Supporting Information

For

Pd-Catalyzed C–H Lactonization for Expedient Synthesis of Biaryl Lactones and Total Synthesis of Cannabinol

Yan Li, Yan-Jun Ding, Jian-Yong Wang, Yi-Ming Su and Xi-Sheng Wang*

Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China

Tabel of Contents

General Information	S2
Tables of the Optimization of Reaction Conditions	S3
Solvent Screening without Ligand	S3
Oxidant Screening without Ligand	S3
Base Screening without Ligand	S4
Ligand Screening	S4
Solvent Screening	S5
Base Screening	S5
Ligand Screening	S6
Temperature Screening	S6
Amount of Reagents Screening	S7
Oxidant Screening	S7
Experimental Procedures	S8
General Procedure for Preparation of diarylcarboxylic acid	S8
General Procedure of Pd(OAc) ₂ -Catalyzed C-H Activation/C-O Cy	clization S14
Discussion of Mechanism	S25
References	S26
¹ H and ¹³ C NMR Spectra	S28

General Information:

Solvents were obtained from Sinopharm and used directly without further purification. NMR spectra were recorded on Bruker-400 (400 MHz for ¹H; 100 MHz for ¹³C) instruments internally referenced to SiMe₄ signal. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight). Iodobenzene diacetate and *N*-acetyl amino acid were obtained from Darui Finechamical and used as received. Potassium acetate was purchased from Sinopharm and used as received. Palladium acetate was purchased from Strem.

Table 1. Solvent Screening without Ligand

		O Pd(OAc) ₂ OH KHCO ₃ (<i>i</i> PhI(OAc) ₂ H Solvent, 1	(10 mol%) 2.0 equiv.) (1.5 equiv.) 00 °C, 24h		
	1a		2a		
entry	Solvent	yield (%)	entry	Solvent	yield (%)
1	THF	14	5	t-AmOH	7
2	MeCN	6	6	<i>n</i> -hexane	8
3	toluene	12	7	dioxane	23
4	DMF	10	8	DCE	10

4DVIP108DCE10a Unless otherwise noted, the reaction conditions were as follows: 1a (0.2 mmol), Pd(OAc)_2 (0.02mmol, 10 mol%), PhI(OAc)_2 (0.3 mmol, 1.5 equiv.), KHCO_3 (0.4 mmol, 2.0 equiv.), solvent (2 mL), 100 $^{\circ}$ C, 24 h. b Isolated yield.

Tahle 🤈	Ovidant Screening	without Ligan	a,b
Table 2.	Oxidant Screening	without Ligand	1,.

O Pd(OAc) ₂ (10 mol%) OH HCO ₃ (2.0 equiv.) Oxidant (1.5 equiv.) dioxane, 100 °C, 24h					
	1a		2a		
entry	Oxidant	yield (%)	entry	Oxidant	yield (%)
1	PhI(OAc) ₂	23	8	Oxone	0
2	NFSI	6	9	TEMPO	0
3	selectfluor	7	10	NBS	0
4	BPO	14	11	I 2	trace
5	DDQ	3	12	Cu(OAc) ₂	0
6	$K_2S_2O_8$	0	13	AgOAc	0
7	(NH ₄) ₂ S ₂ O ₈	0	14	DMSO	0

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol%), oxidant (0.3 mmol, 1.5 equiv.), KHCO₃ (0.4 mmol, 2.0 equiv.), dioxane (2 mL), 100 °C, 24 h. ^{*b*} Isolated yield.

Table 3. Base Screening without Ligand^{a,b}

		O Pd(OAc) ₂ (OH Base (2.0 -H Phl(OAc) ₂ (dioxane, 10	10 mol%) 0 equiv.) 1.5 equiv.) 0 °C, 24h		
	1a		2a		
entry	Base	yield (%)	entry	Base	yield (%)
1	KHCO ₃	23	16	КОН	5
2	NaHCO ₃	21	17	NaOH	7
3	K ₂ CO ₃	8	18	<i>t-</i> BuOK	13
4	Na ₂ CO ₃	15	19	<i>t</i> -BuONa	17
5	Li ₂ CO ₃	12	20	<i>t-</i> BuOLi	18
6	Cs ₂ CO ₃	7	21	<i>i</i> -Pr₂NH	3
7	Ag ₂ CO ₃	10	22	Pipedine	4
8	KH ₂ PO ₄	13	23	NMM	8
9	K ₂ HPO ₄	14	24	Et ₃ N	14
10	K ₃ PO ₄ •3H ₂ O	7	25	DABCO	4
11	CsF	5	26	Pyridine	14
12	KF•2H ₂ O	8	27	DBU	6
13	AgOAc	11	28	DMAP	4
14	NaOAc	15	29	DMF	10
15	KOAc	8	30	HMTA	15

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol%), PhI(OAc)₂ (0.3 mmol, 1.5 equiv.), base (0.4 mmol, 2.0 equiv.), dioxane (2 mL), 100 °C, 24 h. ^b Isolated yield.

 Table 4. Ligand Screening I^{a,b}

OH Pd(OAc) ₂ (10 mol%) KHCO ₃ (2.0 equiv.) PhI(OAc) ₂ (1.5 equiv.) Ligand (0.3 equiv.) dioxane, 100 °C, 24h						
	1a		za			
entry	Ligand	yield (%)	entry	Ligand	yield (%)	
1	-	23	8	Boc-Ala-OH	14	
2	HOAc	9	9	Boc-Phe-OH	20	
3	PivOH	9	10	Boc-Val-OH	15	
4	1-AdCO ₂ H	22	11	Boc-Ser-OH	10	
5	Ac-Gly-OH	8	12	Boc-Leu-OH	16	
6	Ac-Phe-OH	20	13	Boc-Ile-OH	19	
7	Ac-Leu-OH	20	14	Cbz-Phe-OH	15	

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), Pd $(OAc)_2$ (0.02 mmol), 10 mol%), PhI $(OAc)_2$ (0.3 mmol), 1.5 equiv.), KHCO₃ (0.4 mmol), 2.0 equiv.), Ligand (0.06 mmol), 0.3 equiv.), dioxane (2 mL), 100 °C, 24 h. ^{*b*} Isolated yield.

Table 5. Solvent Screening with Ligand^{a,b}

Pd(OAc) ₂ (10 mol%) OH KHCO ₃ (2.0 equiv.) PhI(OAc) ₂ (1.5 equiv.) Ac-Leu-OH (0.3 equiv.) solvent, 100 °C, 24h						
	la Solvert		Za	Salvant		
entry	Solvent	yield (%)	entry	Solvent	yield (%)	
1	dioxane	23	16	<i>n</i> -hexane	10	
2	THF	13	17	<i>c</i> -hexane	10	
3	toluene	14	18	MeNO ₂	9	
4	DME	4	19	MeCN	20	
5	PhNO ₂	9	20	acetone	16	
6	xylene	8	21	EtOAc	21	
7	PhCI	8	22	CHCI₃	17	
8	DMA	14	23	DCE	8	
9	DMF	15	24	CCl ₄	9	
10	DMSO	18	25	Cl ₂ CHCHCl ₂	11	
11	MeOH	21	26	(HOCH ₂) ₂	trace	
12	EtOH	12	27	HOAc	14	
13	<i>i</i> -PrOH	8	28	TFA	20	
14	<i>t</i> -BuOH	32	29	NMP	12	
15	<i>t</i> -AmOH	27				

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol%), PhI(OAc)₂ (0.3 mmol, 1.5 equiv.), KHCO₃ (0.4 mmol, 2.0 equiv.), Ac-Leu-OH (0.06 mmol, 0.3 equiv.), solvent (2 mL), 100 °C, 24 h. ^{*b*} Isolated yield.

