DOI: 10.1002/ejoc.201300792

Installation of a Chiral Side Chain to a 2-Alkylidene-1-cycloalkan-1-ol Unit by Using Allylic Substitution

Chao Feng^[a] and Yuichi Kobayashi*^[a]

Keywords: Synthetic methods / Allylic compounds / Nucleophilic substitution / Copper / Magnesium / Regioselectivity

The allylic substitution of optically active exocyclic allylic esters of cyclopentane and cyclohexane with ArMgBr-based copper reagents (Ar = aryl) was examined. ArMgBr/Cu(acac)₂ in a 2:1 ratio was an adequate reagent to produce the *anti*-S_N2' products efficiently in terms of regioselectivity (95–99%), chirality transfer (91–99%), and yield (71–91%). The Ar groups that were successfully installed include Ph and *p*-

Introduction

The allylic substitution of secondary allylic esters with organocopper reagents that are prepared in situ or generated under catalytic conditions has recently been actively investigated with highly activated leaving groups^[1] such as o-(PPh₂)C₆H₄CO₂, o-[P(O)Ph₂]C₆H₄CO₂, $C_6F_5CO_2$, $(RO)_2PO_2$, and 2-PyCO₂ (Py = pyridine). By employing these leaving groups, alkyl copper reagents as well as less reactive aryl, alkenyl, heteroaryl, and alkynyl reagents can take part in substitution reactions that furnish γ products with high regio- and stereoselectivity.^[2,3] The 2-PyCO₂ leaving group that we introduced was activated by Mg²⁺ and/ or Zn^{2+} to allow for the participation of the above classes of reagents.^[3] Furthermore, ArMgBr-based copper reagents could be used for the efficient construction of a quaternary carbon.^[4]

During the investigation, we learned that acyclic and cyclic allylic esters of types I and II as shown in Figure 1 have been used as test substrates and that exocyclic allylic esters III that are part cyclic and acyclic have been studied in a few cases. In brief, the methylation of 2-butylidene-1-cyclopentyl alcohol derivatives III [(*Z*) olefin, n = 1, R = Pr, L = OCO-*t*Bu, OCONHPh] afforded the desired γ product regioselectively.^[5] However, the scope of the reagents that includes aromatic compounds is unclear.^[6] In contrast, the CuCl-catalyzed substitution of 2-benzylidene-1-cycloalkyl acetates III [(*E*) olefin, n = 1, 2, R = Ph, L = OAc) with alkyl- and arylMgBr gave α products with 65–100%

tolyl, those with electron-donating (i.e., $p-MeOC_6H_4$) and

electron-withdrawing groups (i.e., p-FC₆H₄), and those with

sterically demanding groups (i.e., o-tolyl, o-MeOC₆H₄). In an

examination of an alkyl reagent, $BuMgBr/CuBr \cdot Me_2S$ in a 2:1 ratio in the presence of ZnI_2 afforded the product with high

regioselectivity (99%) and in good yield (91%).

Figure 1. Substrate types for the allylic substitution (L = leaving group).

Scheme 1. Goal of the present allylic substitution reaction.

regioselectivity, which depended on the ring size of the substrates and the reagents.^[7] With these publications in mind, we selected picolinates **1** with n = 1, 2 as in **III** and studied their allylic substitution with aryl copper reagents as depicted in Scheme 1 as well as with an alkyl copper reagent. The structure of the γ product **2** evokes several biologically

[[]a] Department of Bioengineering, Tokyo Institute of Technology, Box B52, Nagatsuta-cho 4259, Midori-ku, Vokohama 226 8501, Japan

Yokohama 226-8501, Japan

E-mail: ykobayas@bio.titech.ac.jp

Homepage: http://www.kobayashi.bio.titech.ac.jp

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300792.

active compounds such as classical steroids, vitamin D compounds, the OSW-1 series of compounds, ophiobolins, biyouyanagin A, zingiberene, and the heliannuols (see Figure 2), which are characterized by chiral side chains. Herein, we present the results of this investigation, which focuses on regioselectivity (2 over 3) and chirality transfer (C.T.).^[8,9]

Figure 2. Natural products that possess a chiral carbon on a side chain.

Results and Discussion

The allylic substrates shown in Figure 3 were synthesized by methods delineated in Scheme 2. In brief, the aldol reaction of cyclopentanone and 3-phenylpropionaldehyde followed by elimination of the hydroxy group with MsCl and Et₃N produced (*E*)-olefin **5a** in a 40% unoptimized yield. The examination of the ¹H NMR spectrum of crude **5a** indicated the absence of the (*Z*) isomer [olefinic H of **5a**, multiplet, 6.50–6.63 ppm; olefinic H of (*Z*) isomer, probably 5.6–6.0 ppm^[10]]. A Corey–Bakshi–Shibata (CBS) reduction^[11] using (*S*)-3,3-diphenyl-1-methylpyrrolidino[1,2-*c*]-1,3,2-oxazaborole [(*S*)-MeCBS] was applied to the enone, and the resulting alcohol (*R*)-**4a** was converted into picolinate (*R*)-**1a** in 72% yield by employing a DCC-mediated (DCC = *N*,*N'*-dicyclohexycarbodiimide) condensation with

Scheme 2. Synthesis of the substrates [DMAP = 4-(dimethyl-amino)pyridine].

Scheme 3. Synthesis of regioisomers (DIEA = N,N-diisopropylethylamine, rs = regioselectivity).

PyCO₂H. The enantiomeric purity of (*R*)-1a, which was prepared twice, was 94 and 97%*ee* as determined by chiral HPLC analysis. Likewise, picolinate (*R*)-1b with 86%*ee* was synthesized from cyclohexanone through enone **5b**.^[12] For a preliminary investigation, racemic picolinates *rac*-1a and -1b were synthesized in yields of 73–80% from enones **5a** and **5b** by reduction with NaBH₄ followed by a DCC-assisted esterification with PyCO₂H. Similarly, enone **5c** was prepared through an aldol condensation of cyclopentanone with isobutyraldehyde followed by conversion into racemic picolinate *rac*-1c, which was used to examine the steric influence of the bulky side chain on the allylic substitution reaction. To examine influence of an aryl substituent on the regioselectivity of the reaction, *rac*-1d was prepared.

The allylic substitution of *rac*-1a was first investigated by using phenyl reagents that were derived from PhMgBr and CuBr·Me₂S in ratios of 1:1 and 2:1 in tetrahydrofuran

(THF) at an initial temperature of -40 or -30 °C that was gradually increased to -10 or 0 °C over 2 h to afford rac-2aA as the major product. To calculate the regioselectivity of rac-2aA over rac-3aA by ¹H NMR spectroscopy, the allylation of regioisomeric substrate rac-6a with a 2:1 ratio of PhMgBr/CuBr·Me₂S was carried out to produce rac-3aA as a 4:1 mixture with its (Z) isomer (see Scheme 3).^[13] The reaction proceeded regioselectively (>95:5) with a 1:1 ratio of PhMgBr/CuBr·Me₂S (1.5 equiv.), but 7% of rac-1a was recovered (data not shown). On the other hand, 3 equiv. of the reagent completely consumed the substrate to afford rac-2aA with 96% regioselectivity (see Table 1, Entry 1). The substitution of rac-1a with 1 equiv. of the 2:1 PhMgBr/ CuBr·Me₂S reagent afforded rac-2aA with a similar regioselectivity (see Table 1, Entry 2). The completion of the reaction within 2 h, even with 1 equiv. of the reagent, suggests the participation of the 1:1 PhMgBr/CuBr·Me₂S reagent,

Table 1. Optimization of conditions.

[a] Reaction temperature was gradually raised to -10 or 0 °C over 2 h for Entries 1–14 and over 3 h for Entries 15 and 16. [b] Determined by ¹H NMR spectroscopic analysis. [c] Isolated yield. [d] n.d.: not determined.

which is produced in situ through a reaction with the 2:1 reagent. In fact, the 1:1 reagent produced *rac*-**2aA** regiose-lectively (see Table 1, Entry 1). The 2:1 reagent in the presence of ZnI₂ resulted in somewhat lower regioselectivity (see Table 1, Entry 3). The reagent that was derived from a 2:1 ratio of PhMgBr and Cu(acac)₂ (acac = acetylacetonate) furnished *rac*-**2aA** with 96% regioselectivity (see Table 1, Entry 4).

The *rac*-1a substrate from Table 1, Entries 1–4 was then treated with *p*-TolMgBr. The Cu(acac)₂-based reagent showed high regioselectivity $(98\%)^{[14]}$ to produce *rac*-2aB [B refers to *p*-tolyl (*p*-Tol) as the Ar group, see Table 1, Entry 8], whereas low regioselectivity was observed with the CuBr·Me₂S-based reagents (see Table 1, Entries 5–7).

With the above results in hand, the six-membered ring substrate *rac*-**1b** was submitted to the substitution reactions with the Ph and *p*-Tol copper reagents. Regioisomer *rac*-**3bA** with the Ph substituent was independently synthesized through the reaction shown in Scheme 3 to determine the diagnostic absorbance in its ¹H NMR spectrum to estimate the regioselectivity of the reaction. As summarized in Table 1, Entries 11 and 12, the Cu(acac)₂-derived Ph and *p*-Tol reagents afforded *rac*-**2bA** and -**2bB**, respectively, with high regioselectivity (99% and 96%).^[14] Similar regioselectivity results were obtained in the phenylation reactions that used 1:1 and 2:1 ratios of PhMgBr/CuBr·Me₂S (see Table 1, Entries 9 and 10).

