

Ecological Base-Conditioned Preparation of Dipeptides Using Unprotected α-Amino Acids Containing Hydrophilic Side Chains

Tetsuya Ezawa, Seunghee Jung, Yuya Kawashima, Takuya Noguchi, and Nobuyuki Imai*

Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025 E-mail: nimai@cis.ac.jp

Received: January 25, 2017; Accepted: March 19, 2017; Web Released: May 10, 2017

Nobuyuki Imai

Nobuyuki Imai was born in 1959. He graduated from Shizuoka College of Pharmacy in 1982 and obtained his Ph.D. from Shizuoka College of Pharmacy under Professor Kazuo Achiwa in 1987. After postdoctoral work at University of Kentucky (with Professor David S. Watt), Harvard University (with Professor E. J. Corey), and Sagami Chemical Research Institute (with Dr. Susumu Kobayashi), he joined Okayama University of Science as an assistant professor. He is currently a professor at Chiba Institute of Science.

Abstract

The coupling reactions of 3-phenylpropanoic acid and *N*-carboxybenzyl α -amino acids with unprotected α -amino acids containing hydrophilic side chains such as aliphatic alcohol, aromatic alcohol, thiol, carboxylic acid, and amide afforded the corresponding amides in 66–96% yield without racemization via the corresponding mixed carbonic carboxylic anhydrides under basic conditions through an ecological green synthetic method.

1. Introduction

Development of convenient and cheap synthetic methods of peptides is quite important in industrial chemistry. α -Amino acids are generally categorized on the basis of the properties of their side chains into four groups, which are aliphatic, aromatic, acidic, and basic amino acids.¹ In particular, α -amino acids containing nucleophilic side chains such as hydroxy, mercapto, and carboxy groups also react easily with electrophiles in these side chains as undesired side reactions. Therefore, it is necessary for synthesis of peptides to protect not only the *N*terminals of α -amino acids and the *C*-terminals of the other reactants but also the nucleophilic side chains in order to avoid undesired side reactions.

A number of useful peptide synthetic methods have recently been reported.^{2–6} In these reports, protections of functional groups such as hydroxy, mercapto, amino, and carboxy groups in the corresponding α -amino acids are necessary to avoid generation of by-products in most of the peptide synthetic methods. Hofmann has reported that the synthesis of peptides related to α melanocyte-stimulating hormone (α -MSH) and corticotropins.⁷ In his study, Cbz-Met-Gln-OH was synthesized by the reaction of the mixed carbonic carboxylic anhydride of Cbz-Met-OH with aqueous solution of Gln, and Cbz-Ser-Tyr-OBn was pre-

pared via the azidation of Cbz-Ser-OH with hydrazine hydrate and sodium nitrite under acidic conditions by the reaction with Tyr-OBn. However, the yields of these dipeptides were moderate. Furthermore, peptide syntheses using α-amino acids containing unprotected side chains also have been developed, and the native chemical ligation (NCL) method reported by Kent is quite efficient.⁸ In NCL, the thioester at the C-terminal of a peptide reacts initially with the cysteine residue at the Nterminal of another peptide by ester transfer, followed by the replacement of sulfur with nitrogen to form the corresponding amide. Namely, the condensation by NCL is limited to the peptide fragment oriented cysteine residue at the N-terminal, and it is well known that peptides containing cysteine are rare.⁹ In addition, the preparations of the thioesters in the C-terminals were obtained in poor yield in some cases.¹⁰ Li also has reported the chemoselective synthesis of peptides using O-salicylaldehyde ester as a C-terminal fragment and L-serine or L-threonine ester possessing free side chain as an N-terminus via the corresponding N,O-benzylidene acetal.¹¹ These methods have problems in terms of atom economy and substrate generality.

Recently, we have reported a green synthetic method for dipeptides using unprotected α -amino acids via the mixed carbonic carboxylic anhydrides in aqueous organic solvent.^{12a,12f,12g} In our method, dipeptides were synthesized from *N*-protected α -amino acids and unprotected α -amino acids in good yields in half aqueous organic solvent. Herein, we describe in detail the convenient condensation of *N*-protected α -amino acids with unprotected α -amino acids containing hydrophilic side chains under basic conditions via the mixed carbonic carboxylic anhydride under basic conditions as shown in Scheme 1.

2. Results and Discussion

In a preliminary investigation, a clear solution of 3-phenylpropanoic acid (1) and 1.5 equiv of unprotected α -amino acids

Scheme 1. Convenient condensation of *N*-protected α -amino acids with unprotected α -amino acids containing hydrophilic side chains under basic conditions.

Table 1. Amidation of 3-phenylpropanoic acid (1) with unprotected α -amino acids $2a-2e^{a}$

0	1) CICO2Et, Et3N, THF, 0 °C, 30 min	
Ph OH	2) R ² O , H ₂ O, 0 °C, 30 min	Ph N H OH
	H ₂ N 2 OH	

Entry	Amide 3		Yield ^{b)} /%
1	Ph N H OH OH OH OH	3a	90
2	Ph N H OH	3b	87
3	Ph N H OH	3c	19
4	Ph N O CONH ₂	3d	85
5		3e	59

a) All reactions were carried out with 0.50 mmol of 1, 0.70 mmol of ethyl chloroformate, and 1.5 mmol of triethylamine in 10 mL of the THF. After stirring for 30 min at 0 °C, 0.75 mmol of 2 in 10 mL of H₂O was added to the reaction mixtures. b) Isolated yields.

2a-2e containing another hydrophilic moiety as a side chain in aqueous tetrahydrofuran (THF) under neutral conditions was reacted to afford the corresponding amides 3a-3e as indicated in Table 1. The reactions of **1** with unprotected α -amino acids 2a and 2b containing hydroxy and mercapto groups afforded the corresponding amides 3a and 3b in 90% and 87% yields, respectively (Entries 1 and 2). The amide 3c was obtained by the reaction of 1 with 2c containing aromatic hydroxy group in 19% yield due to low solubility of 2c in H₂O (Entry 3). The acid 1 smoothly reacted with 2d containing amide group to give the corresponding amide 3d in 85% yield (Entry 4). In contrast, the coupling reaction of 1 with 2e containing a carboxy group gave the corresponding amide 3e in moderate yield (Entry 5). It is suggested that the amino group does not work well as a nucleophile due to protonation by the carboxy group of 2e. Unprotected α -amino acids 2a, 2b and 2d are easily dissolved in H₂O, but the solubility of 2c and 2e in H₂O is low

Table 2. Effect of additives on the amidation of 3-phenylpropanoic acid (1) with L-Glu-OH (2e)^{a)}

Ph OH	1) CICO ₂ Et, Et ₃ N, THF, 0 °C 2) L-Glu-OH (2e), additive, F	, 30 min 1₂O, 0 °C, 30 min P	h N O COOH 3e OH
Entry	Additive	pH ^{c)}	Yield ^{b)} /%
1	HCl	1.0	5
2	Free	4.5	59
3	NaHCO ₃	6.5	90
4	NaOH	7.5	93
5	Na ₂ CO ₃	8.0	92
6	K_2CO_3	9.0	93
7 ^{d)}	K ₂ CO ₃	12	36

a) All reactions were carried out with 0.50 mmol of 1, 0.70 mmol of ethyl chloroformate, and 1.5 mmol of triethylamine in 10 mL of THF. After stirring for 30 min at 0 °C, 0.75 mmol of L-Glu-OH (**2e**) and 0.75 mmol of an additive in 10 mL of H₂O were added at 0 °C to the reaction mixture. b) Isolated yields. c) The pH value of the solution of **2e** and additive in 10 mL of H₂O was measured with pH-test paper. d) The reaction was carried out with 20 mmol of K₂CO₃.

despite possession of hydrophilic side chains. A small amount of *N*-ethoxycarbonyl α -amino acids **2a'**–**2e'** were observed as a by-product on the basis of ¹H NMR analysis in all entries of Table 1.

Subsequently, we tried to resolve the problems in Entries 3 and 5 of Table 1. The amidation of 3-phenylpropanoic acid (1)with L-Glu-OH (2e) was examined under acidic and basic conditions and the results are summarized in Table 2. The reaction of 1 with 2e in aqueous HCl gave the corresponding amide 3e in 5% yield, which was obviously decreased (Entry 1). In contrast, 1 reacted with 2e under basic conditions in the presence of NaHCO₃ to afford 3e in 90% yield (Entry 3). The amide 3e was obtained in 93% yield by the reaction using NaOH as a base (Entry 4). The amidations in the presence of Na₂CO₃ and K₂CO₃, which are stronger bases than NaHCO₃, gave 3e in 92% and 93% yields, respectively (Entries 5 and 6). In the presence of an excess amount of K₂CO₃, the reaction of 1 with **2e** proceeded in 36% yield (Entry 7). We judged that NaHCO₃ is better among these bases in the reaction by considering safety and handling.