 Table 6. Base Screening with Ligand^{a,b}

O Pd(OAc) ₂ (10 mol%) Base (2.0 equiv.) OH Base (2.0 equiv.) PhI(OAc) ₂ (1.5 equiv.) Ac-Leu-OH (0.3 equiv.) <i>t</i> -BuOH, 100 °C, 24h						
	1a		2a	l		
entry	Base	yield (%)	entry	Base	yield (%)	
1	KHCO3	32	16	KOH	63	
2	NaHCO ₃	21	17	NaOH	30	
3	K ₂ CO ₃	26	18	<i>t</i> -BuOK	63	
4	Na ₂ CO ₃	53	19	<i>t-</i> BuONa	45	
5	Li ₂ CO ₃	11	20	<i>t</i> -BuOLi	16	
6	Cs ₂ CO ₃	21	21	TBAF•3H ₂ O	18	
7	Ag ₂ CO ₃	22	22	Pipedine	trace	
8	KH ₂ PO ₄	17	23	NMM	5	
9	K_2HPO_4	53	24	Et ₃ N	trace	
10	K ₃ PO ₄ •3H ₂ O	32	25	DABCO	8	
11	CsF	64	26	Pyridine	7	
12	KF•2H ₂ O	52	27	DBU	6	
13	AgOAc	29	28	DMAP	trace	
14	NaOAc	50	29	DMF	9	
15	KOAc	67	30	HMTA	trace	

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol%), PhI(OAc)₂ (0.3 mmol, 1.5 equiv.), base (0.4 mmol, 2.0 equiv.), Ac-Leu-OH (0.06 mmol, 0.3 equiv.), *t*-BuOH (2 mL), 100 $^{\circ}$ C, 24 h. ^{*b*} Isolated yield.

Table 7. Ligand Screening II^{a,b}

		O Pd(OAc)₂ (→ KOAc (2.0 OH PhI(OAc)₂ (H Ligand (0.1 <i>t</i> -BuOH, 10	10 mol%) 0 equiv.) 1.5 equiv.) 3 equiv.) 0 °C, 24h		
	1a		2	а	
entry	Ligand	yield (%)	entry	Ligand	yield (%)
1	-	18	27	Boc-Thr-OH	20
2	IMes	14	28	Boc-Trp-OH	trace
3	IPr	21	29	Boc-Val-OH	55
4	BQ	10	30	Boc-HPhe-OH	27
5	18-C-6	7	31	Boc- ^t Leu-OH	27
6	HOAc	26	32	Boc-PhGly-OH	28
7	PivOH	28	33	Cbz-Ala-OH	34
8	1-AdCO ₂ H	25	34	Cbz-Arg-OH	32
9	5-Oxo-Pro-OH	8	35	Cbz-Phe-OH	26
10	Ac-Ala-OH	66	36	Cbz-Ser-OH	28
11	Ac-CyGly-OH	54	37	Fmoc-Ile-OH	33
12	Ac-Leu-OH	67	38	Fmoc-Leu-OH	29
13	Ac-Gly-OH	67	39	Fmoc-Phe-OH	28
14	Ac-lle-OH	58	40	Fmoc-Pro-OH	26
15	Ac- ⁿ Val-OH	65	41	Fmoc-Thr-OH	trace
16	Ac- ^t Leu-OH	20	42	Fmoc-Trp-OH	trace
17	Ac-Phe-OH	60	43	Fmoc-Val-OH	31
18	Ac-Val-OH	49	44	Fmoc-Ala-OH	32
19	Ac-Cys-OH	7	45	Piv-Ala-OH	13
20	Ac-Tyr-OH	trace	46	Piv-CyGly-OH	11
21	Boc-Ala-OH	26	47	Piv-Ile-OH	8
22	Boc-Gly-OH	28	48	Piv-Leu-OH	11
23	Boc-lle-OH	25	49	Piv-″Val-OH	12
24	Boc-Leu-OH	18	50	Piv- ^t Leu-OH	7
25	Boc-Phe-OH	48	51	Piv-Val-OH	11
26	Boc-Ser-OH	19			

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), $Pd(OAc)_2$ (0.02 mmol, 10 mol%), $PhI(OAc)_2$ (0.3 mmol, 1.5 equiv.), KOAc (0.4 mmol, 2.0 equiv.), Ligand (0.06 mmol, 0.3 equiv.), *t*-BuOH (2 mL), 100 °C, 24 h. ^b Isolated yield.

Table 8. Temperature Screening with Ligand^{*a,b*}

		Pd(OAc) ₂ (1 KOAc (2.0 PhI(OAc) ₂ (1 Ac-Leu-OH (0 <i>t</i> -BuOH, 1	0 mol%) equiv.) .5 equiv.)).3 equiv.) Г, 24h		
	1a			2a	
entry	Temperature(°C)	yield (%)	entry	Temperature(°C)	yield (%)
1	40	19	7	100	67
2	50	41	8	110	67
3	60	74	9	120	70
4	70	77	10	130	69
5	80	80	11	140	65
6	90	78			

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol%), Phl(OAc)₂ (0.3 mmol, 1.5 equiv.), KOAc (0.4 mmol, 2.0 equiv.), Ac-Leu-OH (0.06 mmol, 0.3 equiv.), *t*-BuOH (2 mL), Temperature, 24 h. ^{*b*} Isolated yield.

Table 9. Amount of Reagents Screening^{*a,b*}

	H H H H H H H H H H H H H H H H H H H						
	1a		2a				
entry	PhI(OAc) ₂ (equiv.)	KOAc(equiv.)	Ac-Leu-OH(equiv.)	<i>t-</i> BuOH (mL)	yield (%)		
1 ^c	2.0	2.0	0.30	2	81		
2 ^c	1.5	3.0	0.30	2	76		
3 ^c	1.5	2.0	0.30	0.5	52		
4 ^c	1.5	2.0	0.30	1	63		
5 ^c	1.5	2.0	0.30	3	79		
6 ^c	1.5	2.0	0.30	4	90		
7	1.5	2.0	0.15	4	84		
8	1.2	2.0	0.15	4	75		
9	2.0	2.0	0.15	4	88		
10	0	2.0	0.15	4	trace		
11	1.5	1.2	0.15	4	82		
12	1.5	3.0	0.15	4	80		
13	1.5	0	0.15	4	17		
14	1.5	2.0	0.05	4	79		
15	1.5	2.0	0.10	4	78		
16 ^d	1.5	2.0	0.15	4	trace		
17	1.5	2.0	0.15	5	83		
18	1.5	2.0	0.15	6	86		
19 ^e	2.0	2.0	0.15	4	91		
20 ^{e,f}	2.0	2.0	0.15	4	93		
21 ^{e,f,g}	2.0	2.0	0.09	4	91		

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 5 mol%), PhI(OAc)₂, KOAc, Ac-Leu-OH, *t*-BuOH, 80 °C, 24 h. ^b Isolated yield. ^c 10 mol% Pd(OAc)₂ was used. ^d No Pd(OAc)₂. ^e 12 h. ^f Ac-Gly-OH was used as Ligand. ^g 3 mol% Pd(OAc)₂ was used.

Table 10. Oxidant Screening with Ligand^{a,b}

		H Ac-Gly-OH <i>t</i> -BuOH (4 m)	(5 mol%) 2.0 equiv.) 0 equiv.) (0.15 equiv.) L), 80 °C, 12h		
entry	Oxidant	yield (%)	entry	Oxidant	yield (%)
1	BPO	40	13	NCS	0
2	Cu(OAc) ₂	0	14	NBS	0
3	BQ	0	15	NIS	0
4	AgOAc	0	16	NFSI	trace
5	Ag ₂ CO ₃	0	17	NFTPT	0
6	Ag ₂ O	0	18	DDQ	0
7	CAN	15	19	CuCl ₂	0
8	K ₂ S ₂ O ₈	3	20	V ₂ O ₅	0
9	(<i>t</i> -BuO) ₂	0	21	$(NH_4)_2S_2O_8$	0
10	BzOO ^t Bu	trace	22	TEMPO	0
11	PhI(TFA) ₂	9	23	FeCl ₃	0
12	Oxone	trace	24	Ce(SO ₄) ₂	trace

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 5 mol%), PhI(OAc)₂ (0.4 mmol, 2.0 equiv.), KOAc (0.4 mmol, 2.0 equiv.), Ac-Leu-OH (0.06 mmol, 0.15 equiv.), *t*-BuOH (4 mL), 80 °C, 12 h.

