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Vasoactive intestinal peptide receptor-1 (VIPR1) is a class B
GPCR expressed predominantly in lung, small intestine, thymus
and brain. VIPR1 and its endogenous agonist VIP (28 AA polypep-
tide) have been reported to be overexpressed in several tumors.1,

2 The density of VIPR1 in certain tumors is so high that labeled
ligands like (125IVIP) are used in tumor imaging and diagnostic pro-
cedures.3 Thus expression data alone suggests a possible role for
VIPR1 in cancer. Consequently, VIPR1 is viewed as a potential ther-
apeutic intervention point for drug discovery efforts. In fact,
several peptidic VIP-based VIPR modulators have been reported
to exhibit antiproliferative effects on various cancer cell lines4

including breast,5 colon,6 glioblastoma,7 pancreatic8 and NSCLC.9

In addition to inhibition of cancer cell proliferation, the VIPR1
antagonist SNH has been reported to potentiate the effect of vari-
ous chemotherapeutic agents on the NSCLC NCI-H727 cell line.6b

Further, the VIP hybrid antagonist (neurotensin6–11VIP7–28) has
been shown to reduce tumor volume in vivo in mice.6a Encouraged
by the literature data as well as in-house siRNA experiments,10 we
decided to investigate VIPR1 as an oncology target. All the reported
ll rights reserved.

. Harikrishnan).
VIPR1 antagonists are peptide-based with poor drug-like proper-
ties. To our knowledge, there are no literature reports on small
molecule antagonists of VIPR1. In this communication, identifica-
tion and initial optimization of two chemical series of VIPR1 antag-
onists are described.

High throughput screening (HTS) of the Bristol-Myers Squibb
compound collection was carried out using a VIPR1 HTRF cAMP
assay in 1536 well format.11 Active compounds were retested in
1
VIPR1 cAMP IC50 = 0.74 µM

2
VIPR1 cAMP IC50 = 12µM

Figure 1. Representative compounds from biaryl and cyanothiophene series.
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Scheme 1. Preparation of biaryl compounds. Reagents and conditions: (a) Ispropylmethylketone, NaOEt, EtOH, rt, 5 h, 40% yield; (b) Diethylmalonate, NaOEt, EtOH, rt, 12 h,
60% yield; (c) KOH, EtOH, reflux, 1 h; (d) Cu2O, MeCN, reflux, 1.5 h, 90% yield (two steps); (e) HClO4, Ac2O, EtOAc, rt, 5 h, 91% yield; (f) cyclohexyl(iPr)NLi, EtOAc, �78 �C, 1.5 h,
79% yield; (g) DDQ, dioxane, reflux, 17 h, 51% yield; (h) LAH, THF, rt, 1 h, 78% yield; (i) DDQ, DCM, rt, 1.5 h, 65% yield; (j) Tf2O, pyridine, DCM, 0 �C-rt, 55% yield; (k) ArB(OH)2,
[Pd(dppf)Cl2], K3PO4, dioxane, 95 �C, 24 h; (l) NaBH4, EtOH, rt, 4 h, 10–36% yield (two steps).

Table 1
VIPR1 cAMP IC50 data for biaryl series

OH

Z

2

3
4

Compd. Z VIPR1 cAMP IC50 (lM)

13 2-Me >50
14 3-CF3 >50
15 3-CN >50
16 2-Ph 3.2
17 4-OMe 1.3
18 2-OMe 0.82

1 4-F 0.74
19 4-Ph 0.68
20 H 0.39
21 3-NMe2 0.31
22 4-Me 0.30
23 4-Cl 0.29
24 3-Me 0.24
25 3-Ph 0.21
26 3-OMe 0.20
27 3-SMe 0.17
28 Naphthyl (2,3-fused) 0.18
29 Naphthyl (3,4-fused) 0.12
30 3-Cl 0.10
31 3,4-Dimethyl 0.081
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dose–response mode in 384 well format.12 This resulted in the iden-
tification of a biaryl series and a cyanothiophene series as exempli-
fied by compounds 1 and 2, respectively (Fig. 1).13 Both series were
pursued to explore SAR and improve potency against VIPR1.