Next, the influence of steric factors on the regioselectivity was examined by employing the *i*Pr-substituted substrate *rac*-1c, which was treated with the Cu(acac)₂-derived Ph and *p*-Tol reagents. The reactions proceeded without delay to afford *rac*-2cA and -2cB regioselectively^[14] (see Table 1, Entries 13 and 14).

The influence of an aryl group attached to the allylic moiety on the regioselectivity was examined by using *rac*-**1d**, which upon reaction with the 2:1 PhMgBr/Cu(acac)₂ reagent afforded *rac*-**2dA** with a regioselectivity of >99% (see Table 1, Entry 15; the ¹H NMR of regioisomer *rac*-**3dA** is published^[7] and was used to calculate the regioselectivity. Such a high regioselectivity was also attained with the 2:1 *p*-TolMgBr/Cu(acac)₂ reagent (see Table 1, Entry 16).

Throughout the above examination, the 2:1 ArMgBr/Cu- $(acac)_2$ reagents (Ar = Ph, p-Tol) provided high regioselectivity in all of the reactions. As for the 2:1 ArMgBr/ CuBr·Me₂S reagents, the Ph reagent was highly regioselective, but that with *p*-Tol was not. With these results in hand, the allylic substitution of (R)-1a (94 and 97% ee) and (R)-1b (86% ee) was studied to evaluate the chirality transfer (C.T.)^[8] and determine the stereochemical course of the reaction. The 2:1 PhMgBr/Cu(acac)₂ reagent was first subjected to reaction with the five-membered substrate (R)-1a to produce (R)-2aA (Ar = Ph) with a C.T. of >99% and a regioselectivity of >99% in 80% isolated yield (see Table 2, Entry 1). The 2:1 PhMgBr/CuBr·Me₂S reagent produced (R)-2aA with a C.T. of 98% as well (see Table 2, Entry 2). Similarly, the p-Tol, p-MeOC₆H₄, and p-FC₆H₄ reagents participated in the substitution reaction to afford (R)-2aB, -2aD, and -2aF efficiently (see Table 2, Entries 3, 5, and 7). The steric congestion from the Me and MeO groups in the o-Tol and o-MeOC₆H₄ reagents, respectively, resulted in a slight decrease to the C.T. and regioselectivity, but the selectivity was still at an acceptable level (see Table 2, Entries 4

Entry	Substrate ^[a]	ArMgBr [equiv.]	Copper source [equiv.]	Product	2/3	C.T. ^[b]	Yield [%] ^[c]
	<		MgBr, Cu salt	Ar Ph +	Ph		
		(<i>R</i>)-1a	, , ,	(R)-2aA~F 3	aA∼F		
1	(R)-1a	PhMgBr (3.0)	$Cu(acac)_2(1.5)$	(R)-2aA. ^[d] Ar = Ph	>99:1	>99%	80
2	(R)-1a	PhMgBr (2.2)	$CuBr \cdot Me_2S$ (1.0)	(R)-2aA, Ar = Ph	98:2	98%	89
3	(R)-1a	p-TolMgBr (3.0)	$Cu(acac)_2(1.5)$	(R)-2aB, Ar = p-Tol	>99:1	>99%	80
4	(R)-1a	o-TolMgBr (3.0)	$Cu(acac)_2$ (1.5)	(R)-2aC, Ar = o -Tol	98:2	96%	87
5	(R)-1a	p-MeOC ₆ H ₄ MgBr (3.0)	$Cu(acac)_2$ (1.5)	(R)-2aD, Ar = p -MeOC ₆ H ₄	>99:1	97%	91
6	(R)-1a	o-MeOC ₆ H ₄ MgBr (3.0)	$Cu(acac)_2$ (1.5)	(R)-2aE, Ar = o -MeOC ₆ H ₄	95:5	91%	82
7	(R)-1a	<i>p</i> -FC ₆ H ₄ MgBr (3.0)	$Cu(acac)_2(1.5)$	$(R)-2\mathbf{aF}, \operatorname{Ar} = p-\operatorname{FC}_6\operatorname{H}_4$	>99:1	96%	86
	(OCOPy Ph Ark	/IgBr, Cu salt -, -40 °C, 2 h	Ar Ph +	Ph		
		(<i>R</i>)-1b	(<i>R</i>)-	2bA,-2bD,-2bE 3	bA,D,E		
8	(<i>R</i>)-1b	PhMgBr (2.2)	CuBr·Me ₂ S (1.0)	$(R)-2\mathbf{bA},^{[\mathbf{d}]}\mathbf{Ar}=\mathbf{Ph}$	>99:1	>99%	89
9	(<i>R</i>)-1b	p-MeOC ₆ H ₄ MgBr (3.0)	$Cu(acac)_2(1.5)$	(R)-2bD, Ar = p -MeOC ₆ H ₄	>99:1	93%	87
10	(R)-1b	o-MeOC ₆ H ₄ MgBr (3.0)	$Cu(acac)_2(1.5)$	(R)-2bE, Ar = o -MeOC ₆ H ₄	97:3	96%	71

Table 2. Allylic substitution with optically active picolinates (R)-1a and -1b.

[a] (*R*)-1a (94 or 97%ee), (*R*)-1b (86%ee). [b] Enantiomeric excess value for calculation of C.T. was determined by chiral HPLC analysis. [c] Isolated combined yield of 2 and 3. [d] Absolute configuration was determined as described in the text.

and 6). Comparable results were also observed with the sixmembered substrate (R)-1b (see Table 2, Entries 8–10).

Scheme 4 shows the transformation^[15] of (*R*)-2aA and -2bA into known alcohol 8, and the specific rotations of 8 were compared with the literature value^[16] to establish not only the *R* configuration of 2aA and 2bA but also the *anti*- S_N2' pathway of the allylic substitution. The configurations of the other products were determined by analogy.

Scheme 4. Transformation of (*R*)-2aA and -2bA into the known alcohol (*S*)-8.

Next, we turned our attention to a butyl copper reagent as a typical example of alkyl copper reagents. Surprisingly, the 2:1 BuMgBr/CuBr·Me₂S reagent was less regioselective (rs of 74%, see Scheme 5). As observed in the previous experiment, the regioselectivity of (*R*)-**2aG** was greatly improved at 99% by the addition of ZnI₂. The activation of the 2-PyCO₂ group through chelation was stronger to Zn²⁺ than to Mg²⁺, which might be a reason for the high regioselectivity. In contrast, the 2:1 BuMgBr/Cu(acac)₂ reagent was regioselective to produce (*R*)-**2aG**, but the product was contaminated with unidentified compound(s).^[17]

A possible pathway based on a recent mechanism for allylic substitution^[2b,2c,18] is illustrated in Scheme 6. The reaction of ArMgBr and Cu(acac)₂ in a 2:1 ratio produces the [ArCu(acac)]⁻ species and (MgBr)⁺. This Ar–Cu species co-

Scheme 5. Allylation of (*R*)-1a with butyl copper reagent (rs = regioselectivity; the ¹H NMR spectrum of rac-3aG was used as a reference to calculate the regioselectivity of (*R*)-2aG).

ordinates to the double bond as the latter cation activates the PyCO₂ leaving group through chelation to facilitate the subsequent elimination of the PyCO₂ group and produce the *anti*-S_N2' product with high γ selectivity.

Conclusions

We have developed a method to construct a cycloalkenylsubstituted carbon unit through an allylic substitution that employs 2:1 ArMgBr/Cu(acac)₂ reagents and proceeds with excellent regioselectivity and C.T.^[19] Reagents with sterically demanding groups as well as those with electron-donating and electron-withdrawing groups were successfully used in the reaction. Overall, the present results provide the transformation as depicted in Scheme 7. The total synthesis of biologically active compounds by employing this transformation will be reported in the near future.

Scheme 7. Overall transformation.

Scheme 6. Plausible mechanism

Experimental Section

General Methods: The ¹H (300 or 400 MHz) and ¹³C NMR (75 or 100 MHz) spectroscopic data were recorded in CDCl₃ using SiMe₄ ($\delta = 0$ ppm) and the centerline of the triplet ($\delta = 77.1$ ppm), respectively, as internal standards. Signal patterns are indicated as br. s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constants (J) are given in Hertz (Hz). Chemical shifts of carbons are accompanied by minus (for C and CH₂) and plus (for CH and CH₃) signs of the attached proton test (APT) experiments. The solvents that were distilled prior to use are THF (from Na/benzophenone), Et₂O (from Na/benzophenone), and CH₂Cl₂ (from CaH₂). After the reactions were completed, the organic extracts were concentrated by using an evaporator, and then the residues were purified by chromatography on silica gel (Kanto, spherical silica gel 60N). Cu(acac)₂ was purchased from TCI, Japan and used without purification, whereas CuBr·Me₂S was prepared as described previously.^[3e]