Preparation of Substrates

Substrate **1a** was purchased from Accela ChemBio Co. Ltd. and used as received. Substrates **1b**¹, **1c**², **1g**¹, **1h**³, **1j**², **1p**¹, **1q**¹, **1s**², **1t**², **1v**⁴, **1w**⁴ were synthesized through the known methods. The other diarylcarboxylic acids were prepared via Suzuki cross coupling.

General procedure of synthesis of diarylcarboxylic acid (1d-1f, 1k-1n, 1r, 1u, 1ab)²

Methyl 2-iodobenzoate (2.5 mL, 17 mmol) was added to arylboronic acid (22 mmol) and Na₂CO₃ (3.6 g, 34 mmol) dissolved in THF (68 mL) and water (34 mL) mixed solvents. The reaction mixture was degassed three times and charged with Argon, after which PdCl₂(PPh₃)₂ (8 mol%, 1 g, 1.4 mmol) was added. The reaction mixture was heated to 60 °C overnight. The resulting reaction mixture was cooled to room temperature and added to water, the product was extracted with dichloromethane three times. The combined organic phases were dried with Na₂SO₄ and the solvent was evaporated via vacuo. The product was purified by column chromatography to give a colourless liquid. The methyl 2-arylbenzoate was dissolved in a solution of 3.4 g NaOH in 50 mL H₂O and 50 mL MeOH and stirred at 50 °C for 6 h. MeOH was removed under vacuum and the reation mixture was diluted with H₂O, and washed with Et₂O. The aqueous phase was acidified with 3N HCl, then extracted with Et₂O three times. The combined organic phase was washed with H₂O and brine, dried over Na₂SO₄, filtered and the filtration was evaporated under reduced pressure to give the desired product as a solid.

2-(4-fluoro)phenylbenzoic acid (1d):

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.92 (m, 1H), 7.56 (td, *J* = 7.6, 1.2 Hz, 1H), 7.43 (td, *J* = 7.7, 1.1 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.26 (m, 2H), 7.12 – 7.02 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 162.5 (d, *J* = 246.3 Hz), 142.7, 137.2 (d, *J* = 3.3 Hz), 132.4, 131.4, 131.0, 130.2 (d, *J* = 8.⁵)

Hz), 129.3, 127.5, 115.1 (d, J = 21.5 Hz). HRMS (EI-TOF) calcd. for C₁₃H₉O₂F (M⁺): 216.0587, found: 216.0580.

2-(4-chloro)phenylbenzoic acid (1e):

¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.8, 1.2 Hz, 1H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 7.37 (td, J = 7.6, 1.3 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.25 (dd, J = 7.7, 1.0 Hz, 1H), 7.21 – 7.15 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 142.5, 139.7, 133.7,

132.5, 131.3, 131.1, 130.0, 129.1, 128.4, 127.7. HRMS (ESI) calcd. for C₁₃H₈O₂Cl ([M-H]⁻) 2132.0207, found 231.0213.

2-(4-bromo)phenylbenzoic acid (1f):

¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.8, 1.1 Hz, 1H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.38 (td, J = 7.6, 1.3 Hz, 1H), 7.26 (dd, J = 7.7, 0.9 Hz, 1H), 7.16 – 7.10 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 142.5, 140.2, 132.4,

131.3, 131.2, 1311, 130.3, 129.0, 127.8, 121.9. HRMS (ESI) calcd. for C₁₃H₈O₂Br ([M-H]⁻) 274.9702, found 274.9705.

2-(3-methoxy)phenylbenzoic acid (1k):

¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 7.8, 1.1 Hz, 1H), 7.47 (td, J = 7.6, 1.4 Hz, 1H), 7.34 (td, J = 7.6, 1.3 Hz, 1H), 7.30 (dd, J = 7.7, 0.9 Hz, 1H), 7.24 – 7.18 (m, 1H), 6.88 – 6.76 (m, 3H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 159.4, 143.2, 142.5, 132.1, 131.2, 130.7, 129.6, 129.2, 127.4, 121.2, 114.3, 113.2, 55.4.

HRMS (ESI) calcd. for C14H11O3 ([M-H]⁻) 2227.0703, found 227.0707.

2-(3-fluoro)phenylbenzoic acid (11):

¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.8, 1.3 Hz, 1H), 7.50 (td, J = 7.6, 1.3 Hz, 1H), 7.38 (td, J = 7.7, 1.2 Hz, 1H), 7.35 – 7.21 (m, 2H), 7.06 – 6.93 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 162.6 (d, J = 245.7 Hz), 143.4 (d, J = 8.0 Hz), 142.4 (d, J = 2.0 Hz), 132.4, 131.2, 131.0, 129.6 (d, J = 8.4 Hz), 129.3, 127.8, 124.5 (d, J

= 2.9 Hz), 115.7 (d, J = 22.1 Hz), 114.4 (d, J = 21.0 Hz). HRMS (ESI) calcd. for C₁₃H₈O₂F ([M-H]⁻) 215.0503, found 215.0509.

2-(3-chloro)phenylbenzoic acid (1m):

¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.8, 1.1 Hz, 1H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 7.37 (td, J = 7.6, 1.3 Hz, 1H), 7.29 – 7.20 (m, 4H), 7.12 (dt, J = 6.8, 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 143.1, 142.3, 134.0, 132.5, 131.3, 131.1, 129.3, 129.1, 128.6,

127.9, 127.6, 127.0. HRMS (ESI) calcd. for C₁₃H₈O₂Cl ([M-H]⁻)

231.0207, found 231.0213.

2-(3-trifluoromethyl)phenylbenzoic acid (1n):

¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.8, 1.2 Hz, 1H), 7.57 – 7.48 (m, 3H), 7.44 – 7.35 (m, 3H), 7.27 (dd, J = 7.6, 1.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 142.4, 142.0, 132.7, 132.0 (d, J = 1.1 Hz), 131.4, 131.3, 130.5 (q, J = 32.3 Hz), 129.0, 128.5, 128.1, 125.5 (q, J = 3.8 Hz), 124.3 (d, J = 272.4 Hz), 124.2 (q, J =

3.8 Hz). HRMS (ESI) calcd. for C14H8O2F3 ([M-H]⁻) 265.0471, found 265.0472.

2-(2-fluoro)phenylbenzoic acid (1r):

¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 7.8, 1.1 Hz, 1H), 7.53 (td, J = 7.6, 1.4 Hz, 1H), 7.39 (td, J = 7.7, 1.3 Hz, 1H), 7.31 – 7.19 (m, 3H), 7.11 (td, J = 7.5, 1.2 Hz, 1H), 6.99 (ddd, J = 9.2, 8.2, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 159.6 (d, J = 245.8 Hz),

137.3, 132.7, 131.8, 131.0, 130.5 (d, J = 3.4 Hz), 129.8 (d, J = 0.6 Hz), 129.5 (d, J = 8.2 Hz), 129.0 (d, J = 15.9 Hz), 128.1, 124.1 (d, J = 3.6 Hz), 115.3 (d, J = 22.3 Hz). HRMS (ESI) calcd. for C₁₃H₈O₂F ([M-H]⁻) 215.0503, found 215.0509.

2-(thiophen-2-yl)benzoic acid (1u):

¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.44 (dtd, *J* = 8.9, 7.7, 1.3 Hz, 2H), 7.35 (ddd, *J* = 7.4, 7.2, 1.6 Hz, 1H), 7.28 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.00 (ddd, *J* = 8.5, 4.3, 2.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 141.7, 135.3, 132.0, 131.9, 130.6, 130.3, 127.9, 127.4, 126.9, 126.2. HRMS (ESI) calcd. for C₁₁H₇O₂S ([M-H]⁻) 203.0161, found 203.0157.

2-(o-tolyl)-3-methylbenzoic acid (1ab):

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.7 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.28 – 7.15 (m, 3H), 6.95 (d, J = 7.3 Hz, 1H), 1.97 (s, 3H), 1.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 142.5, 139.7, 137.7, 135.7, 134.3, 129.8, 129.5,

128.4, 128.2, 127.4, 127.2, 125.7, 20.4, 19.8. HRMS (EI-TOF) calcd. for C₁₅H₁₄O₂ (M⁺): 226.0994, found: 224.0988.