A possible pathway of the amidation via the mixed carbonic carboxylic anhydride **4** is shown in Scheme 2. The carboxylic anhydride intermediate **5** is generated under the neutral conditions from the corresponding mixed carbonic carboxylic anhydride **4** by the nucleophilic attack of α -amino acid **2**. The free amine of **5** works as a good nucleophile and the corresponding product **3** is formed by the intramolecular reaction of **5** via the five-membered transition state (Entries 3–6 in Table 2). The reaction rate is very slow under the acidic conditions due to the protonation of the nitrogen atom of **5-H⁺** (Entry 1 in Table 2). Then, the mixed carbonic carboxylic anhydride **4** reacts directly under the basic conditions with the amine part of **2** to give the corresponding product **3**.

Next, we tried to synthesize the amides **3** using 3-phenylpropanoic acid (1) with several kinds of unprotected α -amino acids **2a**-**2e** in an aqueous NaHCO₃ solution as collected in

Scheme 2. Possible pathway of the amidation via the mixed carbonic carboxylic anhydride 5.

Table 3. Amidation of 3-phenylpropanoic acid (1) with unprotected α -amino acids **2a–2e** under the basic conditions using NaHCO₃^{a)}

Ph 1	$\begin{array}{c} \begin{array}{c} 1) \text{CICO}_2\text{Et}, \text{Et}_3\text{N}, \text{THF}, 0 {}^\circ\text{C}, 30 \text{min}} \\ \hline \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} R_2 \\ R_2 \\ R_2 \\ R_2 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \\ R_2 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \\ R_2 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \\ R_2 \\ R_2 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \\ R_2 \\ R_2 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \\ R_2 \\ R_2 \\ R_2 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \\ R_2$	30 min Ph	
Entry	Amide 3		Yield ^{b)} /%
1	Ph N H OH OH OH OH	3a	93
2	Ph N H OH	3b	96
3	Ph N H OH	3c	25 (86) ^{c)}
4	Ph N O CONH ₂	3d	83
5	Ph N O COOH	3e	90

a) All reactions were carried out with 0.50 mmol of 1, 0.70 mmol of ethyl chloroformate, and 1.5 mmol of triethylamine in 10 mL of THF. After stirring for 30 min at 0 °C, 0.75 mmol of unprotected α -amino acids 2 and 0.75 mmol of NaHCO₃ in 10 mL of H₂O were added at 0 °C to the reaction mixtures. b) Isolated yields. c) NaOH was used instead of NaHCO₃.

Table 3. The coupling reaction of 1 with L-Ser-OH (2a) proceeded smoothly to give the corresponding amide 3a in 93% yield (Entry 1). L-Cys-OH (2b) was converted to the corresponding amide 3b in 96% yield (Entry 2). Although the amidation of 1 with L-Tyr-OH (2c) afforded the corresponding amide 3c in 25% yield under the basic conditions using NaHCO₃ (Entry 3), 2c reacted efficiently with 1 to give 3c in 86% yield under the basic conditions using NaOH (parentheses of Entry 3). In the case of using NaHCO₃ as a base, 2c is hardly dissolved in H₂O as well as the neutral conditions. It is suggested that the solubility of **2c** is improved by the production of sodium phenoxide in an aqueous NaOH solution, and that **2c** works as a good nucleophile in the second step of the reaction. The amide **3d** was prepared from **1** with L-Gln-OH (**2d**) in 83% yield (Entry 4), which is similar to that of the reaction under the neutral conditions (Entry 4 of Table 1).

Then, we attempted to prepare dipeptides from Cbz-L-Phe-OH (6a) and various unprotected α -amino acids 2 and these results are displayed in Table 4. L-Asp-OH (2f), L-Tyr(3-OH)-OH (2g), L-Tyr(3-I)-OH (2h), and L-Trp(5-OH)-OH (2i) were added to the substrates containing aromatic alcohols as a side chain. The dipeptide 7aa was synthesized from 6a and L-Ser-OH (2a) containing a hydroxy group in 82% yield (Entry 1). The reaction of 6a with L-Cys-OH (2b) containing a mercapto group proceeded sufficiently to give the corresponding dipeptide 7ab in 86% yield (Entry 2). L-Tyr-OH (2c) containing a phenolic hydroxy group reacted with the activated form of 6a to afford 7ac in 73% yield (Entry 3). L-Gln-OH (2d) is most soluble in H₂O among them and was converted to produce 7ad in 83% yield (Entry 4). Absence of racemization under the reaction conditions was investigated using Cbz-L-Phe-OH (6a) and Cbz-D-Phe-OH (6a') as follows. The dipeptides 7ae and 7a'e were synthesized as a single diastereomer by the reactions of 6a and 6a' with L-Glu-OH (2e) containing a carboxy group in 87% and 85% yields, respectively (Entries 5 and 6). The coupling reaction of 6a with L-Asp-OH (2f) gave the corresponding dipeptide 7af in 74% yield (Entry 7), which is caused by slightly lower solubility of **2f** in H₂O than that of **2e**. Both α -amino acids **6a** and **2g** containing a 3,4-dihydroxyphenyl moiety condensed to give 7ag in 68% yield (Entry 8). The formations of the dipeptides 7ah and 7ai by the reactions of 6a from 2h containing 4-hydroxy-3-iodophenyl moiety and 2i containing 5-hydroxyindole moiety succeeded via the activation of 6a by isobutyl chloroformate in 74% and 76% yields, respectively (Entries 9 and 10). The dipeptides 7ah and 7ai were easily separated from the N-isobutyloxycarbonyl byproducts 2h" and 2i" by silica gel chromatography. In the case of using ethyl chloroformate for the activating agent, it was difficult to isolate from the mixtures of the dipeptides 7ah, 7ai and the N-ethoxycarbonyl derivatives 2h', 2i', respectively.

Finally, we examined application to synthesis of various dipeptides 7ba-7dc under the reaction conditions, and the results are shown in Table 5. Cbz-L-Ala-OH (6b), Cbz-L-Val-OH (6c) and Cbz-L-Met-OH (6d) were selected as a N-protected α amino acid. The reaction of Cbz-L-Ala-OH (6b) with L-Ser-OH (2a) was carried out to afford the corresponding dipeptide 7ba in 79% yield (Entry 1). The reaction of 6b with L-Cys-OH (2b) efficiently proceeded to give 7bb in 89% yield (Entry 2). The dipeptide 7bc was synthesized from 6b and L-Tyr-OH (2c) in 71% yield (Entry 3), which was slightly lower than those of 7ba and 7bb. Cbz-L-Val-OH (6c) possessing a branched side chain reacted with 2a, 2b, and 2c to provide the corresponding dipeptides 7ca, 7cb, and 7cc in 81%, 75%, and 71% yields, respectively (Entries 4-6). Cbz-L-Met-OH (6d) containing a mercapto group as a side chain was converted by the reactions of unprotected α -amino acids 2a, 2b, and 2c to the corresponding dipeptides 7da, 7db, and 7dc in 77%, 78%, and 66% yields, respectively (Entries 7-9). Then, we attempted to synthesize the corresponding dipeptide from N-protected α -amino

Table 4. Synthesis of dipeptides 7 with Cbz-L-Phe-OH (6a) and unprotected α -amino acids 2a–2i under the basic conditions^{a)}

Ph-	1) CICO ₂ Et, Et ₃ N, THF, 0 °C, 30 min	
Cbz-HN OH	2) R ² O , base, H ₂ O, 0 °C, 30 min	Cbz-HN H OH
6a	H₂N OH	7