Synthesis of Picolinates (R)-1a and rac-1a

(E)-2-(3-Phenylpropylidene)cyclopentanone (5a): To an ice-cold solution of diisopropylamine (0.80 mL, 5.69 mmol) in THF (8 mL) was added nBuLi (1.65 M in hexane, 3.0 mL, 4.95 mmol) dropwise. The solution was stirred for 15 min at 0 °C and then cooled to -70 °C. Cyclopentanone (0.30 mL, 3.47 mmol) was added to the solution. After 30 min of stirring at -70 to -50 °C, 3-phenylpropionaldehyde (0.30 mL, 2.28 mmol) was added dropwise at -70 °C. After 30 min of stirring at -70 °C, the solution was poured into a mixture of EtOAc and saturated NH₄Cl with vigorous stirring. The layers were separated, and the aqueous layer was extracted with EtOAc ($2\times$). The combined extracts were washed with brine, dried with MgSO₄, and concentrated to give a residue that was passed through a short column of silica gel (hexane/EtOAc) to afford the aldol, which was used for the next reaction without further purification. To an ice-cold solution of the alcohol, Et₃N (0.45 mL, 3.26 mmol), and DMAP (29.0 mg, 0.237 mmol) in CH₂Cl₂ (10 mL) was added MsCl (0.17 mL, 2.18 mmol) dropwise. The solution was warmed to room temp. over 2 h and then diluted with saturated NaHCO₃ with vigorous stirring. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ $(2\times)$. The extracts were washed with brine, dried with MgSO₄, and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to furnish 5a (182 mg, 40% over two steps). IR (neat): $\tilde{v} = 1723$, 1651, 1454, 747, 699 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 1.87 (quintet, J = 8 Hz, 2 H), 2.30 (t, J = 8 Hz, 2 H), 2.40-2.53 (m, 4 H), 2.77 (t, J = 8 Hz, 2 H),6.50-6.63 (m, 1 H), 7.16-7.38 (m, 5 H) ppm. ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 19.8$ (-), 26.8 (-), 31.7 (-), 34.6 (-) 38.7 (-), 126.2 (+), 128.47 (+), 128.50 (+), 134.7 (+), 138.0 (-), 141.2 (-), 207.2 (-) ppm. HRMS (EI): calcd. for C₁₄H₁₆O [M]⁺ 200.1201; found 200.1202.

(*R*,*E*)-2-(3-Phenylpropylidene)cyclopentanol [(*R*)-4a]: To a solution of (*S*)-methyl oxazaborolidine (1.0 M in toluene, 0.11 mL, 0.11 mmol) and *N*,*N*-diethylaniline–borane (0.11 mL, 0.619 mmol) at -20 °C in THF (3 mL) was added a solution of enone **5a** (110.4 mg, 0.551 mmol) in THF (3 mL) over 60 min. After stirring at -20 °C for 1 h, the reaction was quenched carefully by the addition of cold MeOH (3 mL, -20 °C). After additional stirring for 1 h at room temp., the solution was concentrated to afford a residue, which was passed through a pad of silica gel (hexane/EtOAc) to furnish alcohol (*R*)-**4a** (80.1 mg, 72%). IR (neat): $\tilde{v} = 3348$, 1496, 1453, 1080, 748, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.45$ (br. s, 1 H), 1.53–1.66 (m, 2 H), 1.74–1.90 (m, 2 H), 2.04–2.16 (m, 1 H), 2.22–2.38 (m, 3 H), 2.69 (t, J = 7.5 Hz, 2 H), 4.34 (br. s, 1

H), 5.53–5.62 (m, 1 H), 7.15–7.22 (m, 3 H), 7.25–7.32 (m, H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.0 (–), 27.0 (–), 31.3 (–), 35.6 (–), 35.7 (–), 75.7 (+), 123.3 (+), 125.9 (+), 128.4 (+), 128.5 (+), 142.1 (–), 146.8 (–) ppm. HRMS (EI): calcd. for C₁₄H₁₈O [M]⁺ 202.1358; found 202.1356.

(*R*,*E*)-2-(3-Phenylpropylidene)cyclopentyl Picolinate [(*R*)-1a]: To an ice-cold solution of (R)-4a (80.1 mg, 0.396 mmol) in CH₂Cl₂ (5 mL) were added DCC (109 mg, 0.528 mmol), DMAP (49.0 mg, 0.401 mmol), and picolinic acid (59.0 mg, 0.479 mmol). The mixture was stirred at room temp. for 2 h and then diluted with Et₂O. The resulting mixture was filtered through a pad of Celite. The filtrate was concentrated to afford a residual oil, which was purified by chromatography on silica gel (hexane/EtOAc) to furnish (R)-1a (120 mg, 99%). ¹H NMR (400 MHz, CDCl₃): δ = 1.66–1.77 (m, 1 H), 1.84–2.07 (m, 3 H), 2.10–2.22 (m, 1 H), 2.29–2.42 (m, 3 H), 2.61-2.76 (m, 2 H), 5.74-5.82 (m, 2 H), 7.13-7.20 (m, 3 H), 7.20-7.27 (m, 2 H), 7.46 (ddd, J = 8, 5, 1 Hz, 1 H), 7.83 (dt, J = 2, 8 Hz, 1 H), 8.08 (dt, J = 8, 1 Hz, 1 H), 8.78 (dm, J = 5 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.8 (-), 27.3 (-), 31.7 (-), 33.1 (-), 35.4 (-), 79.1 (+), 125.1 (+), 125.8 (+), 126.7 (+), 127.1 (+), 128.3 (+), 128.6 (+), 136.9 (+), 141.3 (-), 142.0 (-), 148.7 (-), 150.1 (+), 165.1 (-) ppm. HRMS (EI): calcd. for $C_{20}H_{21}NO_2$ [M]⁺ 307.1572; found 307.1578. The enantiomeric purity (97%ee) was determined by chiral HPLC analysis (Chiralcel OD-H; hexane/ *i*PrOH, 98:2; 0.5 mL/min; 25 °C): $t_R = 40.8$ (*R* isomer) and 46.0 min (S isomer). The reaction was repeated to obtain (R)-1a with 94% ee.

(E)-2-(3-Phenylpropylidene)cyclopentyl Picolinate (rac-1a): To an ice-cold solution of 5a (70.4 mg, 0.352 mmol) and CeCl₃·7H₂O (135 mg, 0.362 mmol) in MeOH (4 mL) was added NaBH₄ (13.0 mg, 0.344 mmol). After stirring at room temp. for 1 h, the solution was diluted with HCl (1 N solution) and Et₂O with vigorous stirring. The organic layer was separated, and the aqueous layer was extracted with $Et_2O(3\times)$. The combined extracts were dried with MgSO₄ and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to furnish alcohol rac-4a (55.4 mg, 80%). The ¹H NMR spectrum was identical with that of (R)-4a. According to the procedure for synthesis of (R)-1a, rac-4a (55.0 mg, 0.272 mmol) was subjected to esterification with picolinic acid (42.0 mg, 0.341 mmol), DCC (74.0 mg, 0.359 mmol), and DMAP (34.0 mg, 0.278 mmol) in CH₂Cl₂ (2 mL) at room temp. for 2 h to furnish rac-1a (73.1 mg, 87%). The ¹H and ¹³C NMR spectra were identical with those of (R)-1a.

Synthesis of Picolinates (R)-1b and rac-1b

(E)-2-(3-Phenylpropylidene)cyclohexanone (5b): According to the procedure for the synthesis of 5a, cyclohexanone (2.30 mL, 22.3 mmol) was converted into the aldol as a mixture of diastereomers through the reaction with 3-phenylpropionaldehyde (2.00 mL, 15.2 mmol), diisopropylamine (6.30 mL, 44.8 mmol), and nBuLi (1.62 m in hexane, 23.0 mL, 37.3 mmol) in THF (50 mL). The aldol was subjected to a reaction with MsCl (1.90 mL, 24.5 mmol), Et₃N (5.10 mL, 36.6 mmol), and DMAP (1.50 g, 12.3 mmol) in CH₂Cl₂ (40 mL) at 0 °C to room temp. for 2 h to furnish **5b** (1.73 g, 53% over two steps). ¹H NMR (300 MHz, CDCl₃): δ = 1.59–1.72 (m, 2 H), 1.75–1.87 (m, 2 H), 2.30–2.48 (m, 6 H), 2.70–2.79 (m, 2 H), 6.63 (tt, *J* = 8, 2 Hz, 1 H), 7.12–7.32 (m, 5 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.4 (-), 23.6 (-), 26.7 (-), 29.8 (-), 34.7 (-), 40.3 (-), 126.2 (+), 128.5 (+), 137.0 (-), 138.0 (+), 141.3 (-), 201.3 (-) ppm. HRMS (EI): calcd. for C₁₅H₁₈O [M]⁺ 214.1358; found 214.1363. The ¹H and ¹³C NMR spectra were consistent with those reported.^[12]

(*R*,*E*)-2-(3-Phenylpropylidene)cyclohexanol [(*R*)-4b]: According to the procedure for the synthesis of (*R*)-4a, a solution of enone **5b** (202 mg, 0.942 mmol) in THF (9 mL) was added over 50 min to a solution of (*S*)-methyl oxazaborolidine (1.0 M in toluene, 0.20 mL, 0.200 mmol) and *N*,*N*-diethylaniline–borane (0.18 mL, 1.01 mmol) in THF (5 mL) at −20 °C. The solution was stirred at −20 °C for 30 min to afford alcohol (*R*)-4b (162 mg, 79%). ¹H NMR (300 MHz, CDCl₃): δ = 1.23–1.62 (m, 5 H), 1.68–1.96 (m, 3 H), 2.26–2.40 (m, 3 H), 2.66 (t, *J* = 8 Hz, 2 H), 4.00–4.08 (m, 1 H), 5.39 (dt, *J* = 1, 7 Hz, 1 H), 7.12–7.20 (m, 3 H), 7.22–7.29 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 23.0 (–), 26.1 (–), 27.2 (–), 28.9 (–), 36.2 (–), 36.3 (–), 73.8 (+), 120.1 (+), 125.8 (+), 128.2 (+), 128.5 (+), 141.7 (–), 142.0 (–) ppm. HRMS (EI): calcd. for C₁₅H₂₀O [M]⁺ 216.1514; found 216.1518.