General procedure of synthesis of diarylcarboxylic acid (1i, 10)⁵

To a solution of 2-iodobenzoic acid (2.48 g, 10 mmol), K₂CO₃ (2.76 g, 20 mmol), TBAI (369 mg, 1 mmol) in THF (60 mL) was added PMBCl (1.63 mL, 12 mmol). The mixture was heated to reflux for 6 h. After cooling to room temperature, filtered off the insolubles, the filtrate was diluted with water, and extracted with dichloromethane for 3 times, the combined organic extracts was washed with Na₂S₂O₃ (sat.) and brine, dried over Na₂SO₄. The product was purified by column chromatography after removed the solvent. p-methoxybenzyl 2-iodobenzoate was added to arylboronic acid (12 mmol) and Na₂CO₃ (1.8 g, 17 mmol) dissolved in THF (34 mL) and water (17 mL) mixed solvents. The reaction mixture was degassed three times and charged with Argon, after which PdCl₂(PPh₃)₂ (8 mol%, 0.5 g, 0.7 mmol) was added. The reaction mixture was heated to 60 °C overnight. The resulting reaction mixture was cooled to room temperature and added to water, the product was extracted with dichloromethane three times. The combined organic phases were dried with Na₂SO₄ and the solvent was evaporated via vacuo. The product was purified by column chromatography to give a colourless liquid. The *p*-methoxybenzyl 2-arylbenzoate was dissolved in 35 mL dichloromethane, and trifluoroacetic acid (2.8 mL, 35 mmol) was added and the solution was stirred at room temperature for 1 h after which time the reaction mixture was evaporated to dryness. The residue was purified by column chromatography.

2-(4-ethoxycabonyl)phenylbenzoic acid (1i):

¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.02 (m, 2H), 7.99 (dd, J = 7.8, 1.1 Hz, 1H), 7.57 (td, J = 7.6, 1.4 Hz, 1H), 7.45 (td, J = 7.7, 1.3 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.34 (dd, J = 7.7, 0.9 Hz, 1H), 4.39 (q, J = 7.1 Hz, 1H), 1.40 (t, J = 7.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 166.7, 146.0, 142.8, 132.4, 131.2, 131.1, 129.5, 129.4, 129.2 (2C), 128.7, 127.9, 61.1, 14.5. HRMS (EI-TOF) calcd. for C₁₆H₄O₄ (M⁺): 270.0892, found: 270.0896.

2-(3-methoxycarbonyl)phenylbenzoic acid (10):

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.96 (m, 3H), 7.58 (td, J = 7.6, 1.3 Hz, 1H), 7.52 – 7.40 (m, 3H), 7.35 (dd, J = 7.6, 0.7 Hz, 1H), 3.90 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 167.2, 142.8, 141.6, 133.3, 132.5, 131.4, 131.2, 130.1, 129.6, 129.1,

128.6, 128.1, 127.8, 52.3. HRMS (EI-TOF) calcd. for C₁₅H₁₂O₄ (M⁺): 256.0736, found: 256.0742.

General procedure of synthesis of diarylcarboxylic acid (1z, 1aa)⁶

To a solution of 2-hydroxyarylcarboxylic acid (11.5 mmol), Cs₂CO₃ (1.87 g, 5.7 mmol) in 100 mL DMF was added iodomethane (0.75 mL, 12 mmol) stirred at room temperature for 1.5 h, taken up in EtOAc, and washed with H₂O, NaHCO₃ (sat.), and brine, dried over Na₂SO₄, and concentrated in vacuo. The crude methyl ester was dissolved in dichloromethane (100 mL) under argon, cooled to -78 °C, and treatmented with Et₃N (3.2 mL, 23 mmol) was followed by the dropwise addition of Tf₂O (2.13 mL, 12.6 mmol). The mixture was stirred at -78 °C for 30 min and then warmed to room temperature overnight. The mixture was diluted with ether and washed with 1N HCl. The aqueous layer was back-extracted with additional ether, and the combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The product was purified by column chromatography. 2-methoxycarbonylaryl triflate was added to phenylboronic acid (1.2 g, 10 mmol) and K₃PO₄ (2.5 g, 12 mmol) dissolved in dioxane (25 mL). The reaction mixture was degassed three times and charged with

Argon, after which Pd (PPh₃)₄ (5 mol%, 290 mg, 0.25 mmol) was added. The reaction mixture was heated to 110 °C for 4 h. The resulting reaction mixture was cooled to room temperature and added to water, the product was extracted with dichloromethane three times. The combined organic phases were dried with Na₂SO₄ and the solvent was evaporated via vacuo. The product was purified by column chromatography to give a colourless liquid. The methyl 2-arylbenzoate was dissolved in a solution of 1 g NaOH in 15 mL H₂O and 15 mL MeOH and stirred at 50 °C for 6 h. MeOH was removed under vacuum and the reation mixture was diluted with H₂O, and washed with Et₂O. The aqueous phase was acidified with 3N HCl, then extracted with Et₂O three times. The combined organic phase was washed with H₂O and brine, dried over Na₂SO₄, filtered and the filtration was evaporated under reduced pressure to give the desired product as a solid.

2-phenyl-5-chlorobenzoic acid (1z):

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 2.3 Hz, 1H), 7.45 (dd, J = 8.3, 2.3 Hz, 1H), 7.35 - 7.26 (m, 3H), 7.26 - 7.19 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 142.0, 140.0 133.5, 132.6, 132.2, 130.7 (2C), 128.5, 128.3, 127.9. HRMS (ESI) calcd. for C₁₃H₈O₂Cl ([M-H]⁻) 231.0207, found 231.0211.

3-phenyl-2-naphthioc acid (1aa):

¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.74 (s, 1H), 7.54 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.49 (ddd, J = 8.0, 7.0, 1.3 Hz, 1H), 7.39 -7.28 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 141.3, 139.3, 134.9,

132.6, 131.6, 130.4, 128.9, 128.8, 128.2, 127.9, 127.7, 127.3, 127.0. HRMS (ESI) calcd. for C₁₇H₁₁O₂ ([M-H]⁻) 247.0754, found 247.0758.

General procedure of synthesis of diarylcarboxylic acid $(1x, 1y)^7$

2-Bromo-arylcarboxylic acid (4.3 g, 20 mmol), phenylboronic acid (2.9 g, 24 mmol), and LiOH·H₂O (1.85 g, 44 mmol). 60 mL NMP and 60 mL H₂O was added followed by Pd₂(dba)₃ (275 mg, 0.3 mmol) under a nitrogen blanket, and the reaction mixture was heated to 65 °C for 24 h. After cool to room temperature, the reaction mixture was acidified to pH=3 with 3N HCl, and extracted with diethyl ether three times. The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The product was purified by column chromatography.

2-phenyl-4-methylbenzoic acid (1x):

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 0H), 7.45 – 7.32 (m, 5H), 7.25 (d, J = 8.0 Hz, 1H), 7.20 (s, 1H), 2.46 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 143.8, 142.9, 141.4, 132.2, 131.2, 128.6, 128.1, 128.0, 127.4, 126.4, 21.6. HRMS (ESI) calcd.

for C₁₄H₁₁O₂ ([M-H]⁻) 211.0754, found 211.0758.

2-phenyl-3-methylbenzoic acid (1y):

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.44 – 7.31 (m, 4H), 7.18 (dd, J = 5.1, 2.9 Hz, 2H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 142.7, 140.1, 137.7, 134.1, 130.2, 128.7, 128.1 (2C), 127.2, 127.1, 20.9. HRMS (ESI)

calcd. for C₁₄H₁₁O₂ ([M-H]⁻) 211.0754, found 211.0759.

General Procedure of Pd(OAc)₂-Catalyzed Carboxyl-Directed C-H Activation/C-O Cyclization:

In a 35 mL sealed tube, 4.0 mL *t*-BuOH was added to a mixture of diaryl-carboxylic acid **1** (0.2 mmol, 1.0 equiv.), Pd(OAc)₂ (2.2 mg, 0.01 mmol, 5 mol%), N-acetylglycin (3.5 mg, 0.03 mmol, 0.15 equiv.), KOAc (39.2 mg, 0.4 mmol, 2.0 equiv.), PhI(OAc)₂ (128.8 mg, 2.0 equiv.) under air. The tube was sealed with a Teflon lined cap and the reaction mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether, ethyl acetate and dichloromethane to give the corresponding products.

