 6, 18.8 Hz), 2.62 (1H, dd, J = 5.6, 14.8 Hz), 2.50–2.57 (1H, m), 2.39–2.49 (2H, m), 2.43 (3H, s), 2.29–2.36 (1H, m), 2.27 (3H, s), 2.18 (1H, dt, J = 2.8, 12 Hz), 1.97 (1H, d, J = 12.4 Hz), 1.88 (1H, dt, J = 4.4, 12.8 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 151.1, 144.8, 144.4, 144.3, 137.5, 131.1, 124.1, 118.4, 108.4, 107.5, 106.5, 57.1, 55.8, 46.7, 42.6, 42.5, 38.2, 37.3, 32.6, 24.7, 23.8, 13.4; IR (KBr): 3432, 2916, 2842, 1609, 1580, 1481, 1438, 1279, 1225, 1053, 1022, 788 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₄H₂₈N₃O₃ (M+H⁺): 406.2125, found: 406.2141.

7t: White solid. Mp: 205–208 °C; $[\alpha]_D^{25}$ 190.9 (*c* 0.48, CHCl₃/CH₃OH = 10:1); ¹H NMR (CDCl₃/CD₃OD = 10:1, 300 MHz): δ 7.73–7.70 (2H, m), 7.34–7.31 (2H, m), 7.27–7.22 (1H, m), 6.64 (1H, d, *J* = 8.1 Hz), 6.59 (1H, d, *J* = 8.1 Hz), 4.79 (1H, d, J = 15.6 Hz), 3.77 (3H, s), 3.09–3.08 (1H, m), 2.99–2.97 (2H, m), 2.64–2.59 (1H, m), 2.54–2.44 (3H, m), 2.42 (3H, s), 2.33-2.28 (1H, m), 2.20 (1H, dt, *J* = 3.0, 12.3 Hz), 2.03–1.99 (1H, m), 1.84 (1H, dt, *J* = 4.8, 12.9 Hz); ¹³C NMR (CDCl₃/CD₃OD=10:1, 125 MHz): δ 144.6, 144.3, 144.2, 130.8, 130.4, 128.4(2C), 127.5, 124.4 (2C), 123.9, 118.3, 108.6, 57.0, 55.7, 46.7, 42.4, 42.2, 37.9, 37.1, 32.5, 24.3, 23.7; IR (KBr): 3508, 2909, 2840, 1623, 1602, 1481, 1458, 1437, 1400, 1278, 1225, 1105, 1063, 1054, 1022, 856, 771, 701, 695 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₂₅H₂₈N₃O₂ (M+H⁺): 402.2176, found: 402.2179.

4.3 Synthesis of pyrazines 8a–8r

A mixture of diketone **2** and the corresponding diamine **9** in CHCl₃ was stirred at room temperature until completion of the reaction by TLC monitoring. After removal of the solvent, the residue was purified by flash chromatography using the mixture of CH_2Cl_2 and CH_3OH as the eluent to afford sinomenine derivative **8** (See Table 2 for the yields).

8a: Yellow solid. Mp: 207–209 °C (dec.); $[\alpha]_D^{20}$ 222.9 (*c* 0.53, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 7.55 (1H, s),

7.50 (1H, s), 6.60 (1H, d, J = 8.3 Hz), 6.54 (1H d, J = 8.3 Hz), 5.02 (1H, d, J = 17.0 Hz), 3.62 (3H, s), 3.19–2.93 (6H, m), 2.58–2.55 (2H, m), 2.46 (3H, s), 2.36 (3H, s), 2.31 (3H, s), 2.22 (1H, dt, J = 3.0, 12.9 Hz), 2.1(1H, d, J = 12.9 Hz) 1.91(1H, dt, J = 4.8, 13.2 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 152.8, 152.4, 145.0, 144.6, 140.4, 140.1, 138.83, 138.77, 131.3, 127.657, 127.2, 123.7, 118.7, 109.0, 77.6, 77.2, 76.8, 56.7, 55.9, 47.0, 44.6, 43.1, 43.0, 38.3, 36.3, 33.6, 23.4, 20.3, 20.2; IR (KBr): 2916, 2802, 1604 1483, 1439, 1335, 1274, 1228, 1153, 1104, 1066, 1054, 1023, 989, 867, 857, 792 cm⁻¹; HRMS (EI, *m/z*): Anal. calcd for C₂₆H₃₀N₃O₂ (M⁺): 416.2333, found: 416.2345; Anal. calcd for C₂₆H₂₉N₃O₂: C, 75.15; H, 7.03; N, 10.11; found: C, 74.84; H, 7.29; N, 10.12.