(R,E)-2-(3-Phenylpropylidene)cyclohexyl Picolinate [(R)-1b]: According to the procedure for the synthesis of (R)-1a, a solution of (*R*)-4b (162 mg, 0.749 mmol), picolinic acid (115.6 mg, 0.939 mmol), DCC (214 mg, 1.04 mmol), and DMAP (91.7 mg, 0.751 mmol) in CH₂Cl₂ (8 mL) was stirred at room temp. for 2 h to furnish (*R*)-1b (231 mg, 96%). ¹H NMR (400 MHz, CDCl₃): δ = 1.28-1.42 (m, 1 H), 1.44-1.64 (m, 2 H), 1.76-1.98 (m, 3 H), 2.09-2.19 (m, 1 H), 2.22–2.40 (m, 3 H), 2.65 (t, J = 8 Hz, 2 H), 5.49– 5.56 (m, 2 H), 7.10-7.18 (m, 3 H), 7.18-7.26 (m, 2 H), 7.46 (ddd, J = 8, 5, 1 Hz, 1 H), 7.82 (dt, J = 1, 8 Hz, 1 H), 8.09 (d, J = 8 Hz, 1 H), 8.79 (dm, J = 5 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.6$ (-), 26.0 (-), 26.7 (-), 28.9 (-), 33.0 (-), 35.9 (-), 77.3 (+), 123.6 (+), 125.0 (+), 125.7 (+), 126.6 (+), 128.2 (+), 128.6 (+), 136.67 (-), 136.86 (+), 141.8 (-), 148.7 (-), 150.0 (+), 164.1 (-) ppm. HRMS (EI): calcd. for C₂₁H₂₃NO₂ [M]⁺ 321.1729; found 321.1729. The enantiomeric purity (86% ee) was determined by chiral HPLC analysis (Chiralcel OD-H; hexane/iPrOH, 98:2; 0.8 mL/min; 25 °C): $t_{\rm R}$ = 29.0 (*R* isomer) and 32.7 min (*S* isomer).

(*E*)-2-(3-Phenylpropylidene)cyclohexanol (*rac*-4b): According to the procedure for the synthesis of *rac*-4a, the reduction of **5b** (183 mg, 0.855 mmol) with NaBH₄ (32.4 mg, 0.856 mmol) was carried out in the presence of CeCl₃·7H₂O (330 mg, 0.885 mmol) in MeOH (9 mL) at room temp. for 1 h to furnish racemic alcohol *rac*-4b (135 mg, 73%). The ¹H and ¹³C NMR spectra were identical with those of (*R*)-4b.

(*E*)-2-(3-Phenylpropylidene)cyclohexyl Picolinate (*rac*-1b): According to the procedure for the synthesis of *rac*-1a, the condensation of *rac*-4b (135 mg, 0.624 mmol) with picolinic acid (99.5 mg, 0.808 mmol) was carried out with DCC (175 mg, 0.848 mmol) and DMAP (73.5 mg, 0.602 mmol) in CH₂Cl₂ (7 mL) at room temp. for 2 h to furnish *rac*-1b (163 mg, 81%). The ¹H and ¹³C NMR spectra were identical with those of (*R*)-1b.

Synthesis of Picolinate rac-1c

(*E*)-2-(2-Methylpropylidene)cyclopentanone (5c): According to the procedure for the synthesis of 5a, cyclopentanone (1.48 mL, 16.7 mmol) was converted into the aldol as a mixture of diastereomers through the reaction with isobutyraldehyde (1.02 mL, 11.1 mmol), diisopropylamine (4.66 mL, 33.2 mmol), and *n*BuLi (1.60 M in hexane, 17.2 mL, 27.5 mmol) in THF (36 mL). To an ice-cold solution of the aldol and Et₃N (4.64 mL, 33.3 mmol) in CH₂Cl₂ (30 mL) was added MsCl (1.72 mL, 22.2 mmol) dropwise. The solution was stirred between 0 °C and room temp. for 2 h and then poured into saturated NaHCO₃ with vigorous stirring. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×). The combined extracts were washed with brine, dried with MgSO₄, and concentrated to afford the corresponding mesylate. To an ice-cold solution of the mesylate in THF (40 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 3.31 mL)

22.2 mmol). The mixture was stirred at room temp. for 1 h and then diluted with HCl (aqueous 1 N solution) and Et₂O with vigorous stirring. The organic layer was separated, and the aqueous layer was extracted with Et₂O (2×). The combined extracts were dried with MgSO₄ and concentrated to afford an oil, which was purified by chromatography on silica gel (hexane/EtOAc) to furnish **5c** (715 mg, 47% over three steps). ¹H NMR (400 MHz, CDCl₃): δ = 1.04 (d, *J* = 6 Hz, 6 H), 1.94 (tt, *J* = 8, 8 Hz, 2 H), 2.33 (t, *J* = 8 Hz, 2 H), 2.41–2.55 (m, 1 H), 2.60 (dt, *J* = 2.5, 7 Hz, 2 H), 6.38 (dt, *J* = 10, 2.5 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.9 (–), 21.8 (+), 26.6 (–), 29.2 (+), 38.6 (–), 135.0 (–), 142.6 (+), 207.9 (–) ppm.

(*E*)-2-(2-Methylpropylidene)cyclopentanol (*rac*-4c): According to the procedure for the synthesis of *rac*-4a, the reduction of enone **5c** (89.6 mg, 0.648 mmol) with NaBH₄ (25.0 mg, 0.661 mmol) and CeCl₃·7H₂O (250 mg, 0.671 mmol) in MeOH (7 mL) gave alcohol *rac*-4c (70.2 mg, 77%). ¹H NMR (400 MHz, CDCl₃): δ = 0.966 (d, J = 7 Hz, 3 H), 0.971 (d, J = 7 Hz, 3 H), 1.54–1.73 (m, 2 H), 1.75–1.91 (m, 2 H), 2.14–2.26 (m, 1 H), 2.30–2.46 (m, 2 H), 4.33–4.41 (m, 1 H), 5.36 (dm, J = 9 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.2 (–), 22.6 (+), 22.8 (+), 26.7 (–), 28.9 (+), 35.6 (–), 75.8 (+), 131.8 (+), 143.6 (–) ppm.

(E)-2-(2-Methylpropylidene)cyclopentyl Picolinate (rac-1c): According to the procedure for the synthesis of rac-1a, the condensation of rac-4c (180 mg, 1.28 mmol) with picolinic acid (198.6 mg, 1.61 mmol) in CH₂Cl₂ (12 mL) was carried out with DCC (348.4 mg, 1.69 mmol) and DMAP (155.5 mg, 1.27 mmol) at room temp. for 1 h to furnish picolinate rac-1c (291 mg, 92%). IR (neat): $\tilde{v} = 1714, 1304, 1245, 1127 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): δ = 0.95 (d, J = 7 Hz, 3 H), 0.96 (d, J = 7 Hz, 3 H), 1.69–1.85 (m, 1 H), 1.85–2.11 (m, 3 H), 2.21–2.54 (m, 3 H), 5.54 (dm, J = 9.5 Hz, 1 H), 5.76 (tm, J = 4 Hz, 1 H), 7.43 (ddd, J = 8, 5, 1 Hz, 1 H), 7.80 (dt, J = 2, 8 Hz, 1 H), 8.07 (dm, J = 8 Hz, 1 H), 8.75 (dm, J = 5 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.5 (+), 22.6 (+), 22.9 (-), 27.1 (-), 29.2 (+), 33.1 (-), 79.3 (+), 125.1 (+), 126.6 (+), 135.4 (+), 136.9 (+), 138.1 (-), 148.8 (-), 150.0 (+), 165.0 (-) ppm. HRMS (EI): calcd. for C₁₅H₁₉NO₂ [M]⁺ 245.1416; found 245.1420.

Synthesis of Picolinate rac-1d

(*E*)-2-Benzylidenecyclohexanol (*rac*-4d): According to the procedure for the synthesis of *rac*-4a, the reduction of commercially available enone **5d** (160.5 mg, 0.862 mmol) with NaBH₄ (33.1 mg, 0.875 mmol) and CeCl₃·7H₂O (323 mg, 0.876 mmol) in MeOH (9 mL) gave alcohol *rac*-4d (144.1 mg, 89%). IR (neat): $\tilde{v} = 3347$, 1445, 1076, 738, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.36$ – 1.68 (m, 4 H), 1.76–1.91 (m, 1 H), 1.92–2.03 (m, 1 H), 2.03–2.14 (m, 1 H), 2.24 (br. s, 1 H), 2.71 (dt, *J* = 13.5, 5 Hz), 4.17–4.24 (m, 1 H), 6.51 (s, 1 H), 7.14–7.23 (m, 3 H), 7.25–7.33 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 23.2$ (–), 27.0 (–), 27.4 (–), 36.6 (–), 73.7 (+), 120.8 (+), 126.2 (+), 128.1 (+), 128.9 (+), 137.7 (–), 144.4 (–) ppm. The ¹H and ¹³C NMR spectra were identical with those reported.^[20]