2a: ¹H NMR (400 MHz, CDCl₃) δ 8.42 (ddd, J = 8.0, 1.4, 0.5 Hz, 1H), 8.14 (d, J = 8.1 Hz 1H), 8.08 (dd, J = 7.9, 1.5 Hz, 1H), 7.84 (ddd, J = 8.1, 7.3, 1.4 Hz, 1H), 7.60 (ddd, J = 8.3, 7.4, 1.1 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.41 – 7.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 151.4, 134.9, 134.8, 130.6, 130.5, 129.0, 124.6,

122.8, 121.8, 121.3, 118.1, 117.8. HRMS (APCI) calcd. for $C_{13}H_9O_2$ ([M+H]⁺): 197.0597, found: 197.0592.

2b: ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 8.0, 1.0 Hz, 1H), 8.09 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.81 (ddd, J = 7.9, 7.7, 1.4 Hz, 1H), 7.55 (ddd, J = 7.6, 7.6, 1.1 Hz, 1H), 7.18 (s, 1H), 7.15 (d, J = 8.1 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 151.4, 141.4, 135.1, 134.9, 130.7, 128.5, 125.8,

122.6, 121.6, 121.0, 118.0, 115.6, 21.6. HRMS (APCI) calcd. for C₁₄H₁₁O₂ ([M+H]⁺): 211.0754, found: 211.0747.

2c: ¹H NMR (400 MHz, CDCl₃) δ 8.36 (ddd, J = 8.0, 1.4, 0.5Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.78 (ddd, J = 8.1, 7.3, 1.4 Hz, 1H), 7.50 (ddd, J = 8.2, 7.3, 1.1Hz, 1H), 6.92 (dd, J = 8.8, 2.6 Hz, 1H), 6.87 (d, J = 2.5 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 161.5,

152.6, 135.2, 134.9, 130.5, 127.7, 123.8, 121.1, 120.0, 112.4, 111.2, 101.7, 55.7. HRMS (APCI) calcd. for C₁₄H₁₁O₃ ([M+H]⁺): 227.0703, found: 227.0697.

2d: ¹H NMR (400 MHz, CDCl₃) δ 8.40 (dd, J = 8.0, 1.4 Hz, 1H), 8.09 - 8.01 (m, 2H), 7.84 (ddd, J = 8.1, 7.4, 1.4 Hz, 1H), 7.59 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H), 7.13 - 7.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (d, J = 251.3 Hz), 160.9, 152.3 (d, J =12.3 Hz), 135.2, 134.4, 130.8, 128.9, 124.5 (d, J = 9.9 Hz), 121.6,

120.6 (d, J = 0.9 Hz), 114.7 (d, J = 3.2 Hz), 112.5 (d, J = 22.4 Hz), 105.2 (d, J = 25.3 Hz). HRMS (EI-TOF) calcd. for C₁₃H₇O₂F (M⁺): 214.0430, found: 214.0427.

2e: ¹H NMR (400 MHz, CDCl₃) δ 8.40 (ddd, J = 8.0, 1.4, 0.5 Hz, 1H), 8.11 – 8.05 (m, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.84 (ddd, J = 8.1, 7.3, 1.4 Hz, 1H), 7.61 (ddd, J = 8.3, 7.4, 1.1 Hz, 1H), 7.39 (d, J = 2.1 Hz, 1H), 7.32 (dd, J = 8.5, 2.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 151.6, 136.0, 135.2, 134.1, 130.8,

129.3, 125.1, 123.9, 121.8, 121.0, 118.0, 116.8. HRMS (EI-TOF) calcd. for $C_{13}H_7O_2Cl$ (M⁺): 230.0135, found: 230.0130.

2f: ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 7.9 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.92 (d, *J* = 8.5 Hz, 1H), 7.84 (ddd, *J* = 7.7, 7.7, 1.1 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 1.8 Hz, 1H), 7.47 (dd, *J* = 8.5, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 151.6, 135.2, 134.0, 130.8, 129.4, 127.9, 124.0, 123.8,

121.7, 121.1, 120.9, 117.2. HRMS (APCI) calcd. for C₁₃H₈O₂Br ([M+H]⁺): 274.9702, found: 274.9695.

2g: ¹H NMR (400 MHz, CDCl₃) δ 8.45 (dd, J = 7.9, 1.0 Hz, 1H), 8.19 (t, J = 8.1 Hz, 2H), 7.90 (ddd, J = 7.7, 7.4, 1.4 Hz, 1H), 7.69 (ddd, J = 7.7, 7.6, 1.0 Hz, 1H), 7.64 (s, 1H), 7.60 (dd, J = 8.3, 1.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 151.2, 135.3, 133.6, 132.4 (q, J = 33.5 Hz), 131.0, 130.3,

123.8, 123.4, (q, J = 272.6 Hz),122.3, 121.9, 121.2 (q, J = 3.8 Hz), 115.4 (q, J = 4.0 Hz). HRMS (EI-TOF) calcd. for C₁₄H₇O₂F₃ (M⁺): 264.0398, found: 264.0349.

2h: ¹H NMR (400 MHz, CDCl₃) δ 8.44 (dd, J = 8.0, 1.0 Hz, 1H), 8.17 (t, J = 8.5 Hz, 2H), 7.95 – 7.85 (m, 3H), 7.67 (ddd, J = 7.6, 7.5, 1.1 Hz,1H), 2.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 160.7, 151.2, 138.5, 135.2, 133.7, 130.9, 130.2, 124.0, 123.3, 122.5, 122.1, 121.9, 118.0, 26.8. HRMS (EI-TOF)

calcd. for C₁₅H₁₀O₃ (M⁺): 238.0630, found: 238.0636.

2i: ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, *J* = 7.9, 1.0 Hz, 1H), 8.13 (d, *J* = 8.1 Hz, 1H), 8.07 (d, *J* = 8.7 Hz, 1H), 7.95

(td, J = 4.3, 1.6 Hz, 2H), 7.85 (td, J = 7.8, 1.4 Hz, 1H), 7.63 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 160.6, 151.0, 135.1, 133.8, 132.3, 130.8, 130.0, 125.3, 122.9, 122.4, 121.8, 119.0, 61.6, 14.4. HRMS (EI-TOF) calcd. for C₁₆H₁₂O₄ (M⁺): 268.0736, found: 268.0736.

2j: ¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.36 (m, 1H), 8.11 (dd, J = 11.2, 3.9 Hz, 1H), 7.87 – 7.78 (m, 2H), 7.62 – 7.53 (m, 1H), 7.31 -7.22 (m, 2H), 2.46 (d, J = 3.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 149.4, 134.8, 134.7, 134.1, 131.4, 130.6, 128.7, 122.8, 121.6, 121.3, 117.6, 117.5, 21.2. HRMS (EI-TOF) calcd. for

C₁₄H₁₀O₂ (M⁺): 210.0681, found: 210.0684.

2k: ¹H NMR (400 MHz, CDCl₃) δ 8.42 (ddd, J = 7.9, 1.4, 0.5 Hz, 1H), 8.08 (d, J = 8.1 Hz, 1H), 7.83 (ddd, J = 8.1, 7.3, 1.4 Hz, 1H), 7.60 (ddd, J = 8.3, 7.4, 1.1 Hz, 1H), 7.51 (d, J = 2.9 Hz, 1H), 7.32 (d, J = 9.0 Hz, 1H), 7.06 (dd, J = 9.0, 2.9 Hz, 1H), 3.91 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 161.3, 156.4, 145.6, 134.7, 134.6,

130.6, 129.0, 121.7, 121.4, 118.7, 118.2, 117.2, 106.3, 55.9. HRMS (APCI) calcd. for C₁₄H₁₁O₃ ([M+H]⁺): 227.0703, found: 227.0696.