A variation of a reported synthetic route was utilized to access
compounds in the biaryl series having various 2-aryl rings (Scheme
1).14 Condensation of isopropylmethylketone with aldehyde 3 fol-
lowed by Michael addition of diethylmalonate gave ketone 4.
Saponification and subsequent decarboxylation of diester 4 gave
keto acid 5. Phenol 8 was then obtained via dehydrative cyclization
of acid 5, followed by ring opening of lactone 6 with the anion of
ethyl acetate and subsequent oxidation/aromatization. Reduction
of ester 8 to the corresponding primary alcohol followed by Swern
oxidation gave aldehyde 9. Sulfonylation of phenol 9 using triflic
anhydride yielded the corresponding aryl triflate 10. Suzuki cou-
pling of aldehyde 10 with various aryl boronic acids followed by
reduction of aldehyde 11 to alcohol 12 was carried out in parallel.15

All final compounds were purified by reverse phase HPLC.
The SAR of various substitutions on the 2-phenyl ring are sum-

marized in Table 1. Mesomeric or hyperconjugative electron
releasing substituents at the 3- and 4-positions of the 2-aryl ring
were preferred over substitution at 2-position (3 > 4� 2). Overall,
3-chloro and 3,4-dimethyl compounds exhibited the best potency
against VIPR1.

To determine the potency of compounds on cell proliferation,
three cell lines, namely H727, H1299 and Calu6 were chosen based
on high levels of VIPR1 expression. Further, siRNA mediated knock
down of VIPR1 in these three cell lines resulted in robust reduction
of intracellular cAMP and significant inhibition of cell proliferation
(data not shown). In spite of the improvement in potency in the
cAMP assay, no significant inhibition of cell proliferation was ob-
served in any of the three cell lines at concentrations of compounds
up to 10 lM. In order to minimize the impact of compounds being
potentially sequestered by albumin, the cell proliferation assays
were carried out in as low as 2% serum.16

The synthetic approach employed to access various amides in
the cyanothiophene series is shown in Scheme 2.17
The SAR for various amides in the cyanothiophenes is summa-
rized in Table 2. Larger acyl groups led to improvement in VIPR1
antagonism both in acyclic as well as cyclic examples (see methyl
compound 32 to isobutyl compound 34, as well as cyclopropyl
compound 35 to cyclohexyl compound 38). In addition, moving
the phenyl ring farther from the acyl carbon led to significant
improvements in potency. Phenethyl compound 41, the most po-
tent compound in this series, was explored further by substituting



Table 3
VIPR1 cAMP IC50 data for various substituted and constrained analogs of the
phenethyl amide compound 41

S

CN

N
H

R

O

Compd. R= VIPR1 cAMP IC50 (lM)

42

Me

11

43
Me

0.75

44

Me

0.48

45
OMe

0.61

46

OMe

0.41

47

Cl

1.2

48 S 1.9

49 O 3.8

50 HN 50

51 12

52 17

53
O

9.1

Table 2
VIPR1 cAMP IC50 data for various amides in the cyanothiophene series

S

CN

N
H

R

O

Compd. R= VIPR1 cAMP IC50 (lM)

32 13

2 12

33 3.4

34 1.9

35 2.7

36 1.8

37 0.47

38 0.47

39 15

40 1.6

41 0.29
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Scheme 2. Preparation of cyanothiophene analogs. Reagents and conditions: (a)
T3P, Et3N, DCM, 0 �C to rt, 5–69% yield; (b) CDI, DIPEA, DCM, rt, 15–30% yield.
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the phenyl ring as well as by constraining the ethylene linker. The
results are summarized in Table 3. Unfortunately, none of the com-
pounds showed improved potency over the phenethyl compound
41. Furthermore, despite the improvements in potency, none of
the compounds showed significant antiproliferative effects in the
cell lines tested (H727, H1299 and Calu6).

In summary, the Bristol-Myers Squibb compound collection was
screened, and series of biaryl alcohols and cyanothiophenes were
identified as VIPR1 antagonists. SAR studies using parallel synthe-
sis led to modest improvements in potencies (in both series) in the
cAMP assay. However, none of the compounds showed significant
antiproliferative effects in the cell lines tested. Further improve-
ments in potency may be required to elicit the desired antiprolifer-
ative response.
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