(*E*)-2-Benzylidenecyclohexyl Picolinate (*rac*-1d): According to the procedure for the synthesis of *rac*-1a, the condensation of *rac*-4d (144.1 mg, 0.765 mmol) with picolinic acid (122.6 mg, 0.996 mmol) in CH₂Cl₂ (4 mL) was carried out with DCC (205.7 mg, 0.997 mmol) and DMAP (94.0 mg, 0.769 mmol) at room temp. for 2 h to furnish picolinate *rac*-1d (202.3 mg, 90%). IR (neat): $\tilde{v} = 1738$, 1715, 1583, 1301, 1243, 1133 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.54$ -1.75 (m, 3 H), 1.85–2.12 (m, 3 H), 2.40 (dt, *J* = 14, 6 Hz, 1 H), 2.67 (dt, *J* = 14, 6 Hz, 1 H), 5.71 (t, *J* = 5.5 Hz, 1 H), 6.60 (s, 1 H), 7.46 (ddd, *J* = 7.5, 4.5, 1 Hz, 1 H), 7.84 (dt, *J* =

2, 7.5 Hz, 1 H), 8.16 (d, J = 7.5 Hz, 1 H), 8.79 (d, J = 4.5 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 23.0$ (-), 27.1 (-), 27.2 (-), 33.4 (-), 77.0 (+), 123.7 (+), 125.1 (+), 126.5 (+), 126.7 (+), 128.1 (+), 129.0 (+), 136.9 (+), 137.2 (-), 139.1 (-), 148.7 (-), 150.1 (+), 164.1 (-) ppm. HRMS (EI): calcd. for C₁₉H₁₉NO₂ [M]⁺ 293.1416; found 293.1423.

General Procedure for Allylation To Afford (*R*)-[1-(Cyclopent-1-en-1-yl)propane-1,3-diyl]dibenzene [(*R*)-2aA]

Allylation with Cu(acac)₂: (see Table 2, Entry 1). To an ice-cold suspension of Cu(acac)₂ (281.3 mg, 1.07 mmol) in THF (7 mL) was added PhMgBr (1.05 M in THF, 2.00 mL, 2.10 mmol) slowly. The mixture was stirred at 0 °C for 60 min and then cooled to -40 °C. A solution of picolinate (*R*)-1a (220.0 mg, 0.716 mmol, 94%*ee*) in THF (3 mL) was added. The resulting mixture was warmed to -5 °C over 2 h to afford (*R*)-2aA (149.5 mg, 80%). The enantiomeric purity (95%*ee*) was determined by chiral HPLC analysis.

Allylation with CuBr·Me₂S: (see Table 2, Entry 2). To an ice-cold suspension of CuBr·Me₂S (20.4 mg, 0.0992 mmol) in THF (1 mL) was added PhMgBr (0.91 M in THF, 0.23 mL, 0.21 mmol) slowly. The mixture was stirred at 0 °C for 30 min and then cooled to -40 °C. A solution of picolinate (R)-1a (30.3 mg, 0.0986 mmol, 97%ee) in THF (1 mL) was added. The resulting mixture was warmed to $-10 \,^{\circ}\text{C}$ over 1 h to give (*R*)-2aA (23.0 mg, 89%). $[a]_{\text{D}}^{21} =$ +27 (c = 0.12, CHCl₃). IR (neat): $\tilde{v} = 3025$, 1602, 1494, 1452, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.76-1.84$ (m, 2 H), 2.00-2.25 (m, 4 H), 2.27-2.39 (m, 2 H), 2.43-2.62 (m, 2 H), 3.32 (t, J = 7 Hz, 1 H), 5.52 (s, 1 H), 7.10-7.23 (m, 6 H), 7.23-7.35 (m, 6 H), 7.23-7.35 (m, 6 H))4 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.3 (-), 32.4 (-), 33.7 (-), 34.1 (-), 35.8 (-), 47.2 (+), 123.9 (+), 125.8 (+), 126.2 (+), 128.0 (+), 128.4 (+), 128.5 (+), 142.6 (-), 143.9 (-), 147.3 (-) ppm. HRMS (EI): calcd. for C₂₀H₂₂ [M]⁺ 262.1722; found 262.1725. The enantiomeric purity (94% ee) was determined by chiral HPLC analysis (Chiralcel OJ-H; hexane/iPrOH, 99.6:0.4; 0.3 mL/min; 25 °C): $t_{\rm R} = 34.4$ (S isomer) and 39.4 min (R isomer).

Allylation Products

(*R*)-1-[1-(Cyclopent-1-en-1-yl)-3-phenylpropyl]-4-methylbenzene [(*R*)-2aB]: (see Table 2, Entry 3). Colorless oil (80% yield). IR (neat): $\tilde{v} = 1604$, 1512, 1496, 1454, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.72-1.84$ (m, 2 H), 1.97–2.23 (m, 4 H), 2.33 (s, 3 H), 2.27–2.35 (m, 2 H), 2.51 (t, *J* = 8 Hz, 2 H), 3.29 (t, *J* = 8 Hz, 1 H), 5.50 (s, 1 H), 7.05–7.20 (m, 6 H), 7.23–7.29 (m, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.1$ (+), 23.3 (–), 32.4 (–), 33.7 (–), 34.1 (–), 35.8 (–), 46.8 (+), 123.7 (+), 125.7 (+), 127.9 (+), 128.3 (+), 128.5 (+), 129.0 (+), 135.6 (–), 140.9 (–), 142.7 (–), 147.5 (–) ppm. HRMS (EI): calcd. for C₂₁H₂₄ [M]⁺ 276.1878; found 276.1882. The enantiomeric purity (97%*ee*) was determined by chiral HPLC analysis (Chiralcel OJ-H; hexane/*i*PrOH, 99.6:0.4; 0.3 mL/min; 25 °C): *t*_R = 25.1 (*S* isomer) and 31.7 min (*R*-isomer).

(*R*)-1-[1-(Cyclopent-1-en-1-yl)-3-phenylpropyl]-2-methylbenzene [(*R*)-2aC]: (see Table 2, Entry 4). Colorless oil (87% yield). $[a]_{D}^{21} = -4 (c = 0.47, CHCl_3)$. IR (neat): $\tilde{v} = 1603, 1454, 754, 729, 699 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl_3): $\delta = 1.72-1.86$ (m, 2 H), 1.98–2.07 (m, 1 H), 2.07–2.14 (m, 2 H), 2.23 (s, 3 H), 2.15–2.26 (m, 1 H), 2.28–2.35 (m, 2 H), 2.48–2.63 (m, 2 H), 3.60 (t, J = 7 Hz, 1 H), 5.47 (s, 1 H), 7.06–7.21 (m, 6 H), 7.23–7.29 (m, 3 H) ppm. ¹³C NMR (100 MHz, CDCl_3): $\delta = 19.6$ (+), 23.2 (–), 32.3 (–), 33.6 (–), 34.0 (–), 35.6 (–), 42.1 (+), 124.1 (+), 125.66 (+), 125.71 (+), 126.0 (+), 126.5 (+), 128.3 (+), 128.4 (+), 130.2 (+), 136.2 (–), 141.8 (–), 142.5 (–), 146.5 (–) ppm. HRMS (EI): calcd. for C₂₁H₂₄ [M]⁺ 276.1878; found 276.1871. The enantiomeric purity (90%*ee*) was

determined by chiral HPLC analysis (Chiralcel OJ-H; hexane/ *i*PrOH; 92:8; 0.3 mL/min; 25 °C): $t_{\rm R}$ = 16.5 (*R* isomer) and 17.8 min (*S* isomer).

(*R*)-1-[1-(Cyclopent-1-en-1-yl)-3-phenylpropyl]-4-methoxybenzene [(*R*)-2aD]: (see Table 2, Entry 5). Colorless oil (91% yield). $[a]_{27}^{27}$ = +27 (*c* = 0.47, CHCl₃). IR (neat): \tilde{v} = 1609, 1507, 1246, 1176, 1039 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 1.69–1.85 (m, 2 H), 1.93–2.23 (m, 4 H), 2.24–2.38 (m, 2 H), 2.50 (t, *J* = 8 Hz, 2 H), 3.26 (t, *J* = 7 Hz, 1 H), 3.79 (s, 3 H), 5.47 (s, 1 H), 6.82 (d, *J* = 8 Hz, 2 H), 7.03–7.19 (m, 5 H), 7.20–7.26 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.2 (–), 32.3 (–), 33.6 (–), 34.0 (–), 35.8 (–), 46.2 (+), 55.2 (+), 113.6 (+), 123.5 (+), 125.6 (+), 128.2 (+), 128.4 (+), 128.8 (+), 135.9 (–), 142.6 (–), 147.6 (–), 157.9 (–) ppm. HRMS (EI): calcd. for C₂₁H₂₄O [M]⁺ 292.1827; found 292.1825. The enantiomeric purity (91%*ee*) was determined by chiral HPLC analysis (Chiralcel OD-H; hexane/*i*PrOH, 99.8:0.2; 0.4 mL/min; 25 °C): *t*_R = 24.7 (*S* isomer) and 26.6 min (*R* isomer).