Entry	Base	Dipeptide 7		Yield ^{b)} /%
1	NaHCO ₃	Ph O OH Cbz-HN H OH	7aa	82
2	NaHCO ₃	Cbz-HN N H OH	7ab	86
3	NaOH	Ph O Cbz-HN H OH	7ac	73
4	NaHCO ₃	Ph O CONH ₂ Cbz-HN H OH	7ad	83
5	NaHCO ₃	Ph O COOH Cbz-HN H OH	7ae	87 (81) ^{e)}
6 ^{c)}	NaHCO ₃	Ph O COOH	7a'e	85
7	NaHCO ₃	Cbz-HN N H OH	7af	74
8	NaOH	Ph O Cbz-HN H OH	7ag	68
9 ^{d)}	NaOH	Ph O Cbz-HN H OH	7ah	74
10 ^{d)}	NaOH	Ph O Cbz-HN H OH	7ai	76

a) All reactions were carried out with 0.50 mmol of Cbz-L-Phe-OH (**6a**), 0.70 mmol of ethyl chloroformate, and 1.5 mmol of triethylamine in 10 mL of THF. After stirring for 30 min at 0 °C, 0.75 mmol of unprotected α -amino acids **2** and 0.75 mmol of base in 10 mL of H₂O were added at 0 °C to the reaction mixtures. b) Isolated yields. c) This reaction was carried out with Cbz-D-Phe-OH (**6a**'). d) Isobutyl chloroformate was used instead of ethyl chloroformate. e) 5.0 mmol (1.5 g) of **6a** was used.

acids containing hydrophilic side chains as the starting materials with L-Glu-OH (2e). The dipeptide 7ee was synthesized from *N*-Boc-*O*-Bn-L-Ser-OH (6e) and 2e under basic conditions in 76% yield (Entry 10). N^{α} -Boc- N^{ε} -Cbz-L-Lys-OH (6f) containing bulky side chain was effectively converted into the corresponding dipeptide 7fe in 84% yield (Entry 11).

Table 5. The coupling reaction of *N*-protected α -amino acids **6b–6f** and unprotected α -amino acids **2a–2c** and **2e** under the basic conditions^{a)}

R ¹	0 1) CIC	O2Et, Et3N, THF, 0 °C, 30 min	R ¹	
P-HN	OH 2) R	0 , base, H ₂ O, 0 °C, 30 min	P-HN	N Y H OH
6b	-6f _{H2} N	ОН		7b-7f
		2		
Entry	Base	Dipeptide 7		Yield ^{b)} /%
1	NaHCO ₃	Cbz-HN H OH	7ba	79
2	NaHCO ₃	Cbz-HN H OH	7bb	89
3	NaOH	Cbz-HN OH	7bc	71
4	NaHCO ₃	Cbz-HN H OH OH	7ca	81
5	NaHCO ₃	Cbz-HN H OH	7cb	75
6	NaOH	Cbz-HN H OH	7cc	71
7	NaHCO ₃	MeS Cbz-HN OH	7da	77
8	NaHCO ₃	MeS OF SH Cbz-HN OH	7db	78
9	NaOH	MeS Cbz-HN H OH	7dc	66
10	NaHCO ₃		7ee	76
11	NaHCO ₃	Boc-HN OH	7fe	84

a) All reactions were carried out with 0.50 mmol of *N*-protected α -amino acids **6b–6f**, 0.70 mmol of ethyl chloroformate, and 1.5 mmol of triethylamine in 10 mL of THF. After stirring for 30 min at 0 °C, 0.75 mmol of unprotected α -amino acids **2** and 0.75 mmol of base in 10 mL of H₂O were added at 0 °C to the reaction mixtures. b) Isolated yields.

3. Conclusion

We have found that the dipeptides **7aa–7ai** were conveniently synthesized in 68–87% yield from Cbz-L-Phe-OH (**6a**) and unprotected α -amino acids **2a–2i** containing other hydrophilic moieties under the basic conditions. Additionally, we have also succeeded in the preparation of the dipeptides **7ba**– **7fe** in 66–89% yields without racemization by the reactions of *N*-protected α -amino acids **6b–6f** with unprotected α -amino acids **2a–2c** and **2e** by the ecological green synthetic method.

4. Experimental

General Information. All reagents were used without any purification. The ¹H NMR and ¹³C NMR spectra were measured with a Bruker Ultrashield TM 400 Plus (400 MHz) spectrometer. The chemical shifts are expressed in parts per million downfield from tetramethylsilane ($\delta = 0.00$) in MeOD- d^4 or dimethyl sulfoxide- d^6 ($\delta = 2.50$) as an internal standard. ¹³C NMR spectra were calibrated with tetramethylsilane ($\delta =$ 0.00) in MeOD- d^4 or dimethyl sulfoxide- d^6 ($\delta = 39.5$). Chemical shifts (δ) are reported in ppm, and spin-spin coupling constants (J) are given in hertz. Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). The highresolution mass spectra (HRMS) of the compounds with a high molecular weight were recorded using a Waters LCT Premier (ESI-TOF-MS) spectrometer. Reactions were monitored using thin-layer chromatography with silica gel 60 F₂₅₄. Purification of the products was carried out by column chromatography using silica gel (64-210 mesh). Melting points were determined with a hot plate apparatus. Optical rotations were measured on a digital polarimeter with a sodium lamp at room temperature. Infrared (IR) spectra were recorded on HORIBA FT-IR Fourier transform infrared spectrophotometer.

A Typical Procedure for the Amidation of 3-Phenylpropanoic Acid (1) Using Ethyl Chloroformate is as **Follows.** To a colorless solution of 75 mg (0.50 mmol) of 3phenylpropanoic acid (1) in 10 mL of THF were added at 0 °C 67 µL (0.70 mmol, 1.4 equiv) of ethyl chloroformate and 209 µL (1.5 mmol, 3.0 equiv) of triethylamine. After stirring for 30 min at 0 °C, a solution of 110 mg (0.75 mmol, 1.5 equiv) of L-Glu-OH (2e) and 63 mg (0.75 mmol, 1.5 equiv) of NaHCO₃ in 10 mL of H₂O was added at 0 °C to the colorless suspension. The mixture was stirred for 30 min at 0 °C and the resulting colorless clear solution was concentrated in vacuo. The residue was adjusted to pH 2 by addition of a 1.0 M aqueous solution of HCl. The resulted suspension was diluted with 30 mL of EtOAc. The aqueous layer was extracted with 20 mL of EtOAc. The combined organic layer was washed with 10 mL of brine, and dried over anhydrous MgSO₄. The crude product was chromatographed on silica gel with EtOAc containing 1% AcOH to afford 126 mg (90% yield) of N-(3-phenylpropanoyl)-L-Glu-OH (3e).

N-(3-phenylpropanoyl)-L-Ser-OH (3a): 111 mg (93%), colorless powder; mp: 119–123 °C; $[\alpha]_D^{28} = +6.70$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 2.72 (ddd, J = 1.5, 7.6, 7.6 Hz, 1H, CH_ACO), 2.72 (ddd, J = 1.5, 8.3, 8.3 Hz, 1H, CH_BCO), 2.92 (dd, J = 7.6, 8.3 Hz, 2H, CH₂C₆H₅), 3.77 (dd, J = 4.3, 11.2 Hz, 1H, CH_AOH), 3.86 (dd, J = 4.8, 11.2 Hz, 1H, CH_BOH), 4.48 (dd, J = 4.3, 4.8 Hz, 1H, CHCH₂OH), 7.14–7.18, 7.21–7.28 (m, m, 1H, 4H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 32.8, 38.8, 56.1, 63.0, 127.2, 129.4, 129.5, 142.3, 173.5, 175.4; HRMS (ESI-TOF): Calcd for C₁₂H₁₅NO₄Na (M+Na)⁺: 260.0893, found: 260.0894; IR (KBr, v_{max}/cm⁻¹): 3305 (OH), 1716 (CO₂), 1648 (CON).

N-(3-phenylpropanoyl)-L-Cys-OH (3b): 122 mg (96%), colorless powder; mp: 132–133 °C; $[\alpha]_D^{28} = -4.10$ (*c* 1.01, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 2.58 (ddd, *J* = 1.2, 7.6, 7.6 Hz, 1H, CH_ACO), 2.58 (ddd, *J* = 1.2, 7.7, 7.7 Hz, 1H, CH_BCO), 2.79 (dd, *J* = 6.6, 14.0 Hz, 1H, CH_ASH), 2.86 (dd, *J* = 4.6, 14.0 Hz, 1H, CH_BSH), 2.93 (dd, *J* = 7.6, 7.7 Hz, 2H, CH₂C₆H₅), 4.58 (dd, *J* = 4.6, 6.6 Hz, 1H, CHCH₂SH), 7.14–7.19, 7.21–7.28 (m, m, 1H, 4H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 26.8, 32.8, 38.6, 55.9, 127.3, 129.5, 129.5, 142.1, 173.1, 175.3; HRMS (ESI-TOF): Calcd for C₁₂H₁₆NO₃S (M+Na)⁺: 254.0854, found: 254.0856; IR (KBr, v_{max}/cm⁻¹): 3353 (OH), 2563 (SH), 1720 (CO₂), 1589 (CON).