8b: Yellow soild. Mp: 205–207 °C (dec.); $[\alpha]_D^{20}$ 203.2 (c 0.53, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 8.04 (1H, s), 7.94 (1H, s), 6.62 (1H, d, *J* = 8.4 Hz), 6.58 (1H, d, *J* = 8.4 Hz), 6.21 (1H, brs), 4.99 (1H, d, *J* = 17.4 Hz), 3.71 (3H, s), 3.24–2.88 (6H, m), 2.57–2.50 (2H, m), 2.47 (3H, s), 2.20 (1H, dt, *J* = 2.4, 12.3 Hz), 2.09(1H, d, *J* = 12.3 Hz) 1.91 (1H, dt, *J* = 4.2, 12.6 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 155.3, 155.0, 144.7, 144.4, 140.1, 134.0, 132.82, 132.79, 131.0, 129.2, 128.8, 122.9, 118.7, 109.0, 56.4, 55.9, 46.8, 44.6, 43.0, 42.7, 38.1, 36.2, 33.5, 23.1; IR (KBr): 2910, 1603, 1482, 1453, 1441, 1416, 1328, 1279, 1230, 1175, 1153, 1105, 1053, 879, 854, 731, 429 cm⁻¹; HRMS (EI, *m/z*): Anal. calcd for C₂₄H₂₄N₃O₂Cl₂ (M⁺): 456.1240, found: 456.1228.

8c [11]: Yellow solid. $[α]_D^{20} = +215.0$ (c = 0.53, CHCl₃); 1H NMR (CDCl₃, 300 MHz): δ 8.01–7.98 (1H, m), 7.87-7.84 (1H, m), 7.64–7.57 (2H, m), 6.61 (1H, d, J = 8.4Hz), 6.57 (1H, d, J = 8.4 Hz), 6.06 (1H, brs), 5.02 (1H, d, J = 17.4 Hz), 3.71 (3H, s), 3.27–2.88 (6H, m), 2.61–2.53 (2H, m), 2.48 (3H, s), 2.22 (1H, dt, J=2.4, 12.3 Hz), 2.10 (1H, J = 12.9) 1.92 (1H; dt, J = 4.5, 12.9 Hz); ¹³C NMR (CDCl₃/CD₃OD = 10:1, 125 MHz): δ 153.6, 153.3, 144.7, 144.3, 140.8, 140.5, 130.2, 128.9 (2C), 127.6, 127.5, 122.3, 118.3, 109.1, 56.3, 55.6, 46.6, 43.7, 42.3, 42.0, 41.9, 37.3, 35.8, 32.9, 23.0; IR (KBr): 2932, 1602, 1483, 1400, 1356, 1276, 1228, 1066, 1053, 836, 761 cm⁻¹; HRMS (EI, *m/z*): Anal. calcd for C₂₄H₂₆N₃O₂ (M⁺): 388.2020, found: 388.2012.

8d: Yellow solid. Mp: 214–217 °C (dec.); $[\alpha]_D^{25}$ 99.9 (*c* 0.28, MeOH); ¹H NMR (CDCl₃, 400 MHz): δ 7.69–7.83 (4H, m), 7.56–7.65 (2H, m), 7.27–7.48 (5H, m), 6.95–7.08 (3H, m), 6.70 (2H, dd, *J*= 8.2, 23.8), 5.09 (1H, d, *J*=17.2), 3.86 (3H, s), 3.34 (1H, s), 3.23 (1H, dd, *J* = 6.6, 18.2), 2.85–3.15 (4H, m), 2.68–2.82 (2H, m), 2.56 (3H, s), 2.30–2.40 (1H, m), 2.02–2.20 (2H, m); ¹³C NMR (CDCl₃, 100 MHz): δ 150.1, 151.0, 150.2, 149.4, 144.9, 144.6, 135.9, 135.8, 133.6, 133.5, 131.9, 131.6, 128.34 (2), 128.33 (2), 128.13, 128.08, 127.5, 126.1, 126.0, 125.6, 125.5, 124.60, 124.58, 123.1, 118.8, 109.1, 57.1, 56.1, 47.1, 42.4 (d), 41.7, 37.4, 36.0, 32.4, 29.7, 23.4; IR (KBr): 3425, 2926, 2845,

1654, 1484, 1439, 1379, 1280, 1151, 1054, 803, 778 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for $C_{40}H_{36}N_3O_2$ (M+H⁺): 590.2808; found: 590.2802.