(*R*)-1-[1-(Cyclopent-1-en-1-yl)-3-phenylpropyl]-2-methoxybenzene [(R)-2aE]: (see Table 2, Entry 6). Colorless oil (82% yield). $[a]_{D}^{20} =$ +12 (c = 0.26, CHCl₃). IR (neat): $\tilde{v} = 1599$, 1492, 1241, 1031, 751, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 1.71–1.87 (m, 2 H), 1.94–2.05 (m, 1 H), 2.09–2.20 (m, 3 H), 2.32 (tt, J = 7, 2.5 Hz, 2 H), 2.49 (ddd, J = 14, 10, 6 Hz, 1 H), 2.58 (ddd, J = 14, 10, 6 Hz, 1 H), 3.80 (s, 3 H), 3.92 (t, J = 7 Hz, 1 H), 5.50 (s, 1 H), 6.87 (d, J = 8 Hz, 1 H), 6.92 (dt, J = 1, 8 Hz, 1 H), 7.12–7.20 (m, 5 H), 7.22–7.28 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.3 (-), 32.5 (-), 34.20 (-), 34.22 (-), 35.9 (-), 38.6 (+), 55.6 (+), 110.7 (+), 120.6 (+), 123.8 (+), 125.6 (+), 126.9 (+), 127.8 (+), 128.2 (+), 128.4 (+), 132.4 (-), 143.0 (-), 147.0 (-), 157.4 (-) ppm. HRMS (EI): calcd. for C₂₁H₂₄O [M]⁺ 292.1827; found 292.1828. The enantiomeric purity (85% ee) was determined by chiral HPLC analysis (Chiralcel OD-H; hexane/iPrOH, 99.9:0.1; 1.0 mL/min; 25 °C): $t_{\rm R} = 9.5$ (S isomer) and 10.3 min (R isomer).

(*R*)-1-[1-(cyclopent-1-en-1-yl)-3-phenylpropyl]-4-fluorobenzene [(*R*)-**2aF**]: (see Table 2, Entry 7). Colorless oil (86% yield). $[a]_D^{21} = +22$ (*c* = 0.36, CHCl₃). IR (neat): $\tilde{v} = 1602$, 1508, 1498, 1223, 1156 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.73$ –1.87 (m, 2 H), 1.96–2.25 (m, 4 H), 2.27–2.36 (m, 2 H), 2.50 (t, *J* = 8 Hz, 2 H), 3.30 (t, *J* = 8 Hz, 1 H), 5.50 (s, 1 H), 6.98 (tt, *J* = 8, 2.5 Hz, 2 H), 7.09–7.21 (m, 5 H), 7.23–7.30 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 23.3$ (–), 32.4 (–), 33.7 (–), 34.0 (–), 35.9 (–), 46.4 (+), 115.1 (d, *J* = 21 Hz, +), 124.1 (+), 125.8 (+), 128.4 (+), 128.5 (+), 129.3 (d, *J* = 8 Hz, +), 139.5 (d, *J* = 3 Hz, –), 142.4 (–), 147.2 (–), 161.4 (d, *J* = 242 Hz, –) ppm. HRMS (EI): calcd. for C₂₀H₂₁F [M]⁺ 280.1627; found 280.1621. The enantiomeric purity (90%*ee*) was determined by chiral HPLC analysis (Chiralcel OJ-H; hexane/*i*PrOH, 99.6:0.4; 1.0 mL/min; 25 °C): $t_R = 8.7$ (*S* isomer) and 10.8 min (*R* isomer).

(*R*)-[1-(Cyclohex-1-en-1-yl)propane-1,3-diyl]dibenzene [(*R*)-2bA]: (see Table 2, Entry 8). Colorless oil (89% yield). $[a]_D^{21} = -3$ (c = 0.26, CHCl₃). IR (neat): $\tilde{v} = 3025$, 1602, 1494, 1451, 699 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.44$ –1.62 (m, 4 H), 1.65–1.90 (m, 2 H), 1.92–2.22 (m, 4 H), 2.42–2.62 (m, 2 H), 3.13 (t, J = 7 Hz, 1 H), 5.62 (s, 1 H), 7.08–7.32 (m, 10 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 22.8$ (–), 23.2 (–), 25.6 (–), 26.7 (–), 34.3 (–), 34.6 (–), 52.6 (+), 121.6 (+), 125.6 (+), 126.0 (+), 127.9 (+), 128.1 (+), 128.2 (+), 128.4 (+), 139.8 (–), 142.6 (–), 144.2 (–) ppm. HRMS (EI): calcd. for C₂₁H₂₄ [M]⁺ 276.1878; found 276.1875. The enantiomeric purity (86% *ee*) was determined by chiral HPLC analysis (Chiralcel OD-H; hexane/*i*PrOH, 100:0; 0.8 mL/min; 20 °C): $t_R = 13.2$ (*S* isomer) and 14.1 min (*R* isomer). **1-[1-(Cyclohex-1-en-1-yl)-3-phenylpropyl]-4-methylbenzene** (*rac-***2bB**): (see Table 1, Entry 12). Colorless oil (82% yield). IR (neat): $\tilde{v} = 1511, 1496, 1453, 698 \text{ cm}^{-1}.$ ¹H NMR (400 MHz, CDCl₃): $\delta = 1.48-1.56$ (m, 4 H), 1.67–1.87 (m, 2 H), 1.94–2.17 (m, 4 H), 2.32 (s, 3 H), 2.46–2.62 (m, 2 H), 3.10 (t, J = 7.0 Hz, 1 H), 5.62 (s, 1 H), 7.06–7.30 (m, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.1$ (+), 22.8 (–), 23.1 (–), 25.5 (–), 26.6 (–), 34.2 (–), 34.6 (–), 52.1 (+), 121.5 (+), 125.7 (+), 127.9 (+), 128.3 (+), 128.5 (+), 128.9 (+), 135.5 (–), 140.1 (–), 141.3 (–), 142.8 (–) ppm. HRMS (EI): calcd. for C₂₂H₂₆ [M]⁺ 290.2035; found 290.2035.

(*R*)-1-[1-(Cyclohex-1-en-1-yl)-3-phenylpropyl]-4-methoxybenzene [(*R*)-2bD]: (see Table 2, Entry 9). Colorless oil (87% yield). $[a]_{2}^{D1} = -2 (c = 0.498, CHCl_3)$. IR (neat): $\tilde{v} = 1608, 1509, 1246, 1177, 1039 cm^{-1}$. ¹H NMR (400 MHz, CDCl_3): $\delta = 1.46-1.60$ (m, 4 H), 1.66-1.86 (m, 2 H), 1.92-2.16 (m, 4 H), 2.44-2.59 (m, 2 H), 3.08 (t, J = 8 Hz, 1 H), 3.80 (s, 3 H), 5.61 (s, 1 H), 6.83 (dm, J = 9 Hz, 2 H), 7.09-7.20 (m, 4 H), 7.23-7.29 (m, 3 H) ppm. ¹³C NMR (100 MHz, CDCl_3): $\delta = 22.7$ (-), 23.1 (-), 25.4 (-), 26.6 (-), 34.2 (-), 34.7 (-), 51.6 (+), 55.3 (+), 113.5 (+), 121.4 (+), 125.7 (+), 128.3 (+), 128.5 (+), 128.8 (+), 136.4 (-), 140.2 (-), 142.8 (-), 157.9 (-) ppm. HRMS (EI): calcd. for C₂₂H₂₆O [M]⁺ 306.1984; found 306.1981. The enantiomeric purity (80% *ee*) was determined by chiral HPLC analysis (Chiralcel OD-H; hexane/*i*PrOH, 99.9:0.1; 1.0 mL/min; 20 °C): $t_{\rm R} = 16.7$ (*S* isomer) and 22.5 min (*R* isomer).

(R)-1-[1-(Cyclohex-1-en-1-yl)-3-phenylpropyl]-2-methoxybenzene [(R)-2bE]: (see Table 2, Entry 10). Colorless oil (71 % yield). $[a]_D^{20} =$ +6 (c = 0.36, CHCl₃). IR (neat): $\tilde{v} = 1598$, 1490, 1460, 1241 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 1.44–1.64 (m, 4 H), 1.76–1.87 (m, 2 H), 1.87–1.99 (m, 1 H), 2.00–2.14 (m, 3 H), 2.47 (ddd, J =14, 10, 6 Hz, 1 H), 2.59 (ddd, J = 14, 10, 6 Hz, 1 H), 3.71 (t, J = 8 Hz, 1 H), 3.79 (s, 3 H), 5.61 (s, 1 H), 6.82-6.88 (m, 1 H), 6.91 (t, J = 7 Hz, 1 H), 7.11–7.21 (m, 5 H), 7.22–7.28 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.8 (-), 23.2 (-), 25.5 (-), 27.7 (-), 34.3 (-), 35.1 (-), 43.6 (+), 55.6 (+), 110.7 (+), 120.5 (+), 121.3 (+), 125.6 (+), 126.8 (+), 127.6 (+), 128.2 (+), 128.5 (+), 133.0 (+), 139.5 (+), 143.2 (+), 157.7 (+) ppm. HRMS (EI): calcd. for C₂₂H₂₆O [M]⁺ 306.1984; found 306.1986. The enantiomeric purity (83%ee) was determined by chiral HPLC analysis (Chiralcel OD-H; hexane/ *i*PrOH, 99.9:0.1; 1.0 mL/min; 20 °C): $t_{\rm R}$ = 9.9 (S isomer) and 11.3 min (*R* isomer).