N-(3-phenylpropanoyl)-L-Tyr-OH (3c): 135 mg (86%), colorless powder; mp: 164–167 °C; $[\alpha]_D^{28} = +16.8$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 2.46 (ddd, *J* = 1.6, 8.1, 8.1 Hz, 1H, CH_ACO), 2.46 (ddd, *J* = 1.6, 8.2, 8.2 Hz, 1H, CH_BCO), 2.81 (dd, *J* = 8.1, 8.2 Hz, 2H, CH₂C₆H₅), 2.82 (dd, *J* = 8.8, 13.9 Hz, 1H, CH_AC₆H₄), 3.05 (dd, *J* = 5.1, 13.9 Hz, 1H, CH_BC₆H₄), 4.58 (dd, *J* = 5.1, 8.8 Hz, 1H, CHCH₂C₆H₄), 6.67, 6.95 (d, d, *J* = 8.6, 8.6 Hz, 2H, 2H, C₆H₄), 7.13–7.16, 7.21–7.25 (m, m, 3H, 2H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 32.8, 37.7, 38.6, 55.3, 116.2, 127.2, 129.1, 129.4, 129.5, 131.3, 142.2, 157.3, 174.9, 175.1; HRMS (ESI-TOF): Calcd for C₁₈H₁₉NO₄Na (M+Na)⁺: 336.1206, found: 336.1187; IR (KBr, v_{max}/cm⁻¹): 3309 (ArOH), 3197 (OH), 1745 (CO₂), 1592 (CON).

N-(3-phenylpropanoyl)-L-Gln-OH (3d):^{12a} 116 mg (83%), colorless powder; ¹H NMR (400 MHz, MeOD- d^4): δ 1.83–1.93 (m, 1H, CH_ACH), 2.07–2.24 (m, 3H, CH_BCH, CH₂CH₂CH), 2.55 (ddd, J = 1.5, 7.5, 7.5 Hz, 1H, CH_ACO), 2.55 (ddd, J = 1.5, 8.1, 8.1 Hz, 1H, CH_BCO), 2.92 (dd, J = 7.5, 8.1 Hz, 2H, CH₂C₆H₅), 4.37 (dd, J = 4.5, 9.4 Hz, 1H, CHCO), 7.14–7.18, 7.21–7.28 (m, m, 1H, 4H, C₆H₅).

N-(3-phenylpropanoyl)-L-Glu-OH (3e):^{12a} 126 mg (90%), colorless powder; ¹H NMR (400 MHz, MeOD- d^4): δ 1.80–1.90 (m, 1H, CH_ACH), 2.07–2.15 (m, 1H, CH_BCH), 2.22–2.26 (m, 2H, CH₂CH₂CH), 2.54 (ddd, J = 1.4, 7.4, 7.4 Hz, 1H, CH_ACO), 2.54 (ddd, J = 1.4, 8.0, 8.0 Hz, 1H, CH_BCO), 2.91 (dd, J = 7.4, 8.0 Hz, 2H, CH₂C₆H₅), 4.40 (dd, J = 4.8, 9.8 Hz, 1H, CHCO), 7.15–7.18, 7.20–7.27 (m, m, 1H, 4H, C₆H₅).

A Typical Procedure of the Amidation of Cbz-L-Phenylalanine (6a) Using Ethyl Chloroformate is as Follows. To a colorless solution of 150 mg (0.50 mmol) of Cbz-L-phenylalanine (6a) in 10 mL of THF were added at 0 °C 67 µL (0.70 mmol, 1.4 equiv) of ethyl chloroformate and 209 µL (1.5 mmol, 3.0 equiv) of triethylamine. After stirring for 30 min at 0 °C, a solution of 110 mg (0.75 mmol, 1.5 equiv) of L-Glu-OH (2e) and 63 mg (0.75 mmol, 1.5 equiv) of NaHCO₃ in 10 mL of H₂O was added at 0 °C to the colorless suspension. The mixture was stirred for 30 min at 0 °C and the resulting colorless clear solution was concentrated in vacuo. The residue was adjusted to pH 2 by addition of a 1.0 M aqueous solution of HCl. The colorless suspension was diluted with 10 mL of brine, extracted with $25 \text{ ml} \times 3$ of a 4:1 mixture of EtOAc and MeOH, and dried over anhydrous MgSO₄. The crude product was chromatographed on silica gel with a 9:1 mixture of chloroform and MeOH containing 1% AcOH to afford 187 mg (87% yield) of Cbz-L-Phe-L-Glu-OH (7ae).

Cbz-L-Phe-L-Ser-OH (7aa): 158 mg (82%), colorless powder; mp; 156–159 °C; $[\alpha]_D^{30} = +4.82$ (*c* 1.00, MeOH);

¹H NMR (400 MHz, MeOD- d^4): δ 2.85 (dd, J = 9.8, 13.8 Hz, 1H, $CH_AC_6H_5$), 3.19 (dd, J = 4.7, 13.8 Hz, 1H, $CH_BC_6H_5$), 3.83 (dd, J = 3.8, 11.2 Hz, 1H, CH_AOH), 3.92 (dd, J = 4.5, 11.2 Hz, 1H, CH_BOH), 4.46 (dd, J = 4.7, 9.8 Hz, 1H, $CHCH_2C_6H_5$), 4.48 (dd, J = 3.8, 4.5 Hz, 1H, $CHCH_2OH$), 4.98 (d, J = 12.6 Hz, 1H, $OCH_AC_6H_5$), 5.03 (d, J = 12.6 Hz, 1H, $OCH_BC_6H_5$), 7.19–7.33 (m, 10H, $C_6H_5 \times 2$); ¹³C NMR (100 MHz, MeOD- d^4): δ 39.2, 56.2, 57.8, 63.0, 67.6, 127.8, 128.7, 129.0, 129.5, 129.5, 130.4, 138.2, 138.6, 158.4, 173.1, 174.2; HRMS (ESI-TOF): Calcd for $C_{20}H_{23}N_2O_6$ (M+H)⁺: 387.1551, found: 387.1539; IR (KBr, v_{max}/cm^{-1}): 3298 (OH), 1732 (CO₂), 1647 (CON).

Cbz-L-Phe-L-Cys-OH (7ab): 173 mg (86%), colorless powder; mp; 121–122 °C; $[\alpha]_D^{29} = -9.32$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 2.87 (dd, J = 9.5, 13.9 Hz, 1H, $CH_AC_6H_5$), 2.88 (dd, J = 4.6, 14.0 Hz, 1H, CH_ASH), 2.97 (dd, J = 4.6, 14.0 Hz, 1H, CH_BSH), 3.16 (dd, J = 5.2, 13.9 Hz, 1H, $CH_BC_6H_5$), 4.44 (dd, J = 5.2, 9.5 Hz, 1H, $CHCH_2C_6H_5$), 4.60 (dd, J = 4.6, 4.6 Hz, 1H, $CHCH_2SH$), 5.01 (s, 2H, $OCH_2C_6H_5$), 7.17–7.33 (m, 10H, $C_6H_5 \times 2$); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 26.8, 39.0, 56.0, 57.8, 67.6, 127.8, 128.7, 129.0, 129.5, 130.4, 138.2, 138.6, 158.3, 172.8, 174.2; HRMS (ESI-TOF): Calcd for $C_{20}H_{23}N_2O_5S$ (M+H)⁺: 403.1322, found: 403.1296; IR (KBr, v_{max}/cm^{-1}): 3309 (OH), 2568 (SH), 1716 (CO₂), 1656 (CON).