8e: Yellow soild. Mp: 142–146 °C; $[\alpha]_D^{25}$ 98.2 (*c* 0.91, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.30–7.07 (8H, m), 6.70 (2H, dd, J = 8.4, 17.1 Hz), 5.06 (1H, d, J = 18.0 Hz), 3.82 (3H, s), 3.69 (1H, s), 3.34–2.89 (6H, m), 2.80 (3H, s), 2.64 (1H, m), 2.41 (1H, m), 2.23 (1H, d, J = 12.6 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 150.1, 149.1, 149.0, 148.8, 145.4, 145.4, 144.7, 136.9, 136.8, 133.1, 133.0, 131.05, 130.98, 129.5 (2C), 129.4 (2C), 127.2, 126.1 (2), 121.5, 118.9, 109.7, 58.1, 56.0, 47.2, 41.3, 39.1, 35.4, 35.1, 31.7, 29.5, 23.9; IR (KBr): 3390, 2923, 2851, 1611, 1484, 1438, 1392, 1280, 1155, 1054, 760, 739, 468 cm⁻¹; HRMS (ESI, m/z) Anal. calcd for C₃₂H₃₀Cl₂N₃O₂ (M+H⁺): 558.1715; found: 558.1713.

8f: Yellow solid. Mp: 121~131 °C; $[\alpha]_D^{25}$ 103.5 (*c* 0.80, MeOH); ¹H NMR (CDCl₃, 500 MHz): δ 7.53–7.25 (4H, m), 7.18-7.09 (4H, m), 6.66 (2H, s), 5.05 (1H, d, *J* = 17.5 Hz), 3.79 (3H, s), 3.20 (1H, s), 3.13–3.08 (2H, m), 2.99–2.90 (3H, m), 2.62–2.50 (3H, m), 2.50 (3H, s), 2.24 (1H, t, *J* = 12.0 Hz), 2.12 (1H, d, *J* = 12.5 Hz), 1.94 (1H, m); ¹³C NMR (CD₃OD, 75 MHz): δ 152.0, 151.0, 149.5, 149.4, 147.2, 146.5, 141.5 (2), 135.15, 135.10, 130.8, 130.64, 130.60, 130.56, 129.9, 129.5 (2), 129.3, 129.2, 123.1, 119.7, 111.1, 58.9, 56.4, 48.0, 42.8, 42.2, 41.8, 37.4, 36.6, 32.8, 24.6; IR (KBr): 3502, 2905, 2836, 1594, 1568, 1482, 1437, 1380, 1279, 1151, 1053, 785, 691, 462 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₂H₃₀Cl₂N₃O₂ (M+H⁺): 558.1715; found: 558.1712.

8g: Yellow solid. Mp: 183–186 °C; $[\alpha]_D^{25}$ 96.1 (*c* 0.93, MeOH); ¹H NMR (CD₃OD/CDCl₃ = 1:1, 300 MHz): δ 7.27-7.20 (8H, m), 6.69 (2H, dd, *J* = 8.4, 18.6 Hz), 5.11 (1H, d, *J* = 17.4 Hz), 3.77 (3H, s), 3.56 (1H, s), 3.17–2.84 (6H, m), 2.56 (3H, s), 2.34 (1H, m), 2.22 (1H, d, *J* = 12.3 Hz), 2.04 (1H, m); ¹³C NMR (CD₃OD/CDCl₃ = 2:1, 75 MHz): δ 151.0, 150.1, 149.34, 149.29, 146.3, 145.7, 137.3, 135.3, 131.7, 131.6, 129.3, 129.0, 122.6, 119.3, 110.4, 58.0, 56.2, 47.6, 42.1, 41.3, 37.1, 36.0, 32.3, 30.2, 24.2; IR (KBr): 3297, 2934, 2517, 1595, 1485, 1443, 1389, 1279, 1158, 1091, 1013, 840, 462 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₂H₃₀Cl₂N₃O₂ (M+H⁺): 558.1715; found: 558.1711.