[1-(Cyclopent-1-en-1-yl)-2-methylpropyl]benzene (*rac*-2cA): (see Table 1, Entry 13). Colorless oil (96% yield). IR (neat): $\tilde{v} = 1493$, 1451, 702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.71$ (d, J = 6 Hz, 3 H), 0.96 (d, J = 6 Hz, 3 H), 1.77 (tt, J = 8, 8 Hz, 2 H), 2.06–2.23 (m, 3 H), 2.23–2.35 (m, 2 H), 3.00 (d, J = 10 Hz, 1 H), 5.52 (s, 1 H), 7.13–7.21 (m, 3 H), 7.22–7.29 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.3$ (+), 22.0 (+), 23.3 (–), 30.1 (+), 32.2 (–), 32.9 (–), 56.7 (+), 124.5 (+), 125.9 (+), 128.1 (+), 128.4 (+), 143.7 (–), 146.8 (–) ppm. HRMS (EI): calcd. for C₁₅H₂₀ [M]⁺ 200.1565; found 200.1559.

1-[1-(Cyclopent-1-en-1-yl)-2-methylpropyl]-4-methylbenzene (*rac*-**2cB**): (see Table 1, Entry 14). Colorless oil (87% yield). IR (neat): $\tilde{v} = 1512$, 1465, 1384, 815 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.71$ (d, J = 6.5 Hz, 3 H), 0.94 (d, J = 6.5 Hz, 3 H), 1.72–1.83 (m, 2 H), 2.07–2.36 (m, 5 H), 2.31 (s, 3 H), 2.97 (d, J = 10 Hz, 1 H), 5.50 (s, 1 H), 7.03–7.12 (m, 4 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.1$ (+), 21.3 (+), 22.0 (+), 23.3 (–), 30.1 (+), 32.2 (–), 32.9 (–), 56.3 (+), 124.2 (+), 128.3 (+), 128.8 (+), 135.2 (–), 140.6 (–), 147.0 (–) ppm. HRMS (EI): calcd. for C₁₆H₂₂ [M]⁺ 214.1722; found 214.1722.

(Cyclohex-1-en-1-ylmethylene)dibenzene (*rac*-2dA): (see Table 1, Entry 15). Colorless oil (89% yield). ¹H NMR (400 MHz, CDCl₃): δ

= 1.49–1.68 (m, 4 H), 1.89–1.98 (m, 2 H), 1.99–2.08 (m, 2 H), 4.62 (s, 1 H), 5.16–5.24 (m, 1 H), 7.11–7.22 (m, 6 H), 7.23–7.30 (m, 4 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.6 (–), 23.3 (–), 25.6 (–), 29.1 (–), 59.0 (+), 125.54 (+), 125.58 (+), 126.1 (+), 128.2 (+), 129.4 (+), 140.0 (–), 143.1 (–) ppm. The ¹H NMR spectrum was identical with that reported.^[21]

1-[Cyclohex-1-en-1-yl(phenyl)methyl]-4-methylbenzene (*rac*-2dB): (see Table 1, Entry 16). Colorless oil (82% yield). IR (neat): $\tilde{v} =$ 1511, 1448, 800, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta =$ 1.51–1.66 (m, 4 H), 1.88–1.98 (m, 2 H), 1.98–2.08 (m, 2 H), 2.31 (s, 3 H), 4.58 (s, 1 H), 5.17–5.22 (m, 1 H), 7.00–7.11 (m, 4 H), 7.11–7.20 (m, 3 H), 7.23–7.29 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 21.1 (+), 22.6 (–), 23.3 (–), 25.6 (–), 29.1 (–), 58.6 (+), 125.31 (+), 125.35 (+), 126.1 (+), 128.2 (+), 128.9 (+), 129.3 (+), 129.4 (+), 135.6 (–), 140.05 (–), 140.11 (–), 143.3 (–) ppm. HRMS (EI): calcd. for C₂₀H₂₂ [M]⁺ 262.1722; found 262.1723.

(*R*)-[3-(Cyclopent-1-en-1-yl)heptyl]benzene [(*R*)-2aG]: (see Scheme 5). Colorless oil (91% yield). IR (neat): $\tilde{v} = 1500$, 1455, 1260, 1032, 804, 698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.87$ (t, J = 7 Hz, 3 H), 1.15–1.40 (m, 6 H), 1.58–1.72 (m, 2 H), 1.85 (quintet, J = 7 Hz, 2 H), 2.12–2.27 (m, 3 H), 2.27–2.36 (m, 2 H), 2.40–2.60 (m, 2 H), 5.36–5.41 (m, 1 H), 7.13–7.19 (m, 3 H), 7.23–7.30 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.2$ (+), 22.9 (–), 23.5 (–), 29.8 (–), 31.0 (–), 32.1 (–), 33.5 (–), 34.0 (–), 35.6 (–), 41.0 (+), 125.1 (+), 125.6 (+), 128.3 (+), 128.5 (+), 143.2 (–), 147.1 (–) ppm.

Determination of Configuration of (R)-2aA

(S)-Methyl 5-Oxo-6,8-diphenyloctanoate (7): To an ice-cold solution of (R)-2aA (43.9 mg, 0.167 mmol) in CCl₄ (2 mL), MeCN (2 mL), and H₂O (3 mL) were added NaIO₄ (150 mg, 0.701 mmol) and RuCl₃·nH₂O (ca. 16 mg). The mixture was stirred at room temp. for 7 h and then diluted with CH₂Cl₂ (10 mL). The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2×). The combined organic layers were dried by MgSO₄ and concentrated to afford a residue, which was passed through a pad of Celite with Et₂O to remove the remaining Ru species. The filtrate was concentrated to afford a crude oil, which was passed through a short column and then used for the next reaction without further purification. To an ice-cold solution of the oil in Et₂O (2 mL) was added a solution of CH₂N₂ in Et₂O (2 mL). After 5 min at 0 °C, the solution was concentrated to afforded a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to furnish 7 [9.7 mg, 18% from (R)-2aA]. ¹H NMR (400 MHz, CDCl₃): δ = 1.68–1.86 (m, 2 H), 1.94–2.07 (m, 1 H), 2.08–2.26 (m, 2 H), 2.26–2.45 (m, 3 H), 2.49 (tm, J = 7 Hz, 2 H), 3.53–3.61 (m, 1 H), 3.57 (s, 3 H), 7.08–7.13 (m, 2 H), 7.15–7.19 (m, 3 H), 7.22– 7.28 (m, 3 H), 7.28–7.34 (m, 2 H) ppm. $^{13}\mathrm{C}$ NMR (100 MHz, $CDCl_3$): $\delta = 18.9$ (-), 32.9 (-), 33.4 (-), 40.6 (-), 51.6 (+), 58.2 (+), 126.0 (+), 127.4 (+), 128.44 (+), 128.48 (+), 128.53 (+), 129.1 (+), 138.7 (-), 141.6 (-), 173.6 (-), 209.4 (-) ppm.

(S)-1,3-Diphenylpropan-1-ol (8): To a solution of 7 (15.3 mg, 0.0472 mmol) in CH₂Cl₂ (5 mL) were added K₂CO₃ (72.2 mg, 0.522 mmol) and *meta*-chloroperoxybenzoic acid (*m*CPBA, 77% purity, 92.3 mg, 0.412 mmol). The reaction was carried out at room temp. for 40 h and then quenched by the addition of aqueous Na₂S₂O₃ and CH₂Cl₂. The organic layer was separated, and the aqueous phase was extracted with EtOAc (2×). The combined extracts were dried with MgSO₄ and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to afford a residue, which was used for the following reaction without further purification. A mixture of the product and aqueous KOH (1.8 N, 0.10 mL) in MeOH (1 mL) was stirred at room temp. over-

night and then diluted with H₂O and Et₂O. The organic layer was separated, and the aqueous phase was extracted with Et₂O (3×). The combined extracts were dried with MgSO₄ and concentrated. The residue was purified by chromatography on silica gel (hexane/ EtOAc) to furnish **8** (5.2 mg, 52% over two steps). $[a]_D^{23} = -13$ (c = 0.17, CHCl₃); {cf. $[a]_D^{20} = -27.1$ (c = 0.52, CHCl₃) for the *S* enantiomer with >99% *ee*}.^[17] ¹H NMR (400 MHz, CDCl₃): $\delta = 1.84$ (br. s, 1 H), 1.97–2.20 (m, 2 H), 2.62–2.81 (m, 2 H), 4.70 (dd, J = 8, 5.5 Hz, 1 H), 7.15–7.22 (m, 3 H), 7.25–7.32 (m, 3 H), 7.33–7.37 (m, 4 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 32.2$ (–), 40.6 (–), 74.0 (+), 125.95 (+), 126.01 (+), 127.7 (+), 128.48 (+), 128.52 (+), 128.62 (+), 141.8 (–), 144.6 (–) ppm. The ¹H and ¹³C NMR spectra were consistent with those reported.^[17]

Determination of the Configuration of (R)-2bA

(S)-Methyl 6-Oxo-7,9-diphenylnonanoate (9): A stream of ozone in oxygen was slowly bubbled into a solution of (R)-2bA (43.1 mg, 0.156 mmol) in CH₂Cl₂ (8 mL) at -78 °C until the solution turned to pale blue (5 min). The excess amount of ozone that remained in the solution was removed by bubbling argon at -78 °C for 5 min, and PPh₃ (52.0 mg, 0.198 mmol) was added. The solution was gradually warmed to room temp., stirred overnight, and concentrated to afford a residue that was passed through a short column of silica gel (hexane/EtOAc) to furnish a crude aldehyde, which was used for the next reaction without further purification. To a solution of the crude aldehyde in acetone (5 mL) was added Jones reagent (4 M solution, 9 drops) at 0 °C. After 30 min at 0 °C, iPrOH was added to quench the excess amount of reagent. After concentration, the residue was passed through a short column, and the filtrate was concentrated to afford a residue, which was used directly for the next reaction without further purification. To an icecold solution of the residue in Et₂O (2 mL) was added a solution of CH₂N₂ in Et₂O (2 mL). After 5 min, the solution was concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to furnish ester 9 [21.3 mg, 40% from (*R*)-2bA]. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.38-1.66$ (m, 4 H), 1.94-2.10 (m, 1 H), 2.15-2.25 (m, 2 H), 2.28-2.44 (m, 3 H), 2.45-2.56 (m, 2 H), 3.54-3.65 (m, 1 H), 3.62 (s, 3 H), 7.06-7.21 (m, 5 H), 7.21–7.36 (m, 5 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.2 (-), 24.3 (-), 33.42 (-), 33.45 (-), 33.8 (-), 41.3 (-), 51.6 (+), 58.2 (+), 126.0 (+), 127.4 (+), 128.44 (+), 128.45 (+), 128.52 (+), 129.0 (+), 138.8 (-), 141.6 (-), 173.9 (-), 209.8 (-) ppm.