Cbz-L-Phe-L-Tyr-OH (7ac): 169 mg (73%), colorless powder; mp; 189–190 °C; $[\alpha]_D^{28} = -4.90$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD- d^4): δ 2.77 (dd, J = 9.9, 14.0 Hz, 1H, $CH_4C_6H_4$), 2.91 (dd, J = 8.0, 14.0 Hz, 1H, $CH_4C_6H_5$), 3.09 (dd, J = 5.0, 14.0 Hz, 1H, $CH_BC_6H_4$), 3.09 (dd, J =5.3, 14.0 Hz, 1H, $CH_BC_6H_5$), 4.36 (dd, J = 5.0, 9.9 Hz, 1H, $CHCH_2C_6H_4$), 4.58 (dd, J = 5.3, 8.0 Hz, 1H, $CHCH_2C_6H_5$), 4.97 (d, J = 12.6 Hz, 1H, OCH_AC₆H₅), 5.03 (d, J = 12.6 Hz, 1H, OCH_BC₆H₅), 6.68, 7.02 (d, d, J = 8.4, 8.4 Hz, 2H, 2H, C₆H₄), 7.16–7.32 (m, 10H, C₆H₅ \times 2); ¹³C NMR (100 MHz, MeOD-d⁴): δ 37.7, 39.0, 55.3, 57.8, 67.6, 116.3, 127.7, 128.7, 128.8, 129.0, 129.4, 129.5, 130.4, 131.5, 138.2, 138.6, 157.4, 173.9, 174.4; HRMS (ESI-TOF): Calcd for C₂₆H₂₇N₂O₆ $(M+H)^+$: 463.1864, found: 463.1862; IR (KBr, v_{max}/cm^{-1}): 3433 (OH), 3334 (ArOH), 1734 (CO₂), 1684 (CON), 1653 (CON).

Cbz-L-Phe-L-Gln-OH (7ad):^{12a} 177 mg (83%), colorless powder; ¹H NMR (400 MHz, MeOD- d^4): δ 1.91–1.98 (m, 1H, CH_ACH₂CO), 2.16–2.35 (m, 3H, CH_BCH₂CO, CH₂CO), 2.85 (dd, J = 9.7, 14.0 Hz, 1H, CH_AC₆H₅), 3.16 (dd, J = 4.9, 14.0 Hz, 1H, CH_BC₆H₅), 4.38–4.43 (m, 2H, CH × 2), 4.99 (d, J = 12.7 Hz, 1H, OCH_AC₆H₅), 5.03 (d, J = 12.7 Hz, 1H, OCH_BC₆H₅), 7.17–7.33 (m, 10H, C₆H₅ × 2).

Cbz-L-Phe-L-Glu-OH (7ae):^{12a} 187 mg (87%), colorless powder; ¹H NMR (400 MHz, MeOD- d^4): δ 1.89–1.99 (m, 1H, CH_ACH_2CO), 2.15–2.23 (m, 1H, CH_BCH_2CO), 2.39 (dd, J =7.6, 7.8 Hz, 2H, CH_2CO), 2.84 (dd, J = 9.6, 14.0 Hz, 1H, $CH_AC_6H_5$), 3.15 (dd, J = 5.0, 14.0 Hz, 1H, $CH_BC_6H_5$), 4.40– 4.47 (m, 2H, CH × 2), 4.99 (d, J = 13.0 Hz, 1H, $OCH_AC_6H_5$), 5.03 (d, J = 13.0 Hz, 1H, $OCH_BC_6H_5$), 7.18–7.33 (m, 10H, $C_6H_5 \times 2$).

Cbz-D-Phe-L-Glu-OH (7a'e): 182 mg (85%), colorless powder; mp; 169–172 °C; $[\alpha]_D^{28} = +0.82$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 1.79–1.88 (m, 1H, CH₄CH₂-CO), 2.04–2.18 (m, 3H, CH_BCH₂CO, CH₂CO), 2.88 (dd, J = 8.8, 13.7 Hz, 1H, CH₄C₆H₅), 3.09 (dd, J = 6.6, 13.7 Hz, 1H, $CH_BC_6H_5$), 4.38 (dd, J = 6.6, 8.8 Hz, 1H, $CHCH_2C_6H_5$), 4.40–4.44 (m, 1H, $CHCH_2CH_2$), 5.00 (d, J = 12.4 Hz, 1H, $OCH_AC_6H_5$), 5.05 (d, J = 12.4 Hz, 1H, $OCH_BC_6H_5$), 7.19–7.33 (m, 10H, $C_6H_5 \times 2$); ¹³C NMR (100 MHz, MeOD- d^4): δ 27.8, 31.0, 39.5, 53.1, 58.0, 67.7, 127.9, 128.8, 129.0, 129.5, 129.6, 130.4, 138.2, 138.4, 158.2, 174.0, 174.6, 176.3; HRMS (ESI-TOF): Calcd for $C_{22}H_{24}N_2O_7Na$ (M+Na)⁺: 451.1476, found: 451.1488; IR (KBr, v_{max}/cm^{-1}): 3299 (OH), 1716 (CO₂), 1670 (CON).

Cbz-L-Phe-L-Asp-OH (7af): 163 mg (74%), colorless powder; mp; 178–179 °C; $[\alpha]_D^{28} = -11.7$ (*c* 1.01, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 2.84 (dd, *J* = 9.7, 13.9 Hz, 1H, *CH*_{*A*}C₆H₅), 2.84 (d, *J* = 5.6 Hz, 2H, CH₂CO), 3.18 (dd, *J* = 4.8, 13.9 Hz, 1H, *CH*_{*B*}C₆H₅), 4.42 (dd, *J* = 4.8, 9.7 Hz, 1H, *CH*CH₂C₆H₅), 4.73 (t, *J* = 5.6 Hz, 1H, *CH*CH₂CO), 4.97 (d, *J* = 12.7 Hz, 1H, *OCH*_{*A*}C₆H₅), 5.02 (d, *J* = 12.7 Hz, 1H, *OCH*_{*B*}C₆H₅), 7.18–7.33 (m, 10H, C₆H₅ × 2); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 36.8, 39.1, 50.2, 57.8, 67.6, 127.7, 128.7, 128.9, 129.5, 130.4, 138.2, 138.6, 158.3, 173.7, 173.9, 174.0; HRMS (ESI-TOF): Calcd for C₂₁H₂₃N₂O₇ (M+H)⁺: 415.1500, found: 415.1486; IR (KBr, ν_{max}/cm^{-1}): 3305 (OH), 1716 (CO₂), 1695 (CON), 1653 (CON).

Cbz-L-Phe-L-Tyr(3-OH)-OH (7ag): 164 mg (68%), colorless powder; mp; 132–134 °C; $[\alpha]_D^{28} = -7.26$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD- d^4): δ 2.77 (dd, J = 9.8, 14.0 Hz, 1H, $CH_4C_6H_3$), 2.87 (dd, J = 7.7, 14.0 Hz, 1H, $CH_4C_6H_5$), 3.03 (dd, J = 5.5, 14.0 Hz, 1H, $CH_BC_6H_5$), 3.09 (dd, J =4.9, 14.0 Hz, 1H, $CH_BC_6H_3$), 4.37 (dd, J = 4.9, 9.8 Hz, 1H, $CHCH_2C_6H_3$), 4.58 (dd, J = 5.5, 7.7 Hz, 1H, $CHCH_2C_6H_5$), 4.96 (d, J = 12.7 Hz, 1H, OCH_AC₆H₅), 5.03 (d, J = 12.7 Hz, 1H, OC H_B C₆H₅), 6.53, 6.65–6.67 (d, m, J = 8.0 Hz, 1H, 2H, C_6H_3), 7.16–7.32 (m, 10H, $C_6H_5 \times 2$); ¹³C NMR (100 MHz, MeOD-d⁴): δ 37.9, 39.0, 55.2, 57.8, 67.7, 116.4, 117.5, 121.9, 127.7, 128.7, 128.9, 129.4, 129.5, 130.4, 138.2, 138.6, 145.3, 146.2, 158.3, 173.9, 174.5; HRMS (ESI-TOF): Calcd for $C_{26}H_{27}N_2O_7$ (M+H)⁺: 479.1813, found: 479.1796; IR (KBr, v_{max}/cm⁻¹): 3487 (ArOH), 3325 (ArOH), 3033 (OH), 1724 (CO₂), 1695 (CON), 1657 (CON).