8h: Yellow solid. Mp: 102–106 °C; $[\alpha]_D^{25}$ 40.4 (*c* 0.91, MeOH); ¹H NMR (CDCl₃, 500 MHz): δ 7.53–7.49 (2H, m), 7.34–7.22 (2H, m), 7.17–7.07 (4H, m), 6.66 (2H, dd, *J* = 8.0, 14.0 Hz), 4.98 (1H, d, *J* = 17.5 Hz), 3.81 (3H, s), 3.69 (1H, s), 3.20–3.08 (3H, m), 2.97–2.91 (3H, m), 2.63–2.58 (2H, m), 2.50 (3H, s), 2.23 (1H, m), 2.10 (1H, m), 1.94 (1H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 151.2, 150.7, 149.5, 149.3, 144.6, 144.4, 138.9, 138.8, 132.7, 132.7, 131.2, 130.8, 129.5, 129.4, 128.7, 127.6, 126.7, 123.3, 123.1, 118.5, 108.9, 56.5, 56.1, 46.8, 42.8, 42.7, 42.5, 37.8, 36.1, 32.4, 23.2; IR (KBr): 3053, 2907, 2853, 1608, 1482, 1437, 1391, 1279, 1153, 1024, 762, 734, 657 cm⁻¹; HRMS (ESI, *m/z*)

Anal. calcd for $C_{32}H_{30}Br_2N_3O_2$ (M+H⁺): 648.0684; found: 648.0686.

8i: Yellow solid. Mp: 168–172 °C; $[\alpha]_D^{25}$ 81.9 (*c* 1.00, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.67–7.59 (2H, m), 7.44–7.41 (2H, m), 7.16–7.05 (4H, m), 6.69 (2H, d, *J* = 3.0Hz), 5.06 (1H, d, *J* = 17.7 Hz), 3.81 (3H, s), 3.77 (1H, s), 3.20–3.08 (3H, m), 2.97–2.91 (3H, m), 2.63–2.58 (2H, m), 2.50 (3H, s), 2.23 (1H, m), 2.10 (1H, m), 1.94 (1H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 149.6, 148.4, 148.21, 148.16, 145.4, 144.6, 140.2 (2), 132.4, 132.3, 131.4, 131.3, 129.5, 129.4, 128.3, 128.1, 126.6, 122.32, 122.27, 121.1, 118.9, 109.5, 58.2, 55.7, 47.2, 41.2, 38.8, 35.2, 34.9, 31.5, 29.6, 23.9; IR (KBr): 3053, 2907, 2853, 1608, 1482, 1437, 1391, 1279, 1153, 1024, 762, 734, 657 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₂H₃₀Br₂N₃O₂ (M+H⁺): 648.0684; found: 648.0682.

8j: Yellow solid. Mp: 207–212 °C; $[\alpha]_D^{25}$ 76.2 (*c* 0.94, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.48–7.38 (4H, m), 7.27-7.19 (4H, m), 6.66 (2H, s), 5.03 (1H, d, J = 17.7 Hz), 3.78 (3H, s), 3.77 (1H, s), 3.20–3.08 (3H, m), 2.97–2.91 (3H, m), 2.63–2.58 (2H, m), 2.50 (3H, s), 2.23 (1H, m), 2.10 (1H, m), 1.94 (1H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 149.6, 149.3, 149.2, 148.8, 144.7, 144.6, 137.6, 137.5, 136.3, 131.1, 129.5, 129.3, 128.7, 128.6, 123.7, 118.4, 108.5, 56.5, 55.7, 46.8, 42.8, 42.5, 38.2, 36.0, 32.5, 23.3, 21.2; IR (KBr): 3383, 2918, 2843, 2521, 1588, 1485, 1442, 1385, 1279, 1159, 1010, 724, 539 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₂H₃₀Br₂N₃O₂ (M+H⁺): 648.0684; found: 648.0682.