21: ¹H NMR (400 MHz, CDCl₃) δ 8.40 (dd, J = 8.0, 0.9 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 7.84 (td, J = 7.7, 1.4 Hz, 1H), 7.69 (dd, J = 9.1, 2.9 Hz, 1H), 7.62 (ddd, J = 7.6, 7.5, 1.0 Hz, 1H), 7.33 (dd, J = 9.0, 4.7 Hz, 1H), 7.18 (ddd, J = 9.0, 7.7, 2.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 159.4 (d, J = 243.4 Hz), 147.5 (d, J =2.1 Hz, 135.1, 134.0 (d, J = 2.7 Hz), 130.8, 129.7, 122.0, 121.3, 119.4 (d, J = 8.6 Hz),

119.3 (d, J = 8.3 Hz), 117. (d, J = 24.2 Hz), 108.9 (d, J = 24.9 Hz). HRMS (EI-TOF) calcd. for C₁₃H₇O₂F (M⁺): 214.0430, found: 214.0428.

2m: ¹H NMR (400 MHz, CDCl₃) δ 8.37 (dd, J = 7.9, 0.9 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 2.4 Hz, 1H), 7.83 (ddd, J = 7.9, 7.7, 1.3 Hz, 1H), 7.61 (ddd, J = 7.6, 7.6, 0.9 Hz, 1H), 7.40 (dd, J =

8.8, 2.4 Hz, 1H), 7.27 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 149.7, 135.1, 133.6, 130.8, 130.4, 130.1, 129.7, 122.7, 121.8, 121.3, 119.4, 119.2. HRMS (EI-TOF) calcd. for C₁₃H₇O₂Cl (M⁺): 230.0135, found: 230.0130.

2n: ¹H NMR (400 MHz, CDCl₃) δ 8.44 (dd, J = 7.9, 0.9 Hz, 1H), 8.33 (d, J = 1.3 Hz, 1H), 8.17 (d, J = 8.1 Hz, 1H), 7.90 (ddd, J = 8.1, 7.4, 1.4 Hz, 1H), 7.73 (dd, J = 8.6, 1.6 Hz, 1H), 7.67 (ddd, J = 7.6, 7.5, 1.0 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 153.3 (d, J = 1.1 Hz), 153.3, 135.4, 133.7, 131.0,

130.0, 127.3 (q, J = 3.5 Hz), 127.2 (q, J = 33.1 Hz), 123.9, (q, J = 272.1 Hz), 122.0, 121.5, 120.6 (q, J = 4.0 Hz), 118.7, 118.6. HRMS (EI-TOF) calcd. for C₁₄H₇O₂F₃ (M⁺): 264.0398, found: 264.0367.

20: ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 2.0 Hz, 1H), 8.41 (dd, J = 8.0, 1.0 Hz, 1H), 8.22 (d, J = 8.1 Hz, 1H), 8.13 (dd, J = 8.6, 2.0 Hz, 1H), 7.87 (ddd, J = 8.1, 7.4, 1.4 Hz, 1H), 7.64 (ddd, J = 8.1, 8.0, 1.0 Hz, 1H), 7.40 (d, J = 8.6 Hz, 1H), 3.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 160.6, 154.3, 135.3, 134.2,

131.5, 130.8, 129.6, 126.7, 125.2, 122.3, 121.3, 118.2, 118.1, 52.6. HRMS (EI-TOF) calcd. for C₁₅H₁₀O₄ (M⁺): 254.0579, found: 254.0575.

2p: ¹H NMR (400 MHz, CDCl₃) δ 8.51 (dd, J = 7.9, 1.3 Hz, 1H), 8.40 (d, J = 8.4 Hz, 1H), 7.84 (ddd, J = 7.8, 7.3, 1.6 Hz, 1H), 7.60 (ddd, J = 7.6, 7.5, 1.0 Hz, 1H), 7.39 – 7.33 (m, 1H), 7.28 (dd, J =8.2, 1.0 Hz, 1H), 7.18 (d, J = 7.4 Hz, 1H), 2.91 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 161.3, 152.3, 136.3, 136.1, 134.4, 130.9, 129.4,

128.9, 128.2, 126.3, 122.2, 117. 6, 116.3, 25.6. HRMS (APCI) calcd. for C₁₄H₁₁O₂ ([M+H]⁺): 211.0754, found: 211.0748.

2q: ¹H NMR (400 MHz, CDCl₃) δ 8.99 (dd, *J* = 8.4, 0.5 Hz, 1H), 8.42 (ddd, *J* = 7.9, 1.5, 0.4 Hz, 1H), 7.77 (ddd, *J* = 8.5, 7.3, 1.6 Hz, 1H), 7.53 (ddd, *J* = 7.9, 7.4, 1.1 Hz, 1H), 7.38 (t, *J* = 8.3 Hz, 1H), 7.00 (dd, *J* = 8.3, 1.1 Hz, 1H), 6.86 (dd, *J* = 8.3, 0.8 Hz, 1H), 4.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 158.5, 152.7, 134.8, 134.7, 130.2, 130.0, 128.1, 127.6, 121.1, 110.5, 108.4, 107.0, 56.1. HRMS (EI-TOF) calcd. for C₁₄H₁₀O₃ (M⁺): 226.0630, found: 226.0625.

2r: ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 8.3 Hz, 1H), 8.47 (dd, J = 7.9, 1.5 Hz,1H), 7.86 (ddt, J = 8.4, 7.3, 1.3 Hz, 1H), 7.64 (ddd, 1H), 7.43 (td, J = 8.3, 5.8 Hz, 1H), 7.22 (dt, J = 8.3, 1.1 Hz, 1H), 7.09 (ddd, J = 12.3, 8.3, 1.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 160.6 (d, J = 254.0 Hz), 152.3 (d, J = 6.5 Hz),

135.4 (d, J = 1.9 Hz), 132.5 (d, J = 4.6 Hz), 130.7, 130.1 (d, J = 11.3 Hz), 129.3 (d, J = 1.7 Hz), 126.8 (d, J = 21.8 Hz), 121.3, 113.8 (d, J = 3.5 Hz), 112.2 (d, J = 23.6 Hz), 108.5 (d, J = 13.2 Hz). HRMS (APCI) calcd. for C₁₃H₈O₂F ([M+H]⁺): 215.0503, found: 215.0498.

2s: ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 8.6 Hz, 1H), 8.64 (d, J = 8.3 Hz, 1H), 8.53 – 8.46 (m, 1H), 7.98 – 7.84 (m, 3H), 7.70 – 7.59 (m, 2H), 7.55 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H), 7.48 (d, J = 8.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 150.2, 135.3, 134.3, 131.6, 131.5, 130.6, 129.4, 129.3, 128.1, 127.8, 126.3, 125.4, 124.9,

122.3, 117.5, 112.4. HRMS (APCI) calcd. for C₁₇H₁₁O₂ ([M+H]⁺): 247.0754, found: 247.0747.

2t: ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.44 (dd, J = 7.9, 1.0 Hz, 1H), 8.31 (d, J = 8.1 Hz, 1H), 7.96 (dd, J = 8.1, 0.6 Hz, 1H), 7.91 – 7.83 (m, 2H), 7.77 (s, 1H), 7.61 (ddd, J = 7.6, 7.5, 1.1 Hz, 1H), 7.54 (dd, J = 8.1, 1.4 Hz, 1H), 7.51 (dd, J = 8.1, 1.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 148.8, 134.9, 134.7, 134.1, 130.8, 130.3, 129.1, 128.3, 127.7, 127.3, 125.8, 122.6,

122.1, 121.5, 118.2, 113.6. HRMS (APCI) calcd. for C₁₇H₁₁O₂ ([M+H]⁺): 247.0754, found: 247.0750.

= 7.7, 7.7, 1.1 Hz, 1H), 7.40 (d, J = 5.4 Hz, 1H), 7.06 (d, J = 5.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 150.0, 134.3, 132.8, 130.1, 126.8, 124.5, 121.0, 117.7, 117.5, 115.1. HRMS (EI-TOF) calcd. for C₁₁H₆O₂S (M⁺): 202.0089, found: 202.0081.

2v: ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 8.0, 1.4 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H), 7.43 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.33 – 7.24 (m, 2H), 2.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 151.4, 144.5, 136.2, 134.0, 132.3, 130.3, 124.3, 123.1, 119.8 (2C), 118.4, 117.4, 24.0.