Cbz-L-Phe-L-Tyr(3-I)-OH (7ah): 220 mg (74%), colorless powder; mp; 182–185 °C; $[\alpha]_D^{28} = -1.08$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD- d^4): δ 2.79 (dd, J = 9.7, 13.9 Hz, 1H, $CH_4C_6H_3$), 2.88 (dd, J = 7.9, 13.9 Hz, 1H, $CH_4C_6H_5$), 3.08 (dd, J = 5.1, 13.9 Hz, 1H, $CH_BC_6H_5$), 3.08 (dd, J =5.1, 13.9 Hz, 1H, $CH_BC_6H_3$), 4.36 (dd, J = 5.1, 9.7 Hz, 1H, $CHCH_2C_6H_3$), 4.58 (dd, J = 5.1, 7.9 Hz, 1H, $CHCH_2C_6H_5$), 4.97 (d, J = 12.6 Hz, 1H, OCH₄C₆H₅), 5.03 (d, J = 12.6 Hz, 1H, OC $H_BC_6H_5$), 6.74, 7.03, 7.54 (d, d, s, J = 8.0 Hz, 1H, 1H, 1H, C₆H₃), 7.17–7.32 (m, 10H, C₆H₅ × 2); 13 C NMR (100 MHz, MeOD-d⁴): δ 37.0, 39.2, 55.1, 57.9, 67.7, 84.6, 115.7, 127.7, 128.7, 128.9, 129.5, 129.5, 130.4, 131.0, 131.6, 138.2, 138.6, 141.0, 157.0, 174.0, 174.2; HRMS (ESI-TOF): Calcd for C₂₆H₂₆IN₂O₆ (M+H)⁺: 589.0830, found: 589.0835; IR (KBr, v_{max}/cm⁻¹): 3359 (ArOH), 3280 (OH), 1735 (CO₂), 1706 (CON), 1644 (CON), 1051 (ArI).

Cbz-L-Phe-L-Trp(5-OH)-OH (7ai): 192 mg (76%), colorless powder; mp; 107–110 °C; $[\alpha]_D^{28} = -14.2$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 2.72 (dd, J = 10.0, 14.0 Hz, 1H, *CH_A*-indole), 3.08 (dd, J = 4.7, 14.0 Hz, 1H, *CH_B*-indole), 3.14 (dd, J = 7.2, 14.1 Hz, 1H, *CH_A*C₆H₅), 3.28 (dd, J = 5.3, 14.1 Hz, 1H, $CH_BC_6H_5$), 4.37 (dd, J = 4.7, 10.0 Hz, 1H, $CHCH_2$ -indole), 4.69 (dd, J = 5.3, 7.2 Hz, 1H, $CHCH_2C_6H_5$), 4.94 (d, J = 12.8 Hz, 1H, $OCH_AC_6H_5$), 5.01 (d, J = 12.8 Hz, 1H, $OCH_BC_6H_5$), 6.66, 6.95, 7.03, 7.13–7.29 (d, s, s, m, J =8.6 Hz, 1H, 1H, 1H, 11H, indole, $C_6H_5 \times 2$); ¹³C NMR (100 MHz, MeOD- d^4): δ 28.6, 39.0, 54.7, 57.8, 67.6, 103.7, 110.0, 112.5, 112.8, 125.4, 127.7, 128.7, 128.9, 129.4, 129.5, 129.7, 130.3, 133.0, 138.2, 138.6, 151.3, 158.3, 174.0, 174.9; HRMS (ESI-TOF): Calcd for $C_{28}H_{28}N_3O_6$ (M+H)⁺: 502.1973, found: 502.1957; IR (KBr, v_{max}/cm^{-1}): 3566 (NH), 3396 (ArOH), 3224 (OH), 1704 (CO₂), 1654 (CON).

Cbz-L-Ala-L-Ser-OH (7ba): 122 mg (79%), colorless powder; mp; >300 °C; $[\alpha]_D^{28} = +33.9$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): δ 1.22 (d, J = 7.3 Hz, 3H, CH₃), 3.40 (dd, J = 6.2, 9.9 Hz, 1H, CH₄OH), 3.60 (dd, J =5.3, 9.9 Hz, 1H, CH_BOH), 3.79 (ddd, J = 5.3, 6.2, 6.2 Hz, 1H, CHCH₂OH), 4.04 (dd, J = 7.3, 7.6 Hz, 1H, CHCH₃), 5.01 (d, J = 12.6 Hz, 1H, OCH₄C₆H₅), 5.06 (d, J = 12.6 Hz, 1H, OCH_BC₆H₅), 5.34 (brs, 1H, OH), 7.31–7.38 (m, 5H, C₆H₅), 7.49 (d, J = 6.2 Hz, 1H, NHCHCH₂), 7.60 (d, J = 7.6 Hz, 1H, NHCHCH₃); ¹³C NMR (100 MHz, DMSO-*d*⁶): δ 18.3, 50.4, 55.2, 62.5, 65.4, 127.7, 127.8, 128.4, 137.0, 155.7, 171.7, 173.9; HRMS (ESI-TOF): Calcd for C₁₄H₁₈N₂O₆Na (M+Na)⁺: 333.1057, found: 333.1073; IR (KBr, v_{max}/cm⁻¹): 3354 (OH), 3320 (OH), 1693 (CO₂), 1666 (CON).

Cbz-L-Ala-L-Cys-OH (7bb): 145 mg (89%), colorless powder; mp; 164–166 °C; $[\alpha]_D^{27} = -11.9$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 1.36 (d, J = 7.2 Hz, 3H, CH₃), 2.90 (dd, J = 5.8, 14.0 Hz, 1H, CH_ASH), 2.98 (dd, J =4.6, 14.0 Hz, 1H, CH_BSH), 4.21 (q, J = 7.2 Hz, 1H, CHCH₃), 4.61 (dd, J = 4.6, 5.8 Hz, 1H, CHCH₂SH), 5.09 (s, 2H, OCH₂C₆H₅), 7.26–7.37 (m, 5H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 18.2, 26.8, 52.0, 55.9, 67.7, 128.9, 129.1, 129.5, 138.2, 158.3, 173.0, 175.6; HRMS (ESI-TOF): Calcd for C₁₄H₁₈N₂O₅SNa (M+Na)⁺: 349.0829, found: 349.0847; IR (KBr, v_{max}/cm⁻¹): 3346 (OH), 2565 (SH), 1733 (CO₂), 1637 (CON).

Cbz-L-Ala-L-Tyr-OH (7bc): 137 mg (71%), colorless powder; mp; 148–152 °C; $[\alpha]_D^{28} = +10.6$ (*c* 1.00, MeOH); ¹HNMR (400 MHz, MeOD-*d*⁴): δ 1.28 (d, *J* = 7.1 Hz, 3H, CH₃), 2.93 (dd, *J* = 7.5, 14.0 Hz, 1H, CH_AC₆H₄), 3.07 (dd, *J* = 5.4, 14.0 Hz, 1H, CH_BC₆H₄), 4.14 (q, *J* = 7.1 Hz, 1H, CHCH₃), 4.57 (dd, *J* = 5.4, 7.5 Hz, 1H, CHCH₂C₆H₄), 5.05 (d, *J* = 12.5 Hz, 1H, OCH_AC₆H₅), 5.09 (d, *J* = 12.5 Hz, 1H, OCH_BC₆H₅), 6.68, 7.02 (d, d, *J* = 8.3, 8.3 Hz, 2H, 2H, C₆H₄), 7.28–7.35 (m, 5H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 18.2, 37.6, 51.9, 55.2, 67.8, 116.2, 128.8, 128.9, 129.1, 129.5, 131.5, 138.2, 157.4, 158.2, 174.6, 175.3; HRMS (ESI-TOF): Calcd for C₂₀H₂₂N₂O₆Na (M+Na)⁺: 409.1370, found: 409.1386; IR (KBr, v_{max}/cm⁻¹): 3401 (ArOH), 3300 (OH), 1733 (CO₂), 1687 (CON), 1653 (CON).

Cbz-L-Val-L-Ser-OH (7ca): 138 mg (81%), colorless powder; mp; 172–175 °C; $[\alpha]_D^{28} = -4.24$ (*c* 1.00, MeOH); ¹HNMR (400 MHz, MeOD-*d*⁴): δ 0.94 (d, J = 6.8 Hz, 3H, CH₃), 0.99 (d, J = 6.8 Hz, 3H, CH₃), 2.05–2.14 (m, 1H, CH(CH₃)₂), 3.82 (dd, J = 4.2, 11.3 Hz, 1H, CH₄OH), 3.91 (dd, J = 4.5, 11.3 Hz, 1H, CH_BOH), 4.03 (d, J = 6.8 Hz, 1H, CHCH(CH₃)₂), 4.49 (dd, J = 4.2, 4.5 Hz, 1H, CHCH₂OH), 5.10 (s, 2H, OCH₂C₆H₅), 7.26–7.38 (m, 5H, C₆H₅); ¹³C NMR (100 MHz, MeOD- d^4): δ 18.4, 19.8, 32.2, 56.1, 62.0, 63.1, 67.8, 128.9, 129.1, 129.5, 138.3, 158.7, 173.2, 174.3; HRMS (ESI-TOF): Calcd for C₁₆H₂₂N₂O₆Na (M+Na)⁺: 361.1370, found: 361.1388; IR (KBr, v_{max}/cm⁻¹): 3546 (OH), 3307 (OH), 1733 (CO₂), 1645 (CON).