8k: Yellow solid. Mp: 188–192 °C; $[\alpha]_D^{25}$ 97.7 (*c* 0.93, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.43–7.32 (2H, m), 7.26-7.23 (2H, m), 7.01 (2H, dd, *J* = 7.5, 9.9 Hz), 6.80 (2H, dd, *J* = 7.2, 9.0 Hz), 6.68 (2H, d, *J* = 2.1Hz), 6.12 (1H, brs), 5.09 (1H, d, *J* = 17.7 Hz), 3.81 (3H, s), 3.21–2.91 (6H, m), 2.64–2.59 (2H, m), 2.51 (3H, s), 2.25 (1H, td, *J* = 12.3, 2.4 Hz), 2.10(1H, d, J = 12.3 Hz) 1.94 (1H, td, *J* = 12.6, 4.2 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 159.18 (J = 247.6), 159.13 (*J* = 247.6), 150.0, 148.8, 146.7, 131.4, 131.2, 130.22, 130.16, 130.1, 127.1, 126.3, 126.2, 123.7, 121.4, 118.7, 115.4, 115.2, 115.0, 109.4, 57.7, 55.6, 47.0, 41.2, 39.1, 35.6, 35.0, 31.6, 29.4, 23.8; IR (KBr): 3504, 2920, 2838, 1616, 1582, 1496, 1483, 1453, 1438, 1279, 1230, 1153, 1054, 758, 458 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₂H₃₀F₂N₃O₂ (M+H⁺): 526.2301; found: 526.2295.

81: Yellow soild. Mp: 184–188 °C; $[\alpha]_D^{25}$ 110.5 (*c* 0.98, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.28–6.98 (8H, m), 6.67 (2H, s), 6.11 (1H, brs), 5.05 (1H, d, *J* = 17.4 Hz), 3.80 (3H, s), 3.23–2.90 (6H, m), 2.67–2.62 (2H, m), 2.52 (3H, s), 2.26 (1H, td, *J* = 12.9, 2.4 Hz), 2.11(1H, d, *J* = 10.5 Hz) 1.99 (1H, td, *J* =12.0, 4.2 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 162.6 (2C) (*J* = 247.0), 149.5, 148.6, 148.5, 145.2, 144.7, 134.6, 131.8, 131.5, 131.4, 131.2, 122.1, 118.7, 115.3, 115.2, 115.0, 114.9, 109.2, 57.5, 55.7, 47.1, 41.6, 40.1, 36.3, 35.3, 31.8, 29.6, 23.7; IR (KBr): 3389, 2930, 2839,

1612, 1586, 1485, 1440, 1390, 1280, 1230, 1153, 1054, 789, 701, 458 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for $C_{32}H_{30}F_2N_3O_2$ (M+H⁺): 526.2301; found: 526.2301.

8m: Yellow solid. Mp: 170–176 °C; $[\alpha]_D^{25}$ 114.3 (*c* 0.94, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.37–7.27 (4H, m), 6.99–6.92 (4H, m), 6.70 (2H, dd, *J* = 9.0, 3.3 Hz), 6.21 (1H, brs), 5.04 (1H, d, J = 17.1 Hz), 3.79 (3H, s), 3.69 (1H, s), 3.43 (1H, dd *J* = 6.6, 19.5 Hz), 3.20–2.88 (6H, m), 2.83 (3H, s), 2.64 (1H, m), 2.42 (1H, m), 2.23(1H, d, *J* = 12.9 Hz); ¹³C NMR (CD₃OD/CDCl₃ = 5:1, 75 MHz): δ 163.8 (2C) (*J* = 246.9), 150.6, 149.9, 149.8, 149.5, 147.0, 146.1, 135.3, 132.5, 132.4, 132.3, 128.4, 122.2, 119.6, 116.0, 115.7, 111.0, 59.2, 56.3, 48.0, 42.0, 41.7, 40.8, 36.5, 36.0, 32.2, 24.6; IR (KBr): 3383, 2923, 2850, 1604, 1510, 1484, 1439, 1280, 1225, 1156, 1054, 840, 556 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₂H₃₀F₂N₃O₂ (M+H⁺): 526.2301; found: 526.2300.

8n: Yellow solid. Mp: 155–158 °C; $[\alpha]_D^{25}$ 101.7 (*c* 0.95, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.31–7.23 (4H, m), 7.07-7.03 (4H, m), 6.64 (2H, s), 5.03 (1H, d, *J* = 17.7 Hz), 3.78 (3H, s), 3.18 (1H, s), 3.12–2.87 (5H, m), 2.51– 2.49 (2H, m), 2.47 (3H, s), 2.33 (3H, s), 2.31 (3H, s), 2.28–1.85 (3H, m); ¹³C NMR (CD₃OD/CDCl₃ = 1:2, 75 MHz): δ 149.9 (2C), 148.5, 147.5, 145.5 (2), 144.7 (2), 138.0, 135.4, 129.3, 129.1, 128.6 (2), 127.0, 121.3, 118.6, 109.6, 58.0, 55.7, 47.1, 40.9, 40.7, 39.3, 35.4, 34.8, 31.1, 29.4, 23.7, 20.8;IR (KBr): 2909, 2837, 1610, 1482, 1438, 1392, 1278, 1154, 1066, 822, 788, 553 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₄H₃₆N₃O₂ (M+H⁺): 518.2808; found: 518.2806.