(S)-1,3-Diphenylpropan-1-ol (8): According to the above procedure, a mixture of **9** (21.3 mg, 0.0629 mmol), K₂CO₃ (105 mg, 0.760 mmol), and *m*CPBA (77% purity, 128.3 mg, 0.0.572 mmol) in CH₂Cl₂ (6 mL) was stirred at room temp. for 48 h to afford the ester product, which was subjected to hydrolysis with aqueous KOH (1.8 N, 0.15 mL) in MeOH (2 mL) at room temp. overnight to furnish **8** (4.8 mg, 36% from **9**). $[a]_{D}^{25} = -23$ (c = 0.25, CHCl₃); {cf. $[a]_{D}^{20} = -27.1$ (c = 0.52, CHCl₃) for the *S* enantiomer with >99% *ee*}.^[17]

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectra of the intermediates, the picolinate substrates, allylation products, and compounds **7–9**.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

 For reviews, see: a) J. F. Teichert, B. L. Feringa, Angew. Chem. 2010, 122, 2538; Angew. Chem. Int. Ed. 2010, 49, 2486–2528;

b) B. Breit, Y. Schmidt, Chem. Rev. 2008, 108, 2928–2951; c)
S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard,
B. L. Feringa, Chem. Rev. 2008, 108, 2824–2852; d) A.
Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez,
Chem. Rev. 2008, 108, 2796–2823; e) C. A. Falciola, A.
Alexakis, Eur. J. Org. Chem. 2008, 3765–3780; f) H. Yorimitsu,
K. Oshima, Angew. Chem. 2005, 117, 4509; Angew. Chem. Int.
Ed. 2005, 44, 4435–4439.

- [2] For recent publications, see: a) R. Shintani, K. Takatsu, M. Takeda, T. Hayashi, Angew. Chem. 2011, 123, 8815; Angew. Chem. Int. Ed. 2011, 50, 8656–8659; b) H. Ohmiya, U. Yokobori, Y. Makida, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 2895–2897; c) H. Ohmiya, N. Yokokawa, M. Sawamura, Org. Lett. 2010, 12, 2438–2440; d) H. Ohmiya, Y. Makida, T. Tanaka, M. Sawamura, J. Am. Chem. Soc. 2008, 130, 17276–17277; e) D. Soorukram, P. Knochel, Angew. Chem. 2006, 118, 3768; Angew. Chem. Int. Ed. 2006, 45, 3686–3689; f) P. Demel, M. Keller, B. Breit, Chem. Eur. J. 2006, 12, 6669–6683; g) B. Breit, P. Demel, D. Grauer, C. Studte, Chem. Asian J. 2006, 1, 586–597; h) B. Breit, P. Demel, C. Studte, Angew. Chem. 2004, 116, 3874; Angew. Chem. Int. Ed. 2004, 43, 3786–3789.
- [3] a) Q. Wang, Y. Kobayashi, Org. Lett. 2011, 13, 6252–6255; b)
 Y. Kiyotsuka, Y. Kobayashi, Tetrahedron 2010, 66, 676–684; c)
 Y. Kiyotsuka, Y. Kobayashi, J. Org. Chem. 2009, 74, 7489–7495; d) Y. Kiyotsuka, Y. Katayama, H. P. Acharya, T. Hyodo,
 Y. Kobayashi, J. Org. Chem. 2009, 74, 1939–1951; e) Y. Kiyotsuka, H. P. Acharya, Y. Katayama, T. Hyodo, Y. Kobayashi, Org. Lett. 2008, 10, 1719–1722.
- [4] a) C. Feng, Y. Kobayashi, J. Org. Chem. 2013, 78, 3755–3766;
 b) Y. Kaneko, Y. Kiyotsuka, H. P. Acharya, Y. Kobayashi, Chem. Commun. 2010, 46, 5482–5484.
- [5] T. B. RajanBabu, W. A. Nugent, D. F. Taber, P. J. Fagan, J. Am. Chem. Soc. 1988, 110, 7128–7135.
- [6] C. C. Tseng, S. D. Paisley, H. L. Goering, J. Org. Chem. 1986, 51, 2884–2891.
- [7] M. C. Warner, A. Nagendiran, K. Bogár, J.-E. Bäckvall, Org. Lett. 2012, 14, 5094–5097.
- [8] Defined as (% *ee* of **2**) \times 100/(% *ee* of **1**).
- [9] For previous preparations of compounds that correspond to the γ products, see: a) C. S. Yi, D. W. Lee, *Organometallics* 2010, 29, 1883–1885; b) J. Almena, F. Foubelo, M. Yus, *Tetrahedron* 1997, 53, 5563–5572.
- [10] a) J. K. Crandall, J. P. Arrington, J. Hen, J. Am. Chem. Soc. 1967, 89, 6208–6213; b) S. Nakamura, T. Hayakawa, T. Nishi, Y. Watanabe, T. Toru, *Tetrahedron* 2001, 57, 6703–6711; c) K. Shimoda, N. Kubota, H. Hamada, M. Kaji, T. Hirata, *Tetrahedron: Asymmetry* 2004, 15, 1677–1679.
- [11] E. J. Corey, C. J. Helal, Angew. Chem. 1998, 110, 2092; Angew. Chem. Int. Ed. 1998, 37, 1986–2012.
- [12] a) J. R. Falck, A. He, L. M. Reddy, A. Kundu, D. K. Barma, A. Bandyopadhyay, S. Kamila, R. Akella, R. Bejot, C. Mioskowski, *Org. Lett.* **2006**, *8*, 4645–4647; b) A. Yanagisawa, R. Goudu, T. Arai, *Org. Lett.* **2004**, *6*, 4281–4283.
- [13] The diagnostic olefin protons in the ¹H NMR spectrum for *rac*-**3aA** and its *Z* isomer (4:1) are at δ = 4.93 (tt, *J* = 7, 2.5 Hz, 0.8 H) and 5.47 (tm, *J* = 7 Hz, 0.2 H) ppm. The diagnostic olefin protons in the ¹H NMR spectrum for *rac*-**3bA** and its *Z* isomer (4:1) are at δ = 4.66 (t, *J* = 7 Hz, 0.8 H) and 5.43 (t, *J* = 7 Hz, 0.2 H) ppm. The major absorbance at δ = 4.93 and 4.66 ppm was coincident with the minor signals seen in the spectra of *rac*-**2aA** and -**2bA**, respectively. On the other hand, the signals of the olefin protons of *rac*-**3aG** and its *Z* isomer were overlapped at δ = 5.12–5.32 (m, 1 H) ppm.
- [14] The olefin and/or allylic signals of *rac*-3aB, -3bB, -3cA, and -3cB in the ¹H NMR spectra were assigned by analogy to *rac*-3aA and -3bA.
- [15] Although the RuCl₃-catalyzed oxidation of (R)-2aA with NaIO₄ followed by esterification with CH₂N₂ suffered from a low yield of ketone 7 as a result of the difficult separation from the side product(s), the Baeyer–Villiger oxidation of 7 and sub-

sequent hydrolysis gave a sufficient quantity of **8** to determine the specific rotation. To avoid this problem, an ozonolysis reaction followed by a Jones oxidation was applied to (R)-**2bA** to produce ketone **9** in moderate yield. A further transformation furnished **8** as well.

- [16] Z. Cao, Z. Liu, Y. Liu, H. Du, J. Org. Chem. 2011, 76, 6401-6406.
- [17] The stereochemistry of the product was speculated. The *ee* value and, thus, the C. T. could not be determined by HPLC analysis, even with six attempted chiral columns.
- [18] a) N. Yoshikai, E. Nakamura, *Chem. Rev.* 2012, *112*, 2339–2372; b) N. Yoshikai, S.-L. Zhang, E. Nakamura, *J. Am. Chem. Soc.* 2008, *130*, 12862–12863.
- [19] To compare leaving groups, the substitution of the allylic mesylate and acetate with the PhMgBr/Cu(acac)₂ reagent was attempted. However, the mesylation of alcohol *rac*-4a gave a mixture of products, most likely because of the instability of the allylic mesylate. On the other hand, the acetate, which was prepared from *rac*-4a, showed no reactivity toward the 2:1 PhMgBr/Cu(acac)₂ reagent under the conditions presented in Table 1, Entry 4.
- [20] A. Martinez-Grau, D. P. Curran, *Tetrahedron* **1997**, *53*, 5679–5698.
- [21] E. Wenkert, T. W. Ferreira, Organometallics **1982**, *1*, 1670–1673.

Received: May 28, 2013

Published Online: August 27, 2013