Cbz-L-Val-L-Cys-OH (7cb): 132 mg (75%), colorless powder; mp; 152–154 °C; $[\alpha]_D^{28} = -11.2$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 0.96 (d, *J* = 7.0 Hz, 3H, CH₃), 0.98 (d, *J* = 7.0 Hz, 3H, CH₃), 2.03–2.12 (m, 1H, *CH*(CH₃)₂), 2.88 (dd, *J* = 6.4, 13.9 Hz, 1H, *CH*₄SH), 2.96 (dd, *J* = 4.6, 13.9 Hz, 1H, *CH*_BSH), 3.99 (d, *J* = 7.0 Hz, 1H, *CH*CH(CH₃)₂), 4.62 (dd, *J* = 4.6, 6.4 Hz, 1H, *CH*CH₂SH), 5.09 (s, 2H, OCH₂C₆H₅), 7.26–7.37 (m, 5H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 18.6, 19.8, 26.7, 31.9, 55.9, 62.2, 67.8, 128.9, 129.0, 129.5, 138.3, 158.7, 172.8, 174.4; HRMS (ESI-TOF): Calcd for C₁₆H₂₂N₂O₅SNa (M+Na)⁺: 377.1142, found: 372.1144; IR (KBr, v_{max}/cm⁻¹): 3356 (OH), 2575 (SH), 1736 (CO₂), 1643 (CON).

Cbz-L-Val-L-Tyr-OH (7cc): 147 mg (71%), colorless powder; mp; 156–157 °C; $[\alpha]_D^{27} = -4.70$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD- d^4): δ 0.88 (d, J = 7.1 Hz, 3H, CH₃), 0.89 (d, J = 7.1 Hz, 3H, CH₃), 1.96–2.01 (m, 1H, $CH(CH_3)_2$), 2.89 (dd, J = 8.2, 13.9 Hz, 1H, $CH_4C_6H_4$), 3.08 $(dd, J = 5.3, 13.9 \text{ Hz}, 1\text{H}, CH_BC_6\text{H}_4), 3.91 (d, J = 7.1 \text{ Hz}, 1\text{H},$ $CHCH(CH_3)_2$, 4.60 (dd, J = 5.3, 8.2 Hz, 1H, $CHCH_2C_6H_4$), 5.06 (d, J = 12.5 Hz, 1H, OCH_AC₆H₅), 5.11 (d, J = 12.5 Hz, 1H, OCH_BC₆H₅), 6.67, 7.03 (d, d, J = 8.4, 8.4 Hz, 2H, 2H, C₆H₄), 7.26–7.37 (m, 5H, C₆H₅); ¹³C NMR (100 MHz, MeOD d^4): δ 18.6, 19.7, 32.0, 37.8, 55.3, 62.1, 67.8, 116.2, 128.9, 129.0, 129.1, 129.6, 131.4, 138.3, 157.4, 158.6, 174.0, 174.6; HRMS (ESI-TOF): Calcd for $C_{22}H_{26}N_2O_6Na$ (M+Na)⁺: 437.1683, found: 437.1685; IR (KBr, v_{max}/cm^{-1}): 3301 (ArOH), 3307 (OH), 1716 (CO₂), 1695 (CON), 1654 (CON).

Cbz-L-Met-L-Ser-OH (7da): 142 mg (77%), colorless powder; mp; 158–161 °C; $[\alpha]_D^{28} = +8.16$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 1.87–1.96 (m, 1H, *CH*_ACH₂S), 2.04–2.13 (m, 1H, *CH*_BCH₂S), 2.08 (s, 3H, CH₃), 2.51–2.63 (m, 2H, CH₂S), 3.83 (dd, *J* = 3.9, 11.3 Hz, 1H, *CH*_AOH), 3.93 (dd, *J* = 4.3, 11.3 Hz, 1H, *CH*_BOH), 4.32 (dd, *J* = 5.3, 8.6 Hz, 1H, *CH*CH₂CH₂), 4.48 (dd, *J* = 3.9, 4.3 Hz, 1H, *CH*CH₂OH), 5.10 (s, 2H, OCH₂C₆H₅), 7.26–7.38, (m, 5H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 15.2, 31.1, 33.0, 55.5, 56.2, 62.9, 67.8, 128.9, 129.1, 129.5, 138.2, 158.5, 173.2, 174.4; HRMS (ESI-TOF): Calcd for C₁₆H₂₃N₂O₆S (M+H)⁺: 371.1271, found: 371.1262; IR (KBr, v_{max}/cm⁻¹): 3289 (OH), 1743 (CO₂), 1722 (CON), 1680 (CON).

Cbz-L-Met-L-Cys-OH (7db): 151 mg (78%), colorless powder; mp; 142–144 °C; $[\alpha]_D^{28} = -7.03$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 1.88–1.97 (m, 1H, *CH*₄CH₂S), 2.03–2.12 (m, 1H, *CH*_BCH₂S), 2.07 (s, 3H, CH₃), 2.50–2.63 (m, 2H, CH₂CH₂S), 2.90 (dd, *J* = 6.0, 13.8 Hz, 1H, *CH*₄SH), 2.98 (dd, *J* = 4.5, 13.8 Hz, 1H, *CH*_BSH), 4.30 (dd, *J* = 5.5, 8.5 Hz, 1H, *CH*CH₂CH₂), 4.62 (dd, *J* = 4.5, 6.0 Hz, 1H, *CH*CH₂SH), 5.10 (s, 2H, OCH₂C₆H₅), 7.27– 7.37 (m, 5H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 15.3, 26.7, 31.1, 32.8, 55.5, 55.9, 62.9, 67.8, 128.9, 129.1, 129.5, 138.2, 158.5, 172.8, 174.5; HRMS (ESI-TOF): Calcd for C₁₆H₂₃N₂O₅S (M+H)⁺: 387.1043, found: 387.1062; IR (KBr, v_{max}/cm⁻¹): 3313 (OH), 2584 (SH), 1736 (CO₂), 1635 (CON).

Cbz-L-Met-L-Tyr-OH (7dc): 148 mg (66%), colorless powder; mp; 133–135 °C; $[\alpha]_D^{28} = +0.26$ (*c* 1.00, MeOH); ¹HNMR (400 MHz, MeOD- d^4): δ 1.78–1.87 (m, 1H, $CH_{A}CH_{2}S$), 1.93–2.04 (m, 1H, $CH_{B}CH_{2}S$), 2.04 (s, 3H, CH_{3}), 2.41–2.54 (m, 2H, CH₂S), 2.92 (dd, J = 8.0, 14.0 Hz, 1H, $CH_AC_6H_4$, 3.09 (dd, J = 5.1, 14.0 Hz, 1H, $CH_BC_6H_4$), 4.23 (dd, $J = 5.7, 8.7 \,\text{Hz}, 1 \text{H}, CHCH_2CH_2), 4.59 \,(\text{dd}, J = 5.1, 8.0 \,\text{Hz},$ 1H, CHCH₂C₆H₄), 5.06 (d, J = 12.4 Hz, 1H, OCH₄C₆H₅), 5.10 (d, J = 12.4 Hz, 1H, OCH_BC₆H₅), 6.68, 7.03 (d, d, J = 8.4, 8.4 Hz, 2H, 2H, C₆H₄), 7.28–7.35 (m, 5H, C₆H₅); ¹³C NMR $(100 \text{ MHz}, \text{MeOD-}d^4)$: δ 15.2, 31.0, 32.8, 37.5, 55.2, 55.5, 67.8, 116.3, 128.8, 128.9, 129.1, 129.5, 131.4, 138.2, 157.4, 158.4, 174.1, 174.5; HRMS (ESI-TOF): Calcd for C₂₂H₂₇N₂O₆S $(M+H)^+$: 447.1584, found: 447.1569; IR (KBr, v_{max}/cm^{-1}): 3302 (OH), 1716 (CO₂), 1691 (CON), 1649 (CON),