80: Yellow solid. Mp: 144–147 °C; $[\alpha]_D^{25}$ 107.2 (*c* 0.99, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.58–7.45 (8H, m), 6.69 (2H, d, *J* = 7.5 Hz), 5.06 (1H, d, *J* = 16.5 Hz), 3.78 (3H, s), 3.20 (1H, s), 3.14–2.89 (5H, m), 2.62–2.49 (2H, m), 2.47 (3H, s), 2.26–1.92 (3H, m); ¹³C NMR (CD₃OD/CDCl₃ = 5:1, 75 MHz): δ 152.7, 151.9, 149.45, 149.43, 146.8, 146.2, 143.3, 131.5, 131.4 (2), 131.3 (2), 131.1, 130.7, 127.1, 126.0, 123.8, 123.5, 119.5, 110.7, 57.8, 56.3, 47.7, 43.2, 42.8 (2C), 38.3, 36.9, 33.1, 24.3; IR (KBr): 2910, 2841, 1618, 1484, 1440, 1395, 1325, 1166, 1066, 1017, 847, 622 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₄H₃₀F₆N₃O₂ (M+H⁺): 626.2242; found: 626.2238.

8p: Yellow solid. Mp: 123–126 °C; $[α]_D^{25}$ 168.6 (*c* 0.91, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.33–7.14 (4H, m), 6.91 (2H, dd, *J* = 7.2, 15.0 Hz), 6.68–6.61 (4H, m), 5.11 (1H, d, *J* = 17.4 Hz), 3.77 (3H, s), 3.35 (3H, s), 3.31 (3H, s), 3.19-2.90 (6H, m), 2.59–2.48 (2H, m), 2.46 (3H, s), 2.20-2.09 (2H, m), 1.90 (1H, m); ¹³C NMR (CD₃OD, 75 MHz): δ 157.9 (2C), 151.31, 151.26, 151.2, 150.2, 147.0, 146.5, 132.3, 132.2, 131.2, 131.0 (2C), 129.1, 129.0, 123.9, 120.9 (2C), 119.7, 111.5 (2C), 111.0, 58.1, 56.5, 55.3 (2C), 47.9, 42.7 (3C), 38.4, 36.9, 32.9, 24.5; IR (KBr): 2925, 2833, 1601, 1582, 1497, 1482, 1461, 1436, 1280, 1249, 1153, 1023, 751 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for

 $C_{34}H_{36}N_{3}O_{4}$ (M+H⁺): 550.2706; found: 550.2709.

8q: Yellow solid. Mp: 125–130 °C; $[\alpha]_D^{25}$ 146.8 (*c* 0.93, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.17–7.10 (2H, m), 6.96–6.82 (4H, m), 6.82–6.77(2H, m), 6.64 (2H, s) 5.04 (1H, d, *J* = 17.4 Hz), 3.77 (3H, s), 3.65 (3H, s), 3.63 (3H, s), 3.26 (1H, s), 3.13–2.88 (5H, m), 2.65–2.52 (2H, m), 2.53 (3H, s), 2.28 (1H, t, *J* = 8.7, 21.9 Hz), 2.08 (1H, m), 2.00 (1H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 159.2, 159.1, 149.9, 149.2 (2), 149.0, 144.9, 144.7, 140.20, 140.16, 130.2, 129.0, 128.9, 123.2, 122.1, 121.9, 118.4, 114.8, 114.4, 114.3, 114.0, 108.7, 56.6, 55.6, 54.98, 54.96, 46.8, 42.4, 42.2, 41.6, 37.6, 35.8, 32.2, 23.4; IR (KBr): 2929, 2834, 1600, 1581, 1483, 1437, 1391, 1279, 1230, 1155, 1050, 753 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₄H₃₆N₃O₄ (M+H⁺): 550.2706; found: 550.2709.