HRMS (EI-TOF) calcd. for C14H10O2 (M⁺): 210.0681, found: 210.0674.

2w: ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.01 (dd, J = 11.5, 4.9 Hz, 2H), 7.62 (dd, J = 8.2, 1.4 Hz, 1H), 7.44 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.32 (ddd, J = 8.4, 7.9, 1.2 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 151.0, 139.2, 136.1, 132.2,

130.3, 129.9, 124.5, 122.6, 121.7, 121.1, 118.2, 117.7, 21.3. HRMS (EI-TOF) calcd. for C₁₄H₁₀O₂ (M⁺): 210.0681, found: 210.0669.

2x: ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.1 Hz, 1H), 8.02 (dd, J = 7.9, 1.5 Hz, 1H), 7.87 (s, 1H), 7.45 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.37 (dd, J = 8.1, 0.9 Hz, 1H), 7.35 – 7.28 (m, 2H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 151.6, 146.0, 134.8, 130.6, 130.4, 130.3, 124.5, 122.8, 121.9, 118.9, 118.2, 117.8, 22.4.

HRMS (EI-TOF) calcd. for C14H10O2 (M⁺): 210.0681, found: 210.0675.

2y: ¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 7.9, 1.4, 0.4 Hz, 1H), 8.26 (dd, J = 8.3, 1.3 Hz, 1H), 7.59 (ddd, J = 7.5, 1.5, 0.7 Hz, 1H), 7.46 – 7.38 (m, 2H), 7.35 (dd, J = 8.2, 1.4 Hz, 1H), 7.27 (ddd, J =7.7, 7.1, 1.6 Hz, 1H), 2.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.9, 151.4, 139.2, 135.2, 133.8, 129.8, 129.4, 128.4, 127.3, 124.1,

123.0, 119.9, 118.1, 25.5. HRMS (EI-TOF) calcd. for $C_{14}H_{10}O_2$ (M⁺): 210.0681, found: 210.0689.

2z: ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 2.3 Hz, 1H), 8.04

(d, J = 8.6 Hz, 1H), 7.99 (dd, J = 8.3, 1.5 Hz, 1H), 7.75 (dd, J = 8.6, 2.3 Hz, 1H), 7.52 - 7.45 (m, 1H), 7.39 - 7.31 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 151.2, 135.2, 135.1, 133.3, 130.9, 130.1, 124.9, 123.5, 122.9, 122.6, 118.0, 117.4. HRMS (EI-TOF) calcd. for C₁₃H₇O₂Cl (M⁺): 230.0135, found: 230.0127.

2aa: ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 8.55 (s, 1H), 8.23 (dd, *J* = 7.5, 2.2 Hz, 1H), 8.03 (dd, *J* = 13.3, 8.4 Hz, 2H), 7.69 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.60 (ddd, *J* = 8.1, 6.9, 1.1 Hz, 1H), 7.51 – 7.44 (m, 1H), 7.41 – 7.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 150.9, 136.2, 132.8, 132.5, 130.2,

129.7, 129.6 (2C), 128.2, 127.2, 124.7, 122.9, 120.7, 119.2, 118.4, 118.0. HRMS (EI-TOF) calcd. for C₁₇H₁₀O₂ (M⁺): 246.0681, found: 246.0675.

2ab: ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.20 (t, J = 8.6 Hz, 2H), 2.46 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 151.3, 137.0, 136.5, 135.6, 134.8, 129.0, 128.0, 127.7, 127.2, 124.9, 119.3, 114.1, 22.1, 22.0. HRMS

(EI-TOF) calcd. for C₁₅H₁₂O₂ (M⁺): 224.0837, found: 224.0844.

Total Synthesis of cannabinol:

2-(4-pentylphenyl)-4-methylbenzoic acid (3):

schlenk А nitrogen-filled tube charged in sequence with was 2-bromo-4-methylbenzoic acid (4.3 g, 20 mmol), 4-pentylphenylboronic acid (4.6 g, 24 mmol), and LiOH·H2O (1.85 g, 44 mmol). 60 mL NMP and 60 mL H2O was added followed by Pd₂(dba)₃ (275 mg, 0.3 mmol) under a nitrogen blanket, and the reaction mixture was heated to 65 °C for 24 h. After cool to room temperature, the reaction mixture was acidified to pH=3 with 3N HCl, and extracted with diethyl ether three times. The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The product was purified by column chromatography (silica gel, petroleum ether/diethyl ether = 5:1 to 3:1) to give a white solid in 82% yield (4.64 g).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.9 Hz, 1H), 7.18 - 7.14 (m, 2H), 7.14 - 7.06 (m, 4H), 2.56 (t, *J* = 7.8 Hz, 2H), 2.34 (s, 3H), 1.65 - 1.52 (m, 2H), 1.34 - 1.22 (m, 4H), 0.88 - 0.78 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 143.9, 142.8,

142.1, 138.6, 132.3, 131.2, 128.5, 128.3, 127.9, 126.5, 35.8, 31.8, 31.1, 22.7, 21.6, 14.2. HRMS (EI-TOF) calcd. for $C_{19}H_{22}O_2$ (M⁺): 282.1620, found: 282.1581.

3-pentyl-9-methyl-6*H*-benzo[*c*]chromen-6-one (4)

In a 500 mL sealed tube, 276 mL *t*-BuOH was added to a mixture of xx (3.9 g, 13.8 mmol), Pd(OAc)₂ (155 mg, 0.69 mmol, 5 mol%), N-acetylglycin (243 mg, 2.07 mmol), KOAc (2.71 g, 27.6 mmol), PhI(OAc)₂ (8.9 g, 27.6 mmol) under air. The tube was sealed with a Teflon lined cap and the reaction mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the mixture was concentrated under vacuum and the palladium and salt were filtered, the filter cake was washed with ethyl acetate, and the filtrate was concentrated in vacuo, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether/ethyl acetate/dichloromethane (100:1:10) to give **4** (3.3 g, 85%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.74 (s, 1H), 7.24 (dd, J = 8.1, 0.9 Hz, 1H), 7.08 – 7.00 (m, 2H), 2.59 (t, J = 7.7 Hz, 2H), 2.44 (s, 3H), 1.63 – 1.52 (m, 2H), 1.31 – 1.21 (m, 4H), 0.82 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 151.6,

146.2, 145.9, 135.1, 130.6, 129.7, 124.9, 122.6, 121.7, 118.5, 117.3, 115.7, 35.8, 31.5, 30.8, 22.6, 22.4, 14.1. HRMS (EI-TOF) calcd. for C₁₉H₂₀O₂ (M⁺): 280.1463, found: 280.1451.

2-(2-methoxy-4-pentyl)-4-methylbenzoic acid (5):

To a solution of xx (2.5 g, 8.9 mmol) in anhydrous THF (54 mL) was added MeONa (1.2 g, 22.3 mmol) in an ice bath. The mixture was stirred at 35 °C for 1 h, then MeI (8.3 mL, 133.7 mmol) was added. The temperature was risen to 45 °C, the resulting mixture was stirred overnight. After cooling to 0 °C, 27 mL MeOH and 27 mL NaOH (6.6 M) was added to the mixture, then heat to 55 °C for 6 h. The reaction was acidified to pH = 3 with 4N HCl at 0 °C, and extracted with diethyl ether three times. The combined organic phase was dried over Na₂SO₄, filtered and the filtration was evaporated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1 to 8:1, and then petroleum ether/diethyl ether = 8:1) to provide **5** (2.02 g, 72%) as a pale yellow solide, and recover 0.53 g **4** (21%).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.9 Hz, 1H), 7.17 (dd, J = 7.9, 1.0 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.13 (s, 1H), 6.84 (dd, J = 7.6, 1.2 Hz, 1H), 6.67 (d, J = 1.1 Hz, 1H), 3.68 (s, 3H), 2.63 (t, J = 7.8 Hz, 2H), 2.40 (s, 3H), 1.73 –

1.61 (m, 2H), 1.43 – 1.31 (m, 4H), 0.92 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 156.2, 144.3, 142.9, 139.4, 132.5, 130.2, 129.6, 128.0, 127.8, 127.7, 120.9, 110.9, 55.2, 36.3, 31.8, 31.2, 22.7, 21.6, 14.2. HRMS (EI-TOF) calcd. for C₂₀H₂₄O₃ (M⁺): 312.1725, found: 312.1724.