N-Boc-*O*-Bn-L-Ser-L-Glu-OH (7ee): 161 mg (76%), colorless sticky oil; $[α]_D^{19} = -1.46$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 1.45 (s, 9H, CH₃ × 3), 1.89–1.98 (m, 1H, CH_ACH₂CO), 2.15–2.25 (m, 1H, CH_BCH₂CO), 2.36–2.42 (m, 2H, CH₂CO), 3.67 (dd, *J* = 4.5, 9.8 Hz, 1H, CH_AOCH₂C₆H₅), 3.74 (dd, *J* = 5.2, 9.8 Hz, 1H, CH_BOCH₂C₆H₅), 4.30 (dd, *J* = 4.5, 5.2 Hz, 1H, CHCH₂O), 4.47–4.50 (m, 1H, CHCH₂CH₂), 4.52 (d, *J* = 11.5 Hz, 1H, OCH_AC₆H₅), 4.55 (d, *J* = 11.5 Hz, 1H, OCH_AC₆H₅), 4.55 (d, *J* = 11.5 Hz, 1H, OCH_AC₆H₅), 1³C NMR (100 MHz, MeOD-*d*⁴): δ 28.2, 28.7, 31.0, 53.0, 56.2, 71.1, 74.3, 81.0, 128.8, 129.0, 129.5, 139.3, 157.8, 172.9, 174.4, 176.4; HRMS (ESI-TOF): Calcd for C₂₀H₂₈N₂O₈Na (M+Na)⁺: 447.1743, found: 447.1756; IR (KBr, v_{max}/cm⁻¹): 3329 (OH), 1716 (CO₂), 1652 (CON).

N^α-Boc-*N*^ε-Cbz-L-Lys-L-Glu-OH (7fe): 215 mg (84%), colorless sticky oil; $[α]_D^{18} = -11.4$ (*c* 1.00, MeOH); ¹H NMR (400 MHz, MeOD-*d*⁴): δ 1.39–1.55 (m, 13H, CH₃ × 3, CH₂-(CH₂)₂N, CH₂CH₂N), 1.56–1.63 (m, 1H, CH₄(CH₂)₃N), 1.70– 1.81 (m, 1H, CH_B(CH₂)₃N), 1.91–1.98 (m, 1H, CH₄CH₂CO), 2.14–2.23 (m, 1H, CH_BCH₂CO), 2.38–2.42 (m, 2H, CH₂CO), 3.09–3.1.3 (m, 2H, CH₂N), 3.99–4.03 (m, 1H, CH(CH₂)₄N), 4.42–4.44 (m, 1H, CHCH₂CH₂CO), 5.06 (s, 2H, OCH₂C₆H₅), 7.28–7.34 (m, 5H, C₆H₅); ¹³C NMR (100 MHz, MeOD-*d*⁴): δ 24.1, 28.0, 28.8, 30.5, 31.1, 32.9, 41.5, 52.9, 56.0, 67.4, 81.0, 128.8, 129.0, 129.5, 138.5, 157.9, 159.0, 174.6, 175.4, 176.4; HRMS (ESI-TOF): Calcd for C₂₄H₃₅N₃O₉Na (M+Na)⁺: 532.2276, found: 532.2278; IR (KBr, v_{max}/cm⁻¹): 3329 (OH), 1716 (CO₂), 1685 (CON), 1655 (CON).

A Typical Procedure of the Amidation of Cbz-L-Phenylalanine (6a) in a Gram Scale is as Follows. To a colorless solution of 1.50 g (5.0 mmol) of Cbz-L-phenylalanine (6a) in 100 mL of THF were added at 0 °C 0.67 mL (7.0 mmol, 1.4 equiv) of ethyl chloroformate and 2.09 mL (15 mmol, 3.0 equiv) of triethylamine. After stirring for 30 min at 0 °C, a solution of 1.10 g (7.5 mmol, 1.5 equiv) of L-Glu-OH (2e) and 0.63 g (7.5 mmol, 1.5 equiv) of NaHCO₃ in 100 mL of H₂O was added at 0 °C to the colorless suspension. The mixture was stirred for 30 min at 0 °C and the resulting colorless clear solution was concentrated in vacuo. The residue was adjusted to pH 2 by addition of a 1.0 M aqueous solution of HCl. The colorless suspension was diluted with 100 mL of brine, extracted with 200 mL of a 9:1 mixture of EtOAc and MeOH. The aqueous layer was extracted with 100 mL \times 2 of a 9:1 mixture of EtOAc and MeOH. The combined organic layer was dried over anhydrous $MgSO_4$. The crude product was recrystallized from 50 mL of a 1:4 mixture of toluene and hexane to afford a colorless solid, followed by recrystallization from 20 mL of a 4:1 mixture of EtOAc and hexane to afford 1.74 g (81% yield) of Cbz-L-Phe-L-Glu-OH (7ae).

This work was supported in part by the Scientific Research Project by CIS (Chiba Institute of Science), Japan.

Supporting Information

¹HNMR and ¹³CNMR spectra for all amides **3a–3e** and dipeptides **7aa–7fe** are available on http://dx.doi.org/10.1246/ bcsj.20170035.

References

1 G. M. Cooper, R. E. Hausman, *The Cell: A Molecular Approach*, ASM Press, Washington, D.C., **2004**.

2 For selected reviews on peptide syntheses: a) M. A. Blaskovich, *Handbook on Syntheses of Amino Acids: General Routes for the Syntheses of Amino Acids*, Oxford University Press, New York, **2010**. b) C. A. G. N. Montalbetti, V. Falque, *Tetrahedron* **2005**, *61*, 10827. c) T. Wieland, M. Bodanszky, *The World of Peptides: A Brief History of Peptide Chemistry*, Springer-Verlag, New York, **1991**, 77. doi:10.1007/978-3-642-75850-8. For selected reports for peptide syntheses using unprotected α -amino acids: d) P. Gagnon, X. Huang, E. Therrien, J. W. Keillor, *Tetrahedron Lett.* **2002**, *43*, 7717, and the references cited therein. e) M. V. Anuradha, B. Ravindranath, *Tetrahedron* **1997**, *53*, 1123. f) G. W. Anderson, J. E. Zimmerman, F. M. Callahan, J. Am. Chem. Soc. **1964**, *86*, 1839.

3 A. Furka, F. Sebestyén, M. Asgedom, G. Dibó, *Int. J. Pept. Protein Res.* **1991**, *37*, 487.

4 R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149.

5 a) C.-D. Chang, J. Meienhofer, *Int. J. Pept. Protein Res.* **1978**, *11*, 246. b) M. Góngora-Benítez, J. Tulla-Puche, F. Albericio, *ACS Comb. Sci.* **2013**, *15*, 217.

6 S. A. Kates, N. A. Solé, C. R. Johnson, D. Hudson, G. Barany, F. Albericio, *Tetrahedron Lett.* **1993**, *34*, 1549.

7 K. Hofmann, T. A. Thompson, H. Yajima, E. T. Schwartz, H. Inouye, *J. Am. Chem. Soc.* **1960**, *82*, 3715.

8 P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. B. Kent, *Science* **1994**, *266*, 776.

9 a) V. Mark, *Chem. Eng. News* **2005**, *83* (11), 17. b) T. Bruckdorfer, O. Marder, F. Albericio, *Curr. Pharm. Biotechnol.* **2004**, *5*, 29.

10 D. Macmillan, Angew. Chem., Int. Ed. 2006, 45, 7668.

11 X. Li, H. Y. Lam, Y. Zhang, C. K. Chan, Org. Lett. 2010, 12, 1724.

12 a) T. Ezawa, S. Jung, Y. Kawashima, T. Noguchi, N. Imai, *Tetrahedron: Asymmetry* **2017**, *28*, 75. b) Y. Kawashima, T. Ezawa, M. Yamamura, T. Harada, T. Noguchi, N. Imai, *Tetrahedron Lett.* **2016**, *57*, 668. c) T. Noguchi, S. Jung, N. Imai, *Tetrahedron Lett.* **2014**, *55*, 394. d) S. Jung, Y. Tsukuda, R. Kawashima, T. Ishiki, A. Matsumoto, A. Nakaniwa, M. Takagi, T. Noguchi, N. Imai, *Tetrahedron Lett.* **2013**, *54*, 5718. e) T. Noguchi, M. Sekine, Y. Yokoo, S. Jung, N. Imai, *Chem. Lett.* **2013**, *42*, 580. f) T. Noguchi, S. Jung, N. Imai, *Chem. Lett.* **2012**, *41*, 577. g) T. Noguchi, N. Tehara, Y. Uesugi, S. Jung, N. Imai, *Chem. Lett.* **2012**, *41*, 42.