8r: Yellow solid. Mp: 137–141 °C; $[\alpha]_D^{25}$ 189.9 (*c* 0.93, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 7.35–7.27 (4H, m), 6.81–6.67 (4H, m), 6.63 (2H, d, *J* = 2.1 Hz), 5.02 (1H, d, *J* = 17.7 Hz), 3.80 (3H, s), 3.79 (3H, s), 3.78 (3H, s), 3.47 (1H, s), 3.14-2.86 (6H, m), 2.66 (3H, s), 2.43 (1H, brs), 2.08 (2H, m), 2.04 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 160.9 (2), 150.62, 150.57, 150.4, 149.4, 146.8, 146.1, 131.9, 131.8, 130.2, 123.4, 119.5, 114.4 (2), 114.3 (2), 110.6, 58.3, 56.3, 55.6 (2), 47.8, 42.5, 42.4, 42.2, 37.7, 35.6, 32.6, 22.4; IR (KBr): 2925, 2837, 1608, 1514, 1483, 1438, 1393, 1280, 1250, 1176, 1027, 835, 754 cm⁻¹; HRMS (ESI, *m/z*) Anal. calcd for C₃₄H₃₆N₃O₄ (M+H⁺): 550.2706; found: 550.2709.

4.4 Cell culture

The mouse macrophage cell line J774 was used to evaluate the pro-inflammatory cytokine TNF- α under the lipopolysaccharide (LPS)-stimulation. Cells were grown in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 U/mL streptomycin at 37 °C in a humidified atmosphere of 6% CO₂.

Sinomenine and its derivatives were dissolved in dimethyl sulfoxide (DMSO) and added at a DMSO concentration at 0.1%. The same amount of 1% DMSO was added to the control cultures. Immunoassay of TNF- α cells were plated in 48-well plates at 10⁵ cells/well and incubated for 12 h. Then 1 µg/mL LPS in the presence or absence of 10 µM of compounds in DMEM culture medium with 10% FBS was added to each and well treated for 6 h. The culture supernatants were collected and used for assaying the inhibitory activity on TNF- α production by ELISA kit (R&D).