1-methoxy-3-pentyl-9-methyl-6*H*-benzo[*c*]chromen-6-one (**6**):

In a 150 mL sealed tube, 37 mL t-BuOH was added to a mixture of xx (3.9 g, 1.86 mmol), Pd(OAc)₂ (20.8 mg, 0.09 mmol, 5 mol%), N-acetylglycin (32.6 mg, 0.28 mmol), KOAc (364 mg, 3.71 mmol), PhI(OAc)₂ (1.2 g, 3.71 mmol) under air. The tube was sealed with a Teflon lined cap and the reaction mixture was stirred at 100 °C for 12 h. After cooling to room temperature, the mixture was concentrated under vacuum and the palladium and salt were filtered, the filter cake was washed with ethyl acetate, and the filtrate was concentrated in vacuo, and the residue was purified by column chromatography on silica gel with an eluent of petroleum ether/ethyl acetate/dichloromethane (100:1:16) to furnish 6 (294 mg, 51%) as a white solid, and petroleum ether/diethyl ether (4:1) to recover 5 (159 mg, 27%).

¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.29 (d, J = 8.1Hz, 1H), 7.31 (dd, J = 8.1, 1.0 Hz, 1H), 6.83 (d, J = 1.6 Hz, 1H), 6.67 (d, J = 1.4 Hz, 1H), 4.04 (s, 3H), 2.66 (t, J = 7.7Hz, 2H), 2.52 (s, 3H), 1.72 – 1.62 (m, 2H), 1.42 – 1.29 (m, 4H), 0.91 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

161.8, 158.3, 152.8, 145.8, 145.6, 134.9, 130.2, 128.8, 127.4, 118.3, 110.1, 107.4, 106.1, 56.0, 36.2, 31.6, 30.7, 22.7, 22.6, 14.1. HRMS (EI-TOF) calcd. for C20H22O3 (M⁺): 310.1569, found: 310.1572.

Cannabinol⁸

Cannabinol (356.6 mg, 72% for three steps) was obtained through three steps following the reported methods⁸ as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, J = 1.1, 0.5 Hz, 1H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.06 (ddd, *J* = 7.9, 1.7, 0.6 Hz, 1H), 6.43 (d, J = 1.6 Hz, 1H), 6.27 (d, J = 1.6 Hz, 1H), 5.31 (s, 1H), 2.48 (t, J = 7.9 Hz, 2H), 2.38 (s, 3H), 1.64 – 1.55 (m, 8H), 1.36 - 1.27 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 153.2, 144.7, 137.0 (2C), 127.7 (2C), 126.6, 122.7, 110.9, 110.0, 108.8, 77.5, 35.7, 31.6, 30.6, 27.2, 22.7, 21.7, 14.2. HRMS (EI-TOF) calcd. for C₂₁H₂₆O₂ (M⁺): 310.1933, found: 310.1940.

Discussion of Mechanism:

With **1a** under standard reaction conditions for 1 h, trace possible acetoxylation product **1ac** observed by TLC and none checked by GC-MS (decomposed at high temperature), compared with standard compound **1ac**. We also subjected the suggested intermediate **1ac** to the catalytic system. It was found that C–H activation/C–O cyclization products **2ac** (23%) and **2ad** (17%) were obtained along with lactone **2a** (38%) (Eq. 1), whereas neither of them was observed with **1a** used directly (entry 20, Table 1). Because **1ac** may be generated in low concentration and phenol was then afforded by following rapid hydrolysis, the real catalytic system is possible to be different from Eq. 1. In this context, the stepwise route involve acetoxylation followed by condensation can't be excluded at this stage.

To a solution of **2a** (528 mg, 2.69 mmol) in anhydrous THF (12 mL) was added ⁷BuOK (604 mg, 5.38 mmol) in an ice bath. The mixture was stirred at room temperature for 1 h, then Ac₂O (8.3 mL, 133.7 mmol) was added under -78 °C, warmed to room temperature and stirred over night. After evaporation of the solvent under reduced pressure, the residue was dissolved in 27 mL DCM, 9 mL TFA was added to the reaction mixture, and stirred for 6 hours. The solvent was removed and the product was purified by flash column chromatography (petroleum ether/ethyl

acetate = 8:1 to 4:1) to provide **1ac** (502.6 mg, 73%) as a pale yellow solid, and recover 39.4 mg **2a** (20%).

2-phenyl-3-acetoxybenzoic acid (1ac):

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.47 – 7.28 (m, 5H), 7.11 (d, J = 8.0 Hz, 1H), 1.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.6, 147.6, 137.9, 134.1, 132.4, 131.5, 130.6, 130.4, 130.4, 129.1, 128.0, 126.5, 122.1, 20.6.

HRMS (ESI) calcd. for C₁₅H₁₃O₄ ([M+H]⁺) 257.0808, found 257.0796.

2ac: ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 8.3 Hz, 1H), 8.47 (dd, J = 7.9, 1.1 Hz, 1H), 7.82 (td, J = 7.9, 1.6 Hz, 1H), 7.61 (td, J = 7.5, 1.0 Hz, 1H), 7.47 (t, J = 8.2 Hz, 1H), 7.31 (dd, J = 8.3, 1.3 Hz, 1H), 7.07 (dd, J = 8.1, 1.2 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 160.8, 152.4, 148.2, 135.1, 133.3, 131.0,

129.8, 129.2, 125.5, 121.9, 120.2, 115.9, 112.1, 21.7.HRMS (EI-TOF) calcd. for $C_{15}H_{10}O_4$ (M⁺): 254.0579, found: 254.0577.

2ad: ¹H NMR (400 MHz, DMSO) δ 11.07 (s, 1H), 9.15 (dd, *J* = 8.3, 0.5 Hz, 1H), 8.29 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.93 (ddd, *J* = 8.5, 7.3, 1.6 Hz, 1H), 7.64 (ddd, *J* = 7.6, 7.2, 1.1 Hz, 1H), 7.36 (t, *J* = 8.2 Hz, 1H), 6.93 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.89 (dd, *J* = 8.2, 1.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 160.4, 156.6, 152.2, 135.1, 134.6,

130.2, 129.4, 128.0, 127.1, 120.1, 112.0, 107.7, 106.1. HRMS (EI-TOF) calcd. for C₁₃H₈O₃ (M⁺): 246.0473, found: 246.0472.

References:

- (1) Korolev, D. N.; Bumagin, N. A. Tetrahedron Lett. 2006, 47, 4225.
- (2) Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 14006.
- (3) Prastaro, A.; Ceci, P.; Chiancone, E.; Boffi, A.; Cirilli, R.; Colone, M.; Fabrizi, G.; Stringaro, A.; Cacchi, S. *Green Chem.* 2009, 11, 1929.

- (4) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.
- (5) (a) Wang, L.; Prabhudas, B.; Clive, D. L. J. J. Am. Chem. Soc. 2009, 131, 6003. (b)
 Haack, T.; Kurtkaya, S.; Snyder, J. P.; Georg, G. I. Org. Lett. 2003, 5, 5019.
- (6) (a) Anderson, M. O.; Sherrill, J.; Madrid, P. B.; Liou, A. P.; Weisman, J. L.; DeRisi, J. L.; Guy, R. K. *Bioorg. Med. Chem.* 2006, *14*, 334. (b) Hussain, I.; Nguyen, V. T. H.; Yawer, M. A.; Dang, T. T.; Fischer, C.; Reinke, H.; Langer, P. *J. Org. Chem.* 2007, *72*, 6255.
- (7) Houpis, I. N.; Huang, C.; Nettekoven, U.; Chen, J. G.; Liu, R.; Canters, M. Org. Lett. 2008, 10, 5601.
- (8) Teske, J. A.; Deiters, A. Org. Lett. 2008, 10, 2195.

Copies of ¹H and ¹³C NMR Spectra

S29

S37

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S45

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