- (a) Wermuth CG. *The Practice of Medicinal Chemistry*, 2nd ed. San Diego: Academic Press. 2003; (b) Keller TH, Pichota A, Yin Z. A practical view of 'druggability'. *Curr Opin Chem Biol*, 2006, 10: 357–361
- 2 Knorr L, Horlein H. Über ein neues chlorokodid. XVI. Mitteilung: Zur kenntnis des morphins von Ludwig Knorr. Chem Ber, 1907, 40: 4883-4889
- 3 Wang Y, Fang Y, Huang W, Zhou X, Wang M, Zhong B, Peng D. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. *J Ethnopharmacol*, 2005, 98: 37–43
- 4 Zhao Y, Li J, Yu KQ, Liu Y, Chen XG. Sinomenine inhibits maturation of monocyte-derived dendritic cells through blocking activation of NF-kappa B. *Int J Immunopharmacol*, 2007, 7: 637–645
- 5 Ou, YQ, Chen LH, Li, XJ, Lin ZB, Li WD. Sinomenine influences capacity for invasion and migration in activated human monocytic THP-1 cells by inhibiting the expression of MMP-2, MMP-9, and CD147. Acta Pharm Sinica, 2009, 30: 435–441
- Previous modifications on sinomenine, see: (a) Wu F, Feng X, Wu K, 6 Cheng G, Huang Y, Ye X, Qiu P, Zheng X. Sinomenine structure-modified compound and its preparation method. CN1876634-A, 2007; (b) Luo J, Zeng H, Li Y, Yin S. 1-Substituted amine methyl diversine derivative and its preparation method. CN1948291-A, 2007; (c) Whittall J, Mather P. New 1,7-dibromodihydrocodeinone dimethylketal and its derivatives useful in the manufacture of a medicament for the treatment or prophylaxis of pain. WO2004022564-A3 (AU2003263301-A8), 2004; (d) Qin G, Tang X, Wang R, Zhou T, Lestage P, Caignard D, Renard P. New sinomenine derivatives useful for treatment of deficiencies of memory associated with cerebral aging and with neurodegenerative diseases. WO2004048340-A1 (CN1504469-A), 2004; (e) Yakida A, Sukegawa Y. Intestinal disorder preventative and treating agent-comprises Stephania plant-derived alkaloid, useful for treating e.g. enteritis, Crohn's disease etc. JP8301778-A, 1997; (f) Ibuka T, Kitano M. Studies on the alkaloids of Menispermaceous plants. CCXXXIX. Synthesis of hasubanan derivative from sinomenine. Chem Pharm Bull, 1967, 15: 1944-1947; (g) Shionogi & Co. Ltd. Purification of morphinan derivatives. JP64021845-B, 1966; (h) Shionogi & Co. Ltd., 6-Methylenemorphinan derivatives. JP65010153-B, 1966; (i) Shionogi & Co. Ltd., 6,7-Dihydroxymorphinan derivatives. JP65010217-B, 1966; (j) Wu F, Zheng X, Qiu P, Qiu S. Sinomenine salt compound and its preparation method. CN1995019-A, 2008; (k) Pan Y, Li Y, Bu Q, Huang L, Wang J, Li J. 17-Sulfonyl sinomenine, has potential medicinal application prospect providing structure formula, preparation method and concrete steps. CN1785977-A, 2006; (1) Pan Y, Li Y, Bu Q, Huang L, Wang J, Li J. N-Alkyl sinomenine has potential medicinal application prospect. CN1785976-A, 2006; (m) Christians U, Kaever VW. New compound N-demethyl-sinomenine. WO9942105-A (US6372756-B1), 1999; (n) Tang Q, Luo J, Zhu Q, Li Y, Yin S. Synthesis and anti-inflammatory activities investigation of sinomenine derivatives on ring C. Nat Prod Res, 2006, 20: 1015 - 1023
- (a) Yao ZJ, Zhou HB. Derivative of sinomenine with pyrazine cycle being connected to C cycle, its synthetic method and application. CN1687065-A (ZL 200510024478.9), 2006; (b) Yao ZJ, Zhou HB. Sinomenine derivative with C cycle connected to five-membered heterocycle and its preparation. CN1687070-A (ZL 200510024479. 3), 2006; (c) Lou YT, Zhou HB, Zou J, Yan LC, Bi EG, Sun B, Yao ZJ. Modification of poorly bioactive sinomenine into more potent immunosuppressive agents by embedding of drug-like fragments. *Tetrahedron Lett*, 2010, 51: 485–488; (d) Yan LC, Bi EG, Lou YT, Wu XD, Liu ZD, Zou J, Wang Y, Ma Z, Lin GM, Sun SH, Bian C, Chen AZ, Yao ZJ, Sun B. Novel sinomenine derivative 1032 improves immune suppression in experimental autoimmune encephalomyelitis. *Biochem. Biophys Res Comm*, 2010, 391: 1093–1098

This project was financially supported by the National Basic Research Program of China (973 Program, 2010CB833200), National Natural Science Foundation of China (90713044, 21032002), SHMCST (08431903000) and the Fundamental Research Funds for the Central Universities (1082020502).

- 8 Smolen JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. *Nat Rev Drug Discov*, 2003, 2, 473–488
- 9 (a) Ye XR, Yan KX, Wu KM, Feng XZ, Huang YM, Qiu P. Synthesis and anti-inflammatory analgesic activities of sinomenine derivatives. *Acta Pharm Sinica*, 2004, 39, 180–183; (b) Iijima I, Minamikawa J, Jacobson AE, Rice KC. Studies in the (+)-morphinan series. 4. A markedly improved synthesis of (+)-morphine. *J Org Chem*, 1978, 43: 1462–1463
- 10 Qin GW, Tang XC, Wang R, Zhou TX, Lestage P, Caignard DH, Renard P. New sinomenine derivatives useful for treatment of deficiencies of memory associated with cerebral aging and with neuro-

degenerative diseases. WO2004048340, 2004

- 11 Fleischhacker W, Viebock F, Zeidler F. Strukturund konfigurationsbeweis für das diketon aus 14-bromcodeinon. *Monatsh. Chem*, 1970, 101: 1215–1222
- 12 Breedveld FC. Antagonisten van tumornecrosisfactor: Infliximab, adalimumab en etanercept. *Ned Tijdschr Geneeskd*, 2005, 149: 2273–2277
- 13 Manthey CL, Wang SW, Kinney SD, Yao Z. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. *J Leukocyte Biol*, 1998, 64: 